1
|
Grützmann K, Kraft T, Meinhardt M, Meier F, Westphal D, Seifert M. Network-based analysis of heterogeneous patient-matched brain and extracranial melanoma metastasis pairs reveals three homogeneous subgroups. Comput Struct Biotechnol J 2024; 23:1036-1050. [PMID: 38464935 PMCID: PMC10920107 DOI: 10.1016/j.csbj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Melanoma, the deadliest form of skin cancer, can metastasize to different organs. Molecular differences between brain and extracranial melanoma metastases are poorly understood. Here, promoter methylation and gene expression of 11 heterogeneous patient-matched pairs of brain and extracranial metastases were analyzed using melanoma-specific gene regulatory networks learned from public transcriptome and methylome data followed by network-based impact propagation of patient-specific alterations. This innovative data analysis strategy allowed to predict potential impacts of patient-specific driver candidate genes on other genes and pathways. The patient-matched metastasis pairs clustered into three robust subgroups with specific downstream targets with known roles in cancer, including melanoma (SG1: RBM38, BCL11B, SG2: GATA3, FES, SG3: SLAMF6, PYCARD). Patient subgroups and ranking of target gene candidates were confirmed in a validation cohort. Summarizing, computational network-based impact analyses of heterogeneous metastasis pairs predicted individual regulatory differences in melanoma brain metastases, cumulating into three consistent subgroups with specific downstream target genes.
Collapse
Affiliation(s)
- Konrad Grützmann
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Theresa Kraft
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| |
Collapse
|
2
|
Taylor T, Zhu HV, Moorthy SD, Khader N, Mitchell JA. The cells are all-right: Regulation of the Lefty genes by separate enhancers in mouse embryonic stem cells. PLoS Genet 2024; 20:e1011513. [PMID: 39671433 DOI: 10.1371/journal.pgen.1011513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/27/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024] Open
Abstract
Enhancers play a critical role in regulating precise gene expression patterns essential for development and cellular identity; however, how gene-enhancer specificity is encoded within the genome is not clearly defined. To investigate how this specificity arises within topologically associated domains (TAD), we performed allele-specific genome editing of sequences surrounding the Lefty1 and Lefty2 paralogs in mouse embryonic stem cells. The Lefty genes arose from a tandem duplication event and these genes interact with each other in chromosome conformation capture assays which place these genes within the same TAD. Despite their physical proximity, we demonstrate that these genes are primarily regulated by separate enhancer elements. Through CRISPR-Cas9 mediated deletions to remove the intervening chromatin between the Lefty genes, we reveal a distance-dependent dosage effect of the Lefty2 enhancer on Lefty1 expression. These findings indicate a role for chromatin distance in insulating gene expression domains in the Lefty locus in the absence of architectural insulation.
Collapse
Affiliation(s)
- Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Hongyu Vicky Zhu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Rich A, Acar O, Carvunis AR. Massively integrated coexpression analysis reveals transcriptional regulation, evolution and cellular implications of the yeast noncanonical translatome. Genome Biol 2024; 25:183. [PMID: 38978079 PMCID: PMC11232214 DOI: 10.1186/s13059-024-03287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Recent studies uncovered pervasive transcription and translation of thousands of noncanonical open reading frames (nORFs) outside of annotated genes. The contribution of nORFs to cellular phenotypes is difficult to infer using conventional approaches because nORFs tend to be short, of recent de novo origins, and lowly expressed. Here we develop a dedicated coexpression analysis framework that accounts for low expression to investigate the transcriptional regulation, evolution, and potential cellular roles of nORFs in Saccharomyces cerevisiae. RESULTS Our results reveal that nORFs tend to be preferentially coexpressed with genes involved in cellular transport or homeostasis but rarely with genes involved in RNA processing. Mechanistically, we discover that young de novo nORFs located downstream of conserved genes tend to leverage their neighbors' promoters through transcription readthrough, resulting in high coexpression and high expression levels. Transcriptional piggybacking also influences the coexpression profiles of young de novo nORFs located upstream of genes, but to a lesser extent and without detectable impact on expression levels. Transcriptional piggybacking influences, but does not determine, the transcription profiles of de novo nORFs emerging nearby genes. About 40% of nORFs are not strongly coexpressed with any gene but are transcriptionally regulated nonetheless and tend to form entirely new transcription modules. We offer a web browser interface ( https://carvunislab.csb.pitt.edu/shiny/coexpression/ ) to efficiently query, visualize, and download our coexpression inferences. CONCLUSIONS Our results suggest that nORF transcription is highly regulated. Our coexpression dataset serves as an unprecedented resource for unraveling how nORFs integrate into cellular networks, contribute to cellular phenotypes, and evolve.
Collapse
Affiliation(s)
- April Rich
- Joint Carnegie Mellon University-University of Pittsburgh, University of Pittsburgh Computational Biology PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Omer Acar
- Joint Carnegie Mellon University-University of Pittsburgh, University of Pittsburgh Computational Biology PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Wang J, Ren H, Xu C, Yu B, Cai Y, Wang J, Ni X. Identification of m6A/m5C-related lncRNA signature for prediction of prognosis and immunotherapy efficacy in esophageal squamous cell carcinoma. Sci Rep 2024; 14:8238. [PMID: 38589454 PMCID: PMC11001862 DOI: 10.1038/s41598-024-58743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications have garnered significant attention in the field of epigenetic research due to their close association with human cancers. This study we focus on elucidating the expression patterns of m6A/m5C-related long non-coding RNAs (lncRNAs) in esophageal squamous cell carcinoma (ESCC) and assessing their prognostic significance and therapeutic potential. Transcriptomic profiles of ESCC were derived from public resources. m6A/m5C-related lncRNAs were obtained from TCGA using Spearman's correlations analysis. The m6A/m5C-lncRNAs prognostic signature was selected to construct a RiskScore model for survival prediction, and their correlation with the immune microenvironment and immunotherapy response was analyzed. A total of 606 m6A/m5C-lncRNAs were screened, and ESCC cases in the TCGA cohort were stratified into three clusters, which showed significantly distinct in various clinical features and immune landscapes. A RiskScore model comprising ten m6A/m5C-lncRNAs prognostic signature were constructed and displayed good independent prediction ability in validation datasets. Patients in the low-RiskScore group had a better prognosis, a higher abundance of immune cells (CD4 + T cell, CD4 + naive T cell, class-switched memory B cell, and Treg), and enhanced expression of most immune checkpoint genes. Importantly, patients with low-RiskScore were more cline benefit from immune checkpoint inhibitor treatment (P < 0.05). Our findings underscore the potential of RiskScore system comprising ten m6A/m5C-related lncRNAs as effective biomarkers for predicting survival outcomes, characterizing the immune landscape, and assessing response to immunotherapy in ESCC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Huiwen Ren
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Bo Yu
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Yiling Cai
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Jian Wang
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China.
| | - Xinye Ni
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
5
|
Tripathi N, Saraf P, Bhardwaj N, Shrivastava SK, Jain SK. Identifying inflammation-related targets of natural lactones using network pharmacology, molecular modeling and in vitro approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38334283 DOI: 10.1080/07391102.2024.2310783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Natural lactones have been used in traditional and folklore medicine for centuries owing to their anti-inflammatory properties. The study uses a multifaceted approach to identify lead anti-inflammatory lactones from the SISTEMATX natural products database. The study analyzed the natural lactone database, revealing 18 lactones linked to inflammation targets. The primary targets were PTGES, PTGS1, COX-2, ALOX5 and IL1B. STX 12273 was the best hit, with the lowest binding energy and potential for inhibiting the COX-2 enzyme. The study suggested natural lactone, STX 12273, from the SISTEMATX database with anti-inflammatory potential and postulated its use for inflammation treatment or prevention.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
6
|
Araida J, Ohka S, Soeda M, Nishizawa D, Hasegawa J, Nakayama K, Ebata Y, Ogai Y, Fukuda KI, Ikeda K. rs12411980 single-nucleotide polymorphism related to PRTFDC1 expression is significantly associated with phantom tooth pain. Mol Pain 2024; 20:17448069241272215. [PMID: 39093623 PMCID: PMC11348367 DOI: 10.1177/17448069241272215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Phantom tooth pain (PTP) is one type of non-odontogenic neuropathic toothache, which rarely occurs after appropriate pulpectomy or tooth extraction. The cause of PTP is unknown. We investigated pain-related genetic factors that are associated with PTP. Four pain-associated genes, including G protein-coupled receptor 158 (GPR158) and phosphoribosyl transferase domain containing 1 (PRTFDC1), are adjacent to each other on the human genome. Some of these four genes or their genomic region may be related to PTP. We statistically analyzed associations between single-nucleotide polymorphisms (SNPs) in the genomic region and PTP in patients with PTP (PTP group), other orofacial pain (OFP group), and healthy control subjects. We then performed a database search of expression quantitative trait loci (eQTLs). For the seven SNPs that were significantly associated with PTP even after Bonferroni correction, we focused on the rs12411980 tag SNP (p = 9.42 × 10-4). Statistical analyses of the PTP group and healthy subject groups (group labels: NOC and TD) revealed that the rate of the GG genotype of the rs12411980 SNP was significantly higher in the PTP group than in the healthy subject groups (PTP group vs. NOC group: p = 2.92 × 10-4, PTP group vs. TD group: p = 5.46 × 10-4; percentage of GG: 30% in PTP group, 12% in NOC group, 11% in TD group). These results suggest that the GG genotype of the rs12411980 SNP is more susceptible to PTP. The rs2765697 SNP that is in strong linkage disequilibrium with the rs12411980 SNP is an eQTL that is associated with higher PRTFDC1 expression in the minor allele homozygotes in the healthy subject groups of the rs2765697 SNP. Thus, PRTFDC1 expression similarly increases in the minor allele homozygotes (GG genotype) in the healthy subject groups of the rs12411980 SNP, which would lead to greater susceptibility to PTP.
Collapse
Affiliation(s)
- Jun Araida
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Moe Soeda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasukazu Ogai
- Social Psychiatry and Mental Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ken-ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
7
|
Islam M, Behura SK. Role of paralogs in the sex-bias transcriptional and metabolic regulation of the brain-placental axis in mice. Placenta 2024; 145:143-150. [PMID: 38134547 DOI: 10.1016/j.placenta.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Duplicated genes or paralogs play important roles in the adaptive function of eukaryotic genomes. Animal studies have shown evidence for the functional role of paralogs in pregnancy, but our knowledge about the role of paralogs in the fetoplacental regulation remains limited. In particular, if fetoplacental metabolic regulation is modulated by differential expression of paralogs remains unexamined. METHODS In this study, gene expression profiles of day-15 placenta and fetal brain were compared to identify families or groups of paralogous genes expressed in the placenta and brain of male versus female fetuses in mice. A Bayesian modeling was applied to infer directional relationship of transcriptional variation of the paralogs relative to the phylogenetic variation of the genes in each family. Gas chromatography-mass spectrometry (GC-MS) was used to perform untargeted metabolomics analysis of day-15 placenta and fetal brain of both sexes. RESULTS We identified paralog groups that were expressed in a sex and/or tissue biased manner between the placenta and fetal brain. Bayesian modeling showed evidence for directional relationship between expression and phylogeny of specific paralogs. These relationships were sex specific. GC-MS analysis identified metabolites that were expressed in a sex-bias manner between the placenta and fetal brain. By performing integrative analysis of the metabolomics and gene expression data, we showed that specific groups of metabolites and paralogous genes were expressed in a coordinated manner between the placenta and fetal brain. DISCUSSION The findings of this study collectively suggest that paralogs play an influential role in the regulation of the brain-placental axis in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, USA; Interdisciplinary Neuroscience Program, University of Missouri, USA.
| |
Collapse
|
8
|
Yu J, Yang G, Li S, Li M, Ji C, Liu G, Wang Y, Chen N, Lei C, Dang R. Identification of Dezhou donkey muscle development-related genes and long non-coding RNA based on differential expression analysis. Anim Biotechnol 2023; 34:2313-2323. [PMID: 35736796 DOI: 10.1080/10495398.2022.2088549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in the development of muscles. However, the role of lncRNAs in regulating skeletal muscle development has not been studied systematically in the donkey. In this study, we performed the RNA sequencing for different stages of muscles in donkeys, and investigate their expression profile, which showed that 3215 mRNAs (p-adjust <0.05) and 471 lncRNAs (p-value <0.05) were significantly differently expressed (DE) verified by RT-qPCR. GO and KEGG enrichment analysis indicated that DE genes and target genes of DE lncRNAs were associated with muscle development in the donkey. We also found these four target genes (DCN, ITM2A, MUSTN1, ARRDC2) involved in skeletal muscle growth and development. Combined with transcriptome data, network, and RT-qPCR results showed that four co-expression networks of DCN and lnc-008278, ITM2A and lnc_017247, MUSTN1 and lnc_030153, and ARRDC2 and lnc_033914, which may play an important role in the formation and development of muscle in the donkey.
Collapse
Affiliation(s)
- Jie Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong, China
| | - Ge Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shipeng Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Mei Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong, China
| | - Guiqin Liu
- Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
9
|
Zhou X, Peng T, Zeng Y, Cai Y, Zuo Q, Zhang L, Dong S, Liu Y. Chromosome-level genome assembly of Niphotrichum japonicum provides new insights into heat stress responses in mosses. FRONTIERS IN PLANT SCIENCE 2023; 14:1271357. [PMID: 37920716 PMCID: PMC10619864 DOI: 10.3389/fpls.2023.1271357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
With a diversity of approximately 22,000 species, bryophytes (hornworts, liverworts, and mosses) represent a major and diverse lineage of land plants. Bryophytes can thrive in many extreme environments as they can endure the stresses of drought, heat, and cold. The moss Niphotrichum japonicum (Grimmiaceae, Grimmiales) can subsist for extended periods under heat and drought conditions, providing a good candidate for studying the genetic basis underlying such high resilience. Here, we de novo assembled the genome of N. japonicum using Nanopore long reads combined with Hi-C scaffolding technology to anchor the 191.61 Mb assembly into 14 pseudochromosomes. The genome structure of N. japonicum's autosomes is mostly conserved and highly syntenic, in contrast to the sparse and disordered genes present in its sex chromosome. Comparative genomic analysis revealed the presence of 10,019 genes exclusively in N. japonicum. These genes may contribute to the species-specific resilience, as demonstrated by the gene ontology (GO) enrichment. Transcriptome analysis showed that 37.44% (including 3,107 unique genes) of the total annotated genes (26,898) exhibited differential expression as a result of heat-induced stress, and the mechanisms that respond to heat stress are generally conserved across plants. These include the upregulation of HSPs, LEAs, and reactive oxygen species (ROS) scavenging genes, and the downregulation of PPR genes. N. japonicum also appears to have distinctive thermal mechanisms, including species-specific expansion and upregulation of the Self-incomp_S1 gene family, functional divergence of duplicated genes, structural clusters of upregulated genes, and expression piggybacking of hub genes. Overall, our study highlights both shared and species-specific heat tolerance strategies in N. japonicum, providing valuable insights into the heat tolerance mechanism and the evolution of resilient plants.
Collapse
Affiliation(s)
- Xuping Zhou
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Peng
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuying Zeng
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Zuo
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| |
Collapse
|
10
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Cui L, Cheng H, Yang Z, Xia C, Zhang L, Kong X. Comparative Analysis Reveals Different Evolutionary Fates and Biological Functions in Wheat Duplicated Genes ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3021. [PMID: 37687268 PMCID: PMC10489728 DOI: 10.3390/plants12173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Wheat (Triticum aestivum L.) is a staple food crop that provides 20% of total human calorie consumption. Gene duplication has been considered to play an important role in evolution by providing new genetic resources. However, the evolutionary fates and biological functions of the duplicated genes in wheat remain to be elucidated. In this study, the resulting data showed that the duplicated genes evolved faster with shorter gene lengths, higher codon usage bias, lower expression levels, and higher tissue specificity when compared to non-duplicated genes. Our analysis further revealed functions of duplicated genes in various biological processes with significant enrichment to environmental stresses. In addition, duplicated genes derived from dispersed, proximal, tandem, transposed, and whole-genome duplication differed in abundance, evolutionary rate, gene compactness, expression pattern, and genetic diversity. Tandem and proximal duplicates experienced stronger selective pressure and showed a more compact gene structure with diverse expression profiles than other duplication modes. Moreover, genes derived from different duplication modes showed an asymmetrical evolutionary pattern for wheat A, B, and D subgenomes. Several candidate duplication hotspots associated with wheat domestication or polyploidization were characterized as potential targets for wheat molecular breeding. Our comprehensive analysis revealed the evolutionary trajectory of duplicated genes and laid the foundation for future functional studies on wheat.
Collapse
Affiliation(s)
- Licao Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Zhe Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
| | - Chuan Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
| | - Lichao Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
| | - Xiuying Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
| |
Collapse
|
12
|
Ghandour R, Gao Y, Laskowski J, Barahimipour R, Ruf S, Bock R, Zoschke R. Transgene insertion into the plastid genome alters expression of adjacent native chloroplast genes at the transcriptional and translational levels. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:711-725. [PMID: 36529916 PMCID: PMC10037153 DOI: 10.1111/pbi.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In plant biotechnology and basic research, chloroplasts have been used as chassis for the expression of various transgenes. However, potential unintended side effects of transgene insertion and high-level transgene expression on the expression of native chloroplast genes are often ignored and have not been studied comprehensively. Here, we examined expression of the chloroplast genome at both the transcriptional and translational levels in five transplastomic tobacco (Nicotiana tabacum) lines carrying the identical aadA resistance marker cassette in diverse genomic positions. Although none of the lines exhibits a pronounced visible phenotype, the analysis of three lines that contain the aadA insertion in different locations within the petL-petG-psaJ-rpl33-rps18 transcription unit demonstrates that transcriptional read-through from the aadA resistance marker is unavoidable, and regularly causes overexpression of downstream sense-oriented chloroplast genes at the transcriptional and translational levels. Investigation of additional lines that harbour the aadA intergenically and outside of chloroplast transcription units revealed that expression of the resistance marker can also cause antisense effects by interference with transcription/transcript accumulation and/or translation of downstream antisense-oriented genes. In addition, we provide evidence for a previously suggested role of genomically encoded tRNAs in chloroplast transcription termination and/or transcript processing. Together, our data uncover principles of neighbouring effects of chloroplast transgenes and suggest general strategies for the choice of transgene insertion sites and expression elements to minimize unintended consequences of transgene expression on the transcription and translation of native chloroplast genes.
Collapse
Affiliation(s)
- Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Yang Gao
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | | | | | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| |
Collapse
|
13
|
Bolotin E, Melamed D, Livnat A. Genes that are Used Together are More Likely to be Fused Together in Evolution by Mutational Mechanisms: A Bioinformatic Test of the Used-Fused Hypothesis. Evol Biol 2022; 50:30-55. [PMID: 36816837 PMCID: PMC9925542 DOI: 10.1007/s11692-022-09579-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/11/2022] [Indexed: 12/05/2022]
Abstract
Cases of parallel or recurrent gene fusions in evolution as well as in genetic disease and cancer are difficult to explain, because unlike point mutations, they can require the repetition of a similar configuration of multiple breakpoints rather than the repetition of a single point mutation. The used-together-fused-together hypothesis holds that genes that are used together repeatedly and persistently in a specific context are more likely to undergo fusion mutation in the course of evolution for mechanistic reasons. This hypothesis offers to explain gene fusion in both evolution and disease under one umbrella. Using bioinformatic data, we tested this hypothesis against alternatives, including that all gene pairs can fuse by random mutation, but among pairs thus fused, those that had interacted previously are more likely to be favored by selection. Results show that across multiple measures of gene interaction, human genes whose orthologs are fused in one or more species are more likely to interact with each other than random pairs of genes of the same genomic distance between pair members; that an overlap exists between genes that fused in the course of evolution in non-human species and genes that undergo fusion in human cancers; and that across six primate species studied, fusions predominate over fissions and exhibit substantial evolutionary parallelism. Together, these results support the used-together-fused-together hypothesis over its alternatives. Multiple implications are discussed, including the relevance of mutational mechanisms to the evolution of genome organization, to the distribution of fitness effects of mutation, to evolutionary parallelism and more. Supplementary Information The online version contains supplementary material available at 10.1007/s11692-022-09579-9.
Collapse
Affiliation(s)
- Evgeni Bolotin
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| | - Daniel Melamed
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| | - Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| |
Collapse
|
14
|
Stefanizzi FM, Zhang L, Salgado-Somoza A, Dankiewicz J, Stammet P, Hassager C, Wise MP, Friberg H, Cronberg T, Hundt A, Kjaergaard J, Nielsen N, Devaux Y. Circular RNAs to predict clinical outcome after cardiac arrest. Intensive Care Med Exp 2022; 10:41. [PMID: 36303007 PMCID: PMC9613847 DOI: 10.1186/s40635-022-00470-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Background Cardiac arrest (CA) represents the third leading cause of death worldwide. Among patients resuscitated and admitted to hospital, death and severe neurological sequelae are frequent but difficult to predict. Blood biomarkers offer clinicians the potential to improve prognostication. Previous studies suggest that circulating non-coding RNAs constitute a reservoir of novel biomarkers. Therefore, this study aims to identify circulating circular RNAs (circRNAs) associated with clinical outcome after CA. Results Whole blood samples obtained 48 h after return of spontaneous circulation in 588 survivors from CA enrolled in the Target Temperature Management trial (TTM) were used in this study. Whole transcriptome RNA sequencing in 2 groups of 23 sex-matched patients identified 28 circRNAs associated with neurological outcome and survival. The circRNA circNFAT5 was selected for further analysis using quantitative PCR. In the TTM-trial (n = 542), circNFAT5 was upregulated in patients with poor outcome as compared to patients with good neurological outcome (p < 0.001). This increase was independent of TTM regimen and sex. The adjusted odds ratio of circNFAT5 to predict neurological outcome was 1.39 [1.07–1.83] (OR [95% confidence interval]). CircNFAT5 predicted 6-month survival with an adjusted hazard ratio of 1.31 [1.13–1.52].
Conclusion We identified circulating circRNAs associated with clinical outcome after CA, among which circNFAT5 may have potential to aid in predicting neurological outcome and survival when used in combination with established biomarkers of CA. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00470-7.
Collapse
Affiliation(s)
- Francesca M Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg
| | - Josef Dankiewicz
- Department of Cardiology, Clinical Sciences, Lund University and Skane University Hospital, 221 85, Lund, Sweden
| | - Pascal Stammet
- Department of Intensive Care Medicine, Centre Hospitalier de Luxembourg, 1210, Luxembourg, Luxembourg.,Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-sur-Alzette, Luxembourg
| | - Christian Hassager
- Department of Cardiology B, The Heart Centre, Rigshospitalet University Hospital, 2100, Copenhagen, Denmark
| | - Matthew P Wise
- Department of Intensive Care, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Hans Friberg
- Department of Anesthesia and Intensive Care, Clinical Sciences, Lund University and Skane University Hospital, 221 85, Malmö, Sweden
| | - Tobias Cronberg
- Department of Neurology and Rehabilitation Medicine, Clinical Sciences, Lund University and Skane University Hospital, 221 85, Lund, Sweden
| | - Alexander Hundt
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
| | - Jesper Kjaergaard
- Department of Cardiology B, The Heart Centre, Rigshospitalet University Hospital, 2100, Copenhagen, Denmark
| | - Niklas Nielsen
- Department of Anesthesia and Intensive Care, Clinical Sciences, Lund University and Helsingborg Hospital, 25187, Lund, Sweden
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg.
| |
Collapse
|
15
|
Shared regulation and functional relevance of local gene co-expression revealed by single cell analysis. Commun Biol 2022; 5:876. [PMID: 36028576 PMCID: PMC9418141 DOI: 10.1038/s42003-022-03831-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/10/2022] [Indexed: 02/01/2023] Open
Abstract
Most human genes are co-expressed with a nearby gene. Previous studies have revealed this local gene co-expression to be widespread across chromosomes and across dozens of tissues. Yet, so far these studies used bulk RNA-seq, averaging gene expression measurements across millions of cells, thus being unclear if this co-expression stems from transcription events in single cells. Here, we leverage single cell datasets in >85 individuals to identify gene co-expression across cells, unbiased by cell-type heterogeneity and benefiting from the co-occurrence of transcription events in single cells. We discover >3800 co-expressed gene pairs in two human cell types, induced pluripotent stem cells (iPSCs) and lymphoblastoid cell lines (LCLs) and (i) compare single cell to bulk RNA-seq in identifying local gene co-expression, (ii) show that many co-expressed genes – but not the majority – are composed of functionally related genes and (iii) using proteomics data, provide evidence that their co-expression is maintained up to the protein level. Finally, using single cell RNA-sequencing (scRNA-seq) and single cell ATAC-sequencing (scATAC-seq) data for the same single cells, we identify gene-enhancer associations and reveal that >95% of co-expressed gene pairs share regulatory elements. These results elucidate the potential reasons for co-expression in single cell gene regulatory networks and warrant a deeper study of shared regulatory elements, in view of explaining disease comorbidity due to affecting several genes. Our in-depth view of local gene co-expression and regulatory element co-activity advances our understanding of the shared regulatory architecture between genes. Using single-cell data from cell lines, the co-expression of genes and co-activity of regulatory elements is analyzed, providing insight into shared architecture and regulation between genes.
Collapse
|
16
|
Katsoula G, Steinberg J, Tuerlings M, Coutinho de Almeida R, Southam L, Swift D, Meulenbelt I, Wilkinson JM, Zeggini E. A molecular map of long non-coding RNA expression, isoform switching and alternative splicing in osteoarthritis. Hum Mol Genet 2022; 31:2090-2105. [PMID: 35088088 PMCID: PMC9239745 DOI: 10.1093/hmg/ddac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365 genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Georgia Katsoula
- Technical University of Munich (TUM), School of Medicine, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Daffodil Centre, University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich 81675, Germany
| |
Collapse
|
17
|
Chen Z, Huang X, Fu R, Zhan A. Neighbours matter: Effects of genomic organization on gene expression plasticity in response to environmental stresses during biological invasions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100992. [PMID: 35504120 DOI: 10.1016/j.cbd.2022.100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Gene expression regulation has been widely recognized as an important molecular mechanism underlying phenotypic plasticity in environmental adaptation. However, it remains largely unexplored on the effects of genomic organization on gene expression plasticity under environmental stresses during biological invasions. Here, we use an invasive model ascidian, Ciona robusta, to investigate how genomic organization affects gene expression in response to salinity stresses during range expansions. Our study showed that neighboring genes were co-expressed and approximately 30% of stress responsive genes were physically clustered on chromosomes. Such coordinated expression was substantially affected by the physical distance and orientation of genes. Interestingly, the overall expression correlation of neighboring genes was significantly decreased under high salinity stresses, illustrating that the co-expression regulation could be disrupted by salinity challenges. Furthermore, the clustering of genes was associated with their function constraints and expression patterns - operon genes enriched in gene expression machinery had the highest transcriptional activity and expression stability. Notably, our analyses showed that the tail-to-tail genes, mainly involved in biological functions related to phosphorylation, homeostatic process, and ion transport, exhibited higher intrinsic expression variability and greater response to salinity challenges. Altogether, the results obtained here provide new insights into the effects of gene organization on gene expression plasticity under environmental challenges, hence improving our knowledge on mechanisms of rapid environmental adaptation during biological invasions.
Collapse
Affiliation(s)
- Zaohuang Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
18
|
Extended intergenic DNA contributes to neuron-specific expression of neighboring genes in the mammalian nervous system. Nat Commun 2022; 13:2733. [PMID: 35585070 PMCID: PMC9117226 DOI: 10.1038/s41467-022-30192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
Mammalian genomes comprise largely intergenic noncoding DNA with numerous cis-regulatory elements. Whether and how the size of intergenic DNA affects gene expression in a tissue-specific manner remain unknown. Here we show that genes with extended intergenic regions are preferentially expressed in neural tissues but repressed in other tissues in mice and humans. Extended intergenic regions contain twice as many active enhancers in neural tissues compared to other tissues. Neural genes with extended intergenic regions are globally co-expressed with neighboring neural genes controlled by distinct enhancers in the shared intergenic regions. Moreover, generic neural genes expressed in multiple tissues have significantly longer intergenic regions than neural genes expressed in fewer tissues. The intergenic regions of the generic neural genes have many tissue-specific active enhancers containing distinct transcription factor binding sites specific to each neural tissue. We also show that genes with extended intergenic regions are enriched for neural genes only in vertebrates. The expansion of intergenic regions may reflect the regulatory complexity of tissue-type-specific gene expression in the nervous system.
Collapse
|
19
|
Yang Z, Xu G, Zhang Q, Obata T, Yang J. Genome-wide mediation analysis: an empirical study to connect phenotype with genotype via intermediate transcriptomic data in maize. Genetics 2022; 221:6572813. [PMID: 35460234 PMCID: PMC9157066 DOI: 10.1093/genetics/iyac057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mapping genotype to phenotype is an essential topic in genetics and genomics research. As the Omics data become increasingly available, 2-variable methods have been widely applied to associate genotype with the phenotype (genome-wide association study), gene expression with the phenotype (transcriptome-wide association study), and genotype with gene expression. However, signals detected by these 2-variable association methods suffer from low mapping resolution or inexplicit causality between genotype and phenotype, making it challenging to interpret and validate the molecular mechanisms of the underlying genomic variations and the candidate genes. Under the context of genetics research, we hypothesized a causal chain from genotype to phenotype partially mediated by intermediate molecular processes, i.e. gene expression. To test this hypothesis, we applied the high-dimensional mediation analysis, a class of causal inference method with an assumed causal chain from the exposure to the mediator to the outcome, and implemented it with a maize association panel (N = 280 lines). Using 40 publicly available agronomy traits, 66 newly generated metabolite traits, and published RNA-seq data from 7 different tissues, our empirical study detected 736 unique mediating genes. Noticeably, 83/736 (11%) genes were identified in mediating more than 1 trait, suggesting the prevalence of pleiotropic mediating effects. We demonstrated that several identified mediating genes are consistent with their known functions. In addition, our results provided explicit hypotheses for functional validation and suggested that the mediation analysis is a powerful tool to integrate Omics data to connect genotype to phenotype.
Collapse
Affiliation(s)
- Zhikai Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Qi Zhang
- Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824, USA
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jinliang Yang
- Corresponding author: Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
20
|
Interdependent Transcription of a Natural Sense/Antisense Transcripts Pair (SLC34A1/PFN3). Noncoding RNA 2022; 8:ncrna8010019. [PMID: 35202092 PMCID: PMC8877773 DOI: 10.3390/ncrna8010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Natural antisense transcripts (NATs) constitute a significant group of regulatory, long noncoding RNAs. They are prominently expressed in testis but are also detectable in other organs. NATs are transcribed at low levels and co-expressed with related protein coding sense transcripts. Nowadays NATs are generally considered as regulatory, long noncoding RNAs without closer focus on the inevitable interference between sense and antisense expression. This work describes a cellular system where sense and antisense transcription of a specific locus (SLC34A1/PFN3) is induced using epigenetic modifiers and CRISPR-Cas9. The renal cell lines HEK293 and HKC-8 do not express SLC34A1/PFN3 under normal culture conditions. Five-day exposure to dexamethasone significantly stimulates sense transcript (SLC34A1) levels and antisense (PFN3) minimally; the effect is only seen in HEK293 cells. Enhanced expression is paralleled by reduced sense promoter methylation and an increase in activating histone marks. Expression is further modulated by cassettes that stimulate the expression of sense or antisense transcript but disrupt protein coding potential. Constitutive expression of a 5′-truncated SLC34A1 transcript increases sense expression independent of dexamethasone induction but also stimulates antisense expression. Concordant expression is confirmed with the antisense knock-in that also enhances sense expression. The antisense effect acts on transcription in cis since transient transfection with sense or antisense constructs fails to stimulate the expression of the opposite transcript. These results suggest that bi-directional transcription of the SLC34A1/PFN3 locus has a stimulatory influence on the expression of the opposite transcript involving epigenetic changes of the promoters. In perspective of extensive, previous research into bi-directionally transcribed SLC34A loci, the findings underpin a hypothesis where NATs display different biological roles in soma and germ cells. Accordingly, we propose that in somatic cells, NATs act like lncRNAs–with the benefit of close proximity to a potential target gene. In germ cells, however, recent evidence suggests different biological roles for NATs that require RNA complementarity and double-stranded RNA formation.
Collapse
|
21
|
Tang R, Li Y, Han F, Li Z, Lin X, Sun H, Zhang X, Jiang Q, Nie H, Li Y. A CTCF-Binding Element and Histone Deacetylation Cooperatively Maintain Chromatin Loops, Linking to Long-Range Gene Regulation in Cancer Genomes. Front Oncol 2022; 11:821495. [PMID: 35127534 PMCID: PMC8813737 DOI: 10.3389/fonc.2021.821495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Genes spanning long chromosomal domains are coordinately regulated in human genome, which contribute to global gene dysregulation and carcinogenesis in cancer. It has been noticed that epigenetic modification and chromatin architecture may participate in the regulation process. However, the regulation patterns and functional elements of long-range gene regulation are unclear. Methods Based on the clinical transcriptome data from different tumor sets, a novel expressional correlation analysis pipeline was performed to classify the co-regulated regions and subsets of intercorrelated regions. The GLAM2 program was used to predict conserved DNA elements that enriched in regions. Two conserved elements were selected to delete in Ishikawa and HeLa cells by CRISPR-Cas9. SAHA treatment and HDAC knockdown were used to change the histone acetylation status. Using qPCR, MTT, and scratch healing assay, we evaluate the effect on gene expression and cancer cell phenotype. By DNA pull-down and ChIP, the element-binding proteins were testified. 3C and 3D-FISH were performed to depict the alteration in chromatin architecture. Results In multiple cancer genomes, we classified subsets of coordinately regulated regions (sub-CRRs) that possibly shared the same regulatory mechanisms and exhibited similar expression patterns. A new conserved DNA element (CRE30) was enriched in sub-CRRs and associated with cancer patient survival. CRE30 could restrict gene regulation in sub-CRRs and affect cancer cell phenotypes. DNA pull-down showed that multiple proteins including CTCF were recruited on the CRE30 locus, and ChIP assay confirmed the CTCF-binding signals. Subsequent results uncovered that as an essential element, CRE30 maintained chromatin loops and mediated a compact chromatin architecture. Moreover, we found that blocking global histone deacetylation induced chromatin loop disruption and CTCF dropping in the region containing CRE30, linked to promoted gene regulation. Additionally, similar effects were observed with CRE30 deletion in another locus of chromosome 8. Conclusions Our research clarified a new functional element that recruits CTCF and collaborates with histone deacetylation to maintain high-order chromatin organizations, linking to long-range gene regulation in cancer genomes. The findings highlight a close relationship among conserved DNA element, epigenetic modification, and chromatin architecture in long-range gene regulation process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huan Nie
- *Correspondence: Yu Li, ; Huan Nie,
| | - Yu Li
- *Correspondence: Yu Li, ; Huan Nie,
| |
Collapse
|
22
|
Bai Y, Li X, Chen Z, Li J, Tian H, Ma Y, Raza SHA, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Interference With ACSL1 Gene in Bovine Adipocytes: Transcriptome Profiling of mRNA and lncRNA Related to Unsaturated Fatty Acid Synthesis. Front Vet Sci 2022; 8:788316. [PMID: 34977220 PMCID: PMC8716587 DOI: 10.3389/fvets.2021.788316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
The enzyme long-chain acyl-CoA synthetase 1 (ACSL1) is essential for lipid metabolism. The ACSL1 gene controls unsaturated fatty acid (UFA) synthesis as well as the formation of lipid droplets in bovine adipocytes. Here, we used RNA-Seq to determine lncRNA and mRNA that regulate UFA synthesis in bovine adipocytes using RNA interference and non-interference with ACSL1. The corresponding target genes of differentially expressed (DE) lncRNAs and the DE mRNAs were found to be enriched in lipid and FA metabolism-related pathways, according to GO and KEGG analyses. The differentially expressed lncRNA- differentially expressed mRNA (DEL-DEM) interaction network indicated that some DELs, such as TCONS_00069661, TCONS_00040771, TCONS_ 00035606, TCONS_00048301, TCONS_001309018, and TCONS_00122946, were critical for UFA synthesis. These findings assist our understanding of the regulation of UFA synthesis by lncRNAs and mRNAs in bovine adipocytes.
Collapse
Affiliation(s)
- Yanbin Bai
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xupeng Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zongchang Chen
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jingsheng Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Hongshan Tian
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yong Ma
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | | | - Bingang Shi
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiangmin Han
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Ribeiro DM, Rubinacci S, Ramisch A, Hofmeister RJ, Dermitzakis ET, Delaneau O. The molecular basis, genetic control and pleiotropic effects of local gene co-expression. Nat Commun 2021; 12:4842. [PMID: 34376650 PMCID: PMC8355184 DOI: 10.1038/s41467-021-25129-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023] Open
Abstract
Nearby genes are often expressed as a group. Yet, the prevalence, molecular mechanisms and genetic control of local gene co-expression are far from being understood. Here, by leveraging gene expression measurements across 49 human tissues and hundreds of individuals, we find that local gene co-expression occurs in 13% to 53% of genes per tissue. By integrating various molecular assays (e.g. ChIP-seq and Hi-C), we estimate the ability of several mechanisms, such as enhancer-gene interactions, in distinguishing gene pairs that are co-expressed from those that are not. Notably, we identify 32,636 expression quantitative trait loci (eQTLs) which associate with co-expressed gene pairs and often overlap enhancer regions. Due to affecting several genes, these eQTLs are more often associated with multiple human traits than other eQTLs. Our study paves the way to comprehend trait pleiotropy and functional interpretation of QTL and GWAS findings. All local gene co-expression identified here is available through a public database ( https://glcoex.unil.ch/ ).
Collapse
Affiliation(s)
- Diogo M Ribeiro
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Simone Rubinacci
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Ramisch
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Robin J Hofmeister
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Emmanouil T Dermitzakis
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
24
|
Integrated Analysis of Long Non-Coding RNA and mRNA Expression Profiles in Testes of Calves and Sexually Mature Wandong Bulls ( Bos taurus). Animals (Basel) 2021; 11:ani11072006. [PMID: 34359134 PMCID: PMC8300165 DOI: 10.3390/ani11072006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls' testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.
Collapse
|
25
|
Gui Q, Deng S, Zhou Z, Cao W, Zhang X, Shi W, Cai X, Jiang W, Cui Z, Hu Z, Chen X. Transcriptome Analysis in Yeast Reveals the Externality of Position Effects. Mol Biol Evol 2021; 38:3294-3307. [PMID: 33871622 PMCID: PMC8321525 DOI: 10.1093/molbev/msab104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The activity of a gene newly integrated into a chromosome depends on the genomic context of the integration site. This “position effect” has been widely reported, although the other side of the coin, that is, how integration affects the local chromosomal environment, has remained largely unexplored, as have the mechanism and phenotypic consequences of this “externality” of the position effect. Here, we examined the transcriptome profiles of approximately 250 Saccharomyces cerevisiae strains, each with GFP integrated into a different locus of the wild-type strain. We found that in genomic regions enriched in essential genes, GFP expression tended to be lower, and the genes near the integration site tended to show greater expression reduction. Further joint analysis with public genome-wide histone modification profiles indicated that this effect was associated with H3K4me2. More importantly, we found that changes in the expression of neighboring genes, but not GFP expression, significantly altered the cellular growth rate. As a result, genomic loci that showed high GFP expression immediately after integration were associated with growth disadvantages caused by elevated expression of neighboring genes, ultimately leading to a low total yield of GFP in the long run. Our results were consistent with competition for transcriptional resources among neighboring genes and revealed a previously unappreciated facet of position effects. This study highlights the impact of position effects on the fate of exogenous gene integration and has significant implications for biological engineering and the pathology of viral integration into the host genome.
Collapse
Affiliation(s)
- Qian Gui
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuyun Deng
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - ZhenZhen Zhou
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Waifang Cao
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhang
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Shi
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiujuan Cai
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenbing Jiang
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, Precision Medicine Institute, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Precision Medicine Institute, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoshu Chen
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Jiang M, Li P, Wang W. Comparative analysis of MAPK and MKK gene families reveals differential evolutionary patterns in Brachypodium distachyon inbred lines. PeerJ 2021; 9:e11238. [PMID: 33868831 PMCID: PMC8034371 DOI: 10.7717/peerj.11238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades are involved with signal transduction in almost every aspect of plant growth and development, as well as biotic and abiotic stress responses. The evolutionary analysis of MAPKs and MKKs in individual or entire plant species has been reported, but the evolutionary patterns in the diverse inbred lines of Brachypodium distachyon are still unclear. RESULTS We conducted the systematical molecular evolutionary analysis of B. distachyon. A total of 799 MAPKs and 618 MKKs were identified from 53 B. distachyon inbred lines. Remarkably, only three inbred lines had 16 MPKs and most of those inbred lines lacked MPK7-2 members, whereas 12 MKKs existed in almost all B. distachyon inbred lines. Phylogenetic analysis indicated that MAPKs and MKKs were divided into four groups as previously reported, grouping them in the same branch as corresponding members. MPK21-2 was the exception and fell into two groups, which may be due to their exon-intron patterns, especially the untranslated regions (UTRs). We also found that differential evolution patterns of MKK10 paralogues from ancient tandem duplicates may have undergone functional divergence. Expression analyses suggested that MAPKs and MKKs likely played different roles in different genetic contexts within various tissues and with abiotic stresses. CONCLUSION Our study revealed that UTRs affected the structure and evolution of MPK21-2 genes and the differential evolution of MKK10 paralogues with ancient tandem duplication might have functional divergences. Our findings provide new insights into the functional evolution of genes in closely inbred lines.
Collapse
Affiliation(s)
- Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Wei Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
27
|
Duncan EJ, Leask MP, Dearden PK. Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera). Mol Biol Evol 2021; 37:1964-1978. [PMID: 32134461 PMCID: PMC7306700 DOI: 10.1093/molbev/msaa057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Megan P Leask
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Haghani A, Thorwald M, Morgan TE, Finch CE. The APOE gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. Alzheimers Dement 2021; 17:175-190. [PMID: 33215813 PMCID: PMC7914175 DOI: 10.1002/alz.12230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Little is known of gene-environment interactions for Alzheimer's disease (AD) risk factors. Apolipoprotein E (APOE) and neighbors on chromosome 19q13.3 have variants associated with risks of AD, but with unknown mechanism. This study describes novel links among the APOE network, air pollution, and age-related diseases. Mice exposed to air pollution nano-sized particulate matter (nPM) had coordinate responses of Apoe-Apoc1-Tomm40 in the cerebral cortex. In humans, the AD vulnerable hippocampus and amygdala had stronger age decline in APOE cluster expression than the AD-resistant cerebellum and hypothalamus. Using consensus weighted gene co-expression network, we showed that APOE has a conserved co-expressed network in rodent and primate brains. SOX1, which has AD-associated single nucleotide polymorphisms, was among the co-expressed genes in the human hippocampus. Humans and mice shared 87% of potential binding sites for transcription factors in APOE cluster promoter, suggesting similar inducibility and a novel link among environment, APOE cluster, and risk of AD.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Max Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Dornsife College, University of Southern California, Los Angeles, CA
| |
Collapse
|
29
|
Extensive fragmentation and re-organization of transcription in Systemic Lupus Erythematosus. Sci Rep 2020; 10:16648. [PMID: 33024230 PMCID: PMC7539002 DOI: 10.1038/s41598-020-73654-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is the prototype of autoimmune diseases, characterized by extensive gene expression perturbations in peripheral blood immune cells. Circumstantial evidence suggests that these perturbations may be due to altered epigenetic profiles and chromatin accessibility but the relationship between transcriptional deregulation and genome organization remains largely unstudied. In this work we propose a genomic approach that leverages patterns of gene coexpression from genome-wide transcriptome profiles in order to identify statistically robust Domains of Co-ordinated gene Expression (DCEs). Application of this method on a large transcriptome profiling dataset of 148 SLE patients and 52 healthy individuals enabled the identification of significant disease-associated alterations in gene co-regulation patterns, which also correlate with SLE activity status. Low disease activity patient genomes are characterized by extensive fragmentation leading to overall fewer DCEs of smaller size. High disease activity genomes display extensive redistribution of co-expression domains with expanded and newly-appearing (emerged) DCEs. The dynamics of domain fragmentation and redistribution are associated with SLE clinical endophenotypes, with genes of the interferon pathway being highly enriched in DCEs that become disrupted and with functions associated to more generalized symptoms, being located in domains that emerge anew in high disease activity genomes. Our results suggest strong links between the SLE phenotype and the underlying genome structure and underline an important role for genome organization in shaping gene expression in SLE.
Collapse
|
30
|
García-Cortés D, de Anda-Jáuregui G, Fresno C, Hernández-Lemus E, Espinal-Enríquez J. Gene Co-expression Is Distance-Dependent in Breast Cancer. Front Oncol 2020; 10:1232. [PMID: 32850369 PMCID: PMC7396632 DOI: 10.3389/fonc.2020.01232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Breast carcinomas are characterized by anomalous gene regulatory programs. As is well-known, gene expression programs are able to shape phenotypes. Hence, the understanding of gene co-expression may shed light on the underlying mechanisms behind the transcriptional regulatory programs affecting tumor development and evolution. For instance, in breast cancer, there is a clear loss of inter-chromosomal (trans-) co-expression, compared with healthy tissue. At the same time cis- (intra-chromosomal) interactions are favored in breast tumors. In order to have a deeper understanding of regulatory phenomena in cancer, here, we constructed Gene Co-expression Networks by using TCGA-derived RNA-seq whole-genome samples corresponding to the four breast cancer molecular subtypes, as well as healthy tissue. We quantify the cis-/trans- co-expression imbalance in all phenotypes. Additionally, we measured the association between co-expression and physical distance between genes, and characterized the ratio of intra/inter-cytoband interactions per phenotype. We confirmed loss of trans- co-expression in all molecular subtypes. We also observed that gene cis- co-expression decays abruptly with distance in all tumors in contrast with healthy tissue. We observed co-expressed gene hotspots, that tend to be connected at cytoband regions, and coincide accurately with already known copy number altered regions, such as Chr17q12, or Chr8q24.3 for all subtypes. Our methodology recovered different alterations already reported for specific breast cancer subtypes, showing how co-expression network approaches might help to capture distinct events that modify the cell regulatory program.
Collapse
Affiliation(s)
- Diana García-Cortés
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Cristóbal Fresno
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
31
|
Bagnaresi P, Cattivelli L. Ab initio GO-based mining for non-tandem-duplicated functional clusters in three model plant diploid genomes. PLoS One 2020; 15:e0234782. [PMID: 32559249 PMCID: PMC7304597 DOI: 10.1371/journal.pone.0234782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
A functional Non-Tandem Duplicated Cluster (FNTDC) is a group of non-tandem-duplicated genes that are located closer than expected by mere chance and have a role in the same biological function. The identification of secondary-compounds–related FNTDC has gained increased interest in recent years, but little ab-initio attempts aiming to the identification of FNTDCs covering all biological functions, including primary metabolism compounds, have been carried out. We report an extensive FNTDC dataset accompanied by a detailed assessment on parameters used for genome scanning and their impact on FNTDC detection. We propose 70% identity and 70% alignment coverage as intermediate settings to exclude tandem duplicated genes and a dynamic scanning window of 24 genes. These settings were applied to rice, arabidopsis and grapevine genomes to call for FNTDCs. Besides the best-known secondary metabolism clusters, we identified many FNTDCs associated to primary metabolism ranging from macromolecules synthesis/editing, TOR signalling, ubiquitination, proton and electron transfer complexes. Using the intermediate FNTDC setting parameters (at P-value 1e-6), 130, 70 and 140 candidate FNTDCs were called in rice, arabidopsis and grapevine, respectively, and 20 to 30% of GO tags associated to called FNTDC were common among the 3 genomes. The datasets developed along with this work provide a rich framework for pinpointing candidate FNTDCs reflecting all GO-BP tags covering both primary and secondary metabolism with large macromolecular complexes/metabolons as the most represented FNTDCs. Noteworthy, several FNTDCs are tagged with GOs referring to organelle-targeted multi-enzyme complex, a finding that suggest the migration of endosymbiont gene chunks towards nuclei could be at the basis of these class of candidate FNTDCs. Most FNTDC appear to have evolved prior of genome duplication events. More than one-third of genes interspersed/adjacent to called FNTDCs lacked any functional annotation; however, their co-localization may provide hints towards a candidate biological role.
Collapse
Affiliation(s)
- Paolo Bagnaresi
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
- * E-mail:
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| |
Collapse
|
32
|
Lin CJ, Maugars G, Lafont AG, Jeng SR, Wu GC, Dufour S, Chang CF. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase. Gen Comp Endocrinol 2020; 291:113395. [PMID: 31981691 DOI: 10.1016/j.ygcen.2020.113395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 11/25/2022]
Abstract
Duplicated cyp19a1 genes (cyp19a1a encoding aromatase a and cyp19a1b encoding aromatase b) have been identified in an increasing number of teleost species. Cyp19a1a is mainly expressed in the gonads, while cyp19a1b is mainly expressed in the brain, specifically in radial glial cells, as largely investigated by Kah and collaborators. The third round of whole-genome duplication that specifically occurred in the teleost lineage (TWGD or 3R) is likely at the origin of the duplicated cyp19a1 paralogs. In contrast to the situation in other teleosts, our previous studies identified a single cyp19a1 in eels (Anguilla), which are representative species of a basal group of teleosts, Elopomorpha. In the present study, using genome data mining and phylogenetic and synteny analyses, we confirmed that the whole aromatase genomic region was duplicated in eels, with most aromatase-neighboring genes being conserved in duplicate in eels, as in other teleosts. These findings suggest that specific gene loss of one of the 3R-duplicated cyp19a1 paralogs occurred in Elopomorpha after TWGD. Similarly, a single cyp19a1 gene was found in the arowana, which is a representative species of another basal group of teleosts, Osteoglossomorpha. In eels, the single cyp19a1 is expressed in both the brain and the gonads, as observed for the single CYP19A1 gene present in other vertebrates. The results of phylogenetic, synteny, closest neighboring gene, and promoter structure analyses showed that the single cyp19a1 of the basal teleosts shared conserved properties with both teleost cyp19a1a and cyp19a1b paralogs, which did not allow us to conclude which of the 3R-duplicated paralogs (cyp19a1a or cyp19a1b) was lost in Elopomorpha. Elopomorpha and Osteoglossomorpha cyp19a1 genes exhibited preserved ancestral functions, including expression in both the gonad and brain. We propose that the subfunctionalization of the 3R-duplicated cyp19a1 paralogs expressed specifically in the gonad or brain occurred in Clupeocephala, after the split of Clupeocephala from Elopomorpha and Osteoglossomorpha, which represented a driving force for the conservation of both 3R-duplicated paralogs in all extant Clupeocephala. In contrast, the functional redundancy of the undifferentiated 3R-duplicated cyp19a1 paralogs in elopomorphs and osteoglossomorphs would have favored the loss of one 3R paralog in basal teleosts.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gersende Maugars
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Anne-Gaëlle Lafont
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
33
|
Monitoring the prolonged Tnf stimulation in space and time with topological-functional networks. Comput Struct Biotechnol J 2020; 18:220-229. [PMID: 32021663 PMCID: PMC6994266 DOI: 10.1016/j.csbj.2020.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022] Open
Abstract
Genes in linear proximity often share regulatory inputs, expression and evolutionary patterns, even in complex eukaryote genomes with extensive intergenic sequences. Gene regulation, on the other hand, is effected through the co-ordinated activation (or suppression) of genes participating in common biological pathways, which are often transcribed from distant loci. Existing approaches for the study of gene expression focus on the functional aspect, taking positional constraints into account only marginally. In this work we propose a novel concept for the study of gene expression, through the combination of topological and functional information into bipartite networks. Starting from genome-wide expression profiles, we define extended chromosomal regions with consistent patterns of differential gene expression and then associate these domains with enriched functional pathways. By analyzing the resulting networks in terms of size, connectivity and modularity we can draw conclusions on the way genome organization may underlie the gene regulation program. Implementation of this approach in a detailed RNASeq profiling of sustained Tnf stimulation of mouse synovial fibroblasts, allowed us to identify unexpected regulatory changes taking place in the cells after 24 h of stimulation. Bipartite network analysis suggests that the cytokine response set by Tnf, progresses through two distinct transitions. An early generalization of the inflammatory response, that is followed by a late shutdown of immune-related functions and the redistribution of expression to developmental and cell adhesion pathways and distinct chromosomal regions. We show that the incorporation of topological information may provide additional insights in the complex propagation of Tnf activation.
Collapse
|
34
|
Abstract
Phenotypic sequences are a type of multivariate trait organized structurally, such as teeth distributed along the dental arch, or temporally, such as the stages of an ontogenetic series. Unlike other multivariate traits, the elements of a phenotypic sequence are distributed along an ordered set, which allows for distinct evolutionary patterns between neighboring and distant positions. In fact, sequence traits share many characteristics with molecular sequences, although important distinctions pose challenges to current comparative methods. We implement an approach to estimate rates of trait evolution that explicitly incorporates the sequence organization of traits. We apply models to study the temporal pattern evolution of cricket calling songs. We test whether neighboring positions along a phenotypic sequence have correlated rates of evolution or whether rate variation is independent of sequence position. Our results show that cricket song evolution is strongly autocorrelated and that models perform well when used with sequence phenotypes even under small sample sizes. Our approach is flexible and can be applied to any multivariate trait with discrete units organized in a sequence-like structure.
Collapse
|
35
|
Sanchez-Mut JV, Glauser L, Monk D, Gräff J. Comprehensive analysis of PM20D1 QTL in Alzheimer's disease. Clin Epigenetics 2020; 12:20. [PMID: 32014019 PMCID: PMC6998837 DOI: 10.1186/s13148-020-0814-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a complex disorder caused by a combination of genetic and non-genetic risk factors. In addition, an increasing evidence suggests that epigenetic mechanisms also accompany AD. Genetic and epigenetic factors are not independent, but multiple loci show genetic-epigenetic interactions, the so-called quantitative trait loci (QTLs). Recently, we identified the first QTL association with AD, namely Peptidase M20 Domain Containing 1 (PM20D1). We observed that PM20D1 DNA methylation, RNA expression, and genetic background are correlated and, in turn, associated with AD. We provided mechanistic insights for these correlations and had shown that by genetically increasing and decreasing PM20D1 levels, AD-related pathologies were decreased and accelerated, respectively. However, since the PM20D1 QTL region encompasses also other genes, namely Nuclear Casein Kinase and Cyclin Dependent Kinase Substrate 1 (NUCKS1); RAB7, member RAS oncogene family-like 1 (RAB7L1); and Solute Carrier Family 41 Member 1 (SLC41A1), we investigated whether these genes might also contribute to the described AD association. Results Here, we report a comprehensive analysis of these QTL genes using a repertoire of in silico methods as well as in vivo and in vitro experimental approaches. First, we analyzed publicly available databases to pinpoint the major QTL correlations. Then, we validated these correlations using a well-characterized set of samples and locus-specific approaches—i.e., Sanger sequencing for the genotype, cloning/sequencing and pyrosequencing for the DNA methylation, and allele-specific and real-time PCR for the RNA expression. Finally, we defined the functional relevance of the observed alterations in the context of AD in vitro. Using this approach, we show that only PM20D1 DNA methylation and expression are significantly correlated with the AD-risk associated background. We find that the expression of SLC41A1 and PM20D1—but not NUCKS1 and RAB7L1—is increased in mouse models and human samples of AD, respectively. However, SLC41A1 and PM20D1 are differentially regulated by AD-related stressors, with only PM20D1 being upregulated by amyloid-β and reactive oxygen species, and with only PM20D1 being neuroprotective when overexpressed in cell and primary cultures. Conclusions Our findings reinforce PM20D1 as the most likely gene responsible of the previously reported PM20D1 QTL association with AD.
Collapse
Affiliation(s)
- Jose Vicente Sanchez-Mut
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - Liliane Glauser
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - David Monk
- Genomic Imprinting Cancer Group, Institut d'Investigació Biomedica de Bellvitge, E-08908, Barcelona, Spain.,Biomedical Research Centre, School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
36
|
Foria S, Copetti D, Eisenmann B, Magris G, Vidotto M, Scalabrin S, Testolin R, Cipriani G, Wiedemann-Merdinoglu S, Bogs J, Di Gaspero G, Morgante M. Gene duplication and transposition of mobile elements drive evolution of the Rpv3 resistance locus in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 99:895-909. [PMID: 31571285 DOI: 10.1111/tpj.14370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 05/17/2023]
Abstract
A wild grape haplotype (Rpv3-1) confers resistance to Plasmopara viticola. We mapped the causal factor for resistance to an interval containing a TIR-NB-LRR (TNL) gene pair that originated 1.6-2.6 million years ago by a tandem segmental duplication. Transient coexpression of the TNL pair in Vitis vinifera leaves activated pathogen-induced necrosis and reduced sporulation compared with control leaves. Even though transcripts of the TNL pair from the wild haplotype appear to be partially subject to nonsense-mediated mRNA decay, mature mRNA levels in a homozygous resistant genotype were individually higher than the mRNA trace levels observed for the orthologous single-copy TNL in sensitive genotypes. Allelic expression imbalance in a resistant heterozygote confirmed that cis-acting regulatory variation promotes expression in the wild haplotype. The movement of transposable elements had a major impact on the generation of haplotype diversity, altering the DNA context around similar TNL coding sequences and the GC-content in their proximal 5'-intergenic regions. The wild and domesticated haplotypes also diverged in conserved single-copy intergenic DNA, but the highest divergence was observed in intraspecific and not in interspecific comparisons. In this case, introgression breeding did not transgress the genetic boundaries of the domesticated species, because haplotypes present in modern varieties sometimes predate speciation events between wild and cultivated species.
Collapse
Affiliation(s)
- Serena Foria
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Dario Copetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Birgit Eisenmann
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Gabriele Magris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Michele Vidotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Simone Scalabrin
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | | | - Jochen Bogs
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Technische Hochschule Bingen, 55411, Bingen am Rhein, Germany
| | | | - Michele Morgante
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
37
|
Sharma E, Jain M, Khurana JP. Differential quantitative regulation of specific gene groups and pathways under drought stress in rice. Genomics 2019; 111:1699-1712. [DOI: 10.1016/j.ygeno.2018.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|
38
|
Nie Y, Jiao Y, Li Y, Li W. Investigation of the Clinical Significance and Prognostic Value of the lncRNA ACVR2B-As1 in Liver Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4602371. [PMID: 31886217 PMCID: PMC6925724 DOI: 10.1155/2019/4602371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022]
Abstract
A refined liver cancer staging system and effective prognostic prediction can help clinicians make optimized treatment decisions, which is essential in our fight against cancer and for improving the unsatisfying survival rate of liver cancer globally. The prognosis of liver cancer is not only related to tumor status, it is also affected by the patients' liver functions and the chosen treatment. Currently, several staging systems are being tested. Herein, we analyzed RNA-seq data from the TCGA database and identified a newly annotated lncRNA, ACVR2B-AS1, whose expression is upregulated in liver cancer. Higher ACVR2B-AS1 expression is an independent adverse prognostic factor for overall survival (OS) and relapse-free survival (RFS) in liver cancer patients. Our work suggests that the lncRNA ACVR2B-AS1 could be a candidate biomarker for liver cancer prognosis. Furthermore, ACVR2B-AS1 might serve as a potential therapeutic target, which is a possibility that is worthy of further study.
Collapse
Affiliation(s)
- Yuanyuan Nie
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, China
| |
Collapse
|
39
|
Dai Z. Gene Repositioning Is Under Constraints After Evolutionary Conserved Gene Neighborhood Separate. Front Genet 2019; 10:1030. [PMID: 31632448 PMCID: PMC6785632 DOI: 10.3389/fgene.2019.01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
Genes are not randomly distributed on eukaryotic chromosomes. Some neighboring genes show order conservation among species, while some neighboring genes separate during evolution even though their neighborhoods are conserved in some species. Here, I investigated whether after-separation gene repositioning is under natural selection for evolutionary conserved gene neighborhoods compared with nonconserved neighborhoods. After separation, genes with conserved neighborhoods show low-expression divergence between the after-separation species and the before-separation species. After genes separate from their conserved gene neighbors, their after-separation gene neighbors tend to show coexpression and coprotein complex with their before-separation gene neighbors. These results indicate evolutionary constraints on the selection of neighboring genes after evolutionary conserved gene neighborhoods separate.
Collapse
Affiliation(s)
- Zhiming Dai
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Big Data Analysis and Processing, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
40
|
Chen CH, Pan CY, Lin WC. Overlapping protein-coding genes in human genome and their coincidental expression in tissues. Sci Rep 2019; 9:13377. [PMID: 31527706 PMCID: PMC6746723 DOI: 10.1038/s41598-019-49802-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023] Open
Abstract
The completion of human genome sequences and the advancement of next-generation sequencing technologies have engendered a clear understanding of all human genes. Overlapping genes are usually observed in compact genomes, such as those of bacteria and viruses. Notably, overlapping protein-coding genes do exist in human genome sequences. Accordingly, we used the current Ensembl gene annotations to identify overlapping human protein-coding genes. We analysed 19,200 well-annotated protein-coding genes and determined that 4,951 protein-coding genes overlapped with their adjacent genes. Approximately a quarter of all human protein-coding genes were overlapping genes. We observed different clusters of overlapping protein-coding genes, ranging from two genes (paired overlapping genes) to 22 genes. We also divided the paired overlapping protein-coding gene groups into four subtypes. We found that the divergent overlapping gene subtype had a stronger expression association than did the subtypes of 5'-tandem overlapping and 3'-tandem overlapping genes. The majority of paired overlapping genes exhibited comparable coincidental tissue expression profiles; however, a few overlapping gene pairs displayed distinctive tissue expression association patterns. In summary, we have carefully examined the genomic features and distributions about human overlapping protein-coding genes and found coincidental expression in tissues for most overlapping protein-coding genes.
Collapse
Affiliation(s)
- Chao-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan R.O.C
| | - Chao-Yu Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan R.O.C.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan R.O.C
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan R.O.C.. .,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan R.O.C..
| |
Collapse
|
41
|
Sun M, Zhang J. Chromosome-wide co-fluctuation of stochastic gene expression in mammalian cells. PLoS Genet 2019; 15:e1008389. [PMID: 31525198 PMCID: PMC6762216 DOI: 10.1371/journal.pgen.1008389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/26/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Gene expression is subject to stochastic noise, but to what extent and by which means such stochastic variations are coordinated among different genes are unclear. We hypothesize that neighboring genes on the same chromosome co-fluctuate in expression because of their common chromatin dynamics, and verify it at the genomic scale using allele-specific single-cell RNA-sequencing data of mouse cells. Unexpectedly, the co-fluctuation extends to genes that are over 60 million bases apart. We provide evidence that this long-range effect arises in part from chromatin co-accessibilities of linked loci attributable to three-dimensional proximity, which is much closer intra-chromosomally than inter-chromosomally. We further show that genes encoding components of the same protein complex tend to be chromosomally linked, likely resulting from natural selection for intracellular among-component dosage balance. These findings have implications for both the evolution of genome organization and optimal design of synthetic genomes in the face of gene expression noise.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
42
|
Salih H, Gong W, He S, Xia W, Odongo MR, Du X. Long non-coding RNAs and their potential functions in Ligon-lintless-1 mutant cotton during fiber development. BMC Genomics 2019; 20:661. [PMID: 31426741 PMCID: PMC6700839 DOI: 10.1186/s12864-019-5978-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are part of genes, which are not translated into proteins and play a vital role in plant growth and development. Nevertheless, the presence of LncRNAs and how they functions in Ligon-lintless-1 mutant during the early cessation of cotton fiber development are still not well understood. In order to investigate the function of LncRNAs in cotton fiber development, it is necessary and important to identify LncRNAs and their potential roles in fiber cell development. RESULTS In this work, we identified 18,333 LncRNAs, with the proportion of long intergenic noncoding RNAs (LincRNAs) (91.5%) and anti-sense LncRNAs (8.5%), all transcribed from Ligon-lintless-1 (Li1) and wild-type (WT). Expression differences were detected between Ligon-lintless-1 and wild-type at 0 and 8 DPA (day post anthesis). Pathway analysis and Gene Ontology based on differentially expressed LncRNAs on target genes, indicated fatty acid biosynthesis and fatty acid elongation being integral to lack of fiber in mutant cotton. The result of RNA-seq and RT-qPCR clearly singles out two potential LncRNAs, LNC_001237 and LNC_017085, to be highly down-regulated in the mutant cotton. The two LncRNAs were found to be destabilized or repressed by ghr-miR2950. Both RNA-seq analysis and RT-qPCR results in Ligon-lintless-1 mutant and wild-type may provide strong evidence of LNC_001237, LNC_017085 and ghr-miR2950 being integral molecular elements participating in various pathways of cotton fiber development. CONCLUSION The results of this study provide fundamental evidence for the better understanding of LncRNAs regulatory role in the molecular pathways governing cotton fiber development. Further research on designing and transforming LncRNAs will help not only in the understanding of their functions but will also in the improvement of fiber quality.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
- Zalingei University, Central Darfur, Sudan
| | - Wenfang Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Wang Xia
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Magwanga Richard Odongo
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| |
Collapse
|
43
|
Porcu E, Rüeger S, Lepik K, Santoni FA, Reymond A, Kutalik Z. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat Commun 2019; 10:3300. [PMID: 31341166 PMCID: PMC6656778 DOI: 10.1038/s41467-019-10936-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits.
Collapse
Affiliation(s)
- Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sina Rüeger
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,University Center for Primary Care and Public Health, University of Lausanne, Switzerland, Lausanne, Switzerland
| | - Kaido Lepik
- University Center for Primary Care and Public Health, University of Lausanne, Switzerland, Lausanne, Switzerland.,Institute of Computer Science, University of Tartu, Tartu, Estonia
| | | | | | - Federico A Santoni
- Endocrine, Diabetes, and Metabolism Service, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,University Center for Primary Care and Public Health, University of Lausanne, Switzerland, Lausanne, Switzerland.
| |
Collapse
|
44
|
Guala D, Ogris C, Müller N, Sonnhammer ELL. Genome-wide functional association networks: background, data & state-of-the-art resources. Brief Bioinform 2019; 21:1224-1237. [PMID: 31281921 PMCID: PMC7373183 DOI: 10.1093/bib/bbz064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
The vast amount of experimental data from recent advances in the field of high-throughput biology begs for integration into more complex data structures such as genome-wide functional association networks. Such networks have been used for elucidation of the interplay of intra-cellular molecules to make advances ranging from the basic science understanding of evolutionary processes to the more translational field of precision medicine. The allure of the field has resulted in rapid growth of the number of available network resources, each with unique attributes exploitable to answer different biological questions. Unfortunately, the high volume of network resources makes it impossible for the intended user to select an appropriate tool for their particular research question. The aim of this paper is to provide an overview of the underlying data and representative network resources as well as to mention methods of integration, allowing a customized approach to resource selection. Additionally, this report will provide a primer for researchers venturing into the field of network integration.
Collapse
Affiliation(s)
- Dimitri Guala
- Science for Life Laboratory, Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Christoph Ogris
- Computational Cell Maps, Institute of Computational Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nikola Müller
- Computational Cell Maps, Institute of Computational Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Erik L L Sonnhammer
- Science for Life Laboratory, Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden
| |
Collapse
|
45
|
Zhang Q, Liu W, Liu C, Lin SY, Guo AY. SEGtool: a specifically expressed gene detection tool and applications in human tissue and single-cell sequencing data. Brief Bioinform 2019; 19:1325-1336. [PMID: 28981576 DOI: 10.1093/bib/bbx074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Different tissues and diseases have distinct transcriptional profilings with specifically expressed genes (SEGs). So, the identification of SEGs is an important issue in the studies of gene function, biological development, disease mechanism and biomarker discovery. However, few accurate and easy-to-use tools are available for RNA sequencing (RNA-seq) data to detect SEGs. Here, we presented SEGtool, a tool based on fuzzy c-means, Jaccard index and greedy annealing method for SEG detection automatically and self-adaptively ignoring data distribution. Testing result showed that our SEGtool outperforms the existing tools, which was mainly developed for microarray data. By applying SEGtool to Genotype-Tissue Expression (GTEx) human tissue data set, we detected 3181 SEGs with tissue-related functions. Regulatory networks reveal tissue-specific transcription factors regulating many SEGs, such as ETV2 in testis, HNF4A in liver and NEUROD1 in brain. Applied to a case study of single-cell sequencing (SCS) data from embryo cells, we identified many SEGs in specific stages of human embryogenesis. Notably, SEGtool is suitable for RNA-seq data and even SCS data with high specificity and accuracy. An implementation of SEGtool R package is freely available at http://bioinfo.life.hust.edu.cn/SEGtool/.
Collapse
Affiliation(s)
- Qiong Zhang
- Huazhong University of Science and Technology, China
| | - Wei Liu
- Huazhong University of Science and Technology, China
| | - Chunjie Liu
- Huazhong University of Science and Technology, China
| | - Sheng-Yan Lin
- Huazhong University of Science and Technology, China
| | - An-Yuan Guo
- Huazhong University of Science and Technology, China
| |
Collapse
|
46
|
Gao Y, Li S, Lai Z, Zhou Z, Wu F, Huang Y, Lan X, Lei C, Chen H, Dang R. Analysis of Long Non-Coding RNA and mRNA Expression Profiling in Immature and Mature Bovine ( Bos taurus) Testes. Front Genet 2019; 10:646. [PMID: 31333723 PMCID: PMC6624472 DOI: 10.3389/fgene.2019.00646] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Testis development and spermatogenesis are strictly regulated by numbers of genes and non-coding genes. However, long non-coding RNAs (lncRNAs) as key regulators in multitudinous biological processes have not been systematically identified in bovine testes during sexual maturation. In this study, we comprehensively analyzed lncRNA and mRNA expression profiling of six bovine testes at 3 days after birth and 13 months by RNA sequencing. 23,735 lncRNAs and 22,118 mRNAs were identified, in which 540 lncRNAs (P-value < 0.05) and 3,525 mRNAs (P-adjust < 0.05) were significantly differentially expressed (DE) between two stages. Correspondingly, the results of RT-qPCR analysis showed well correlation with the transcriptome data. Moreover, GO and KEGG enrichment analyses showed that DE genes and target genes of DE lncRNAs were enriched in spermatogenesis. Furthermore, we constructed lncRNA–gene interaction networks; consequently, 15 DE lncRNAs and 12 cis-target genes were involved. The target genes (SPATA16, TCF21, ZPBP, PACRG, ATP8B3, COMP, ACE, and OSBP2) were found associated with bovine sexual maturation. In addition, the expression of lncRNAs and cis-target genes was detected in bovine Leydig cells, Sertoli cells, and spermatogonia. Our study identified and analyzed lncRNAs and mRNAs in testis tissues, suggesting that lncRNAs may regulate testis development and spermatogenesis. Our findings provided new insights for further investigation of biological function in bovine lncRNA.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhenyu Lai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zihui Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
47
|
Lian S, Liu T, Zhang Z, Yuan H, Wang L, Cheng L. Neighboring genes are closely related to whole genome duplications after their separation. Interdiscip Sci 2019; 11:655-667. [PMID: 30877640 DOI: 10.1007/s12539-019-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND The gene order in a eukaryotic genome is not random. Some neighboring genes show specific similarities, while others become separated during evolution. Whole genome duplication events (WGDs) have been recognized as an important evolutionary force. The potential relationship between the separation of neighboring genes and WGDs needs to be investigated. In this study, we investigated whether there is a potential relationship between separated neighboring gene pairs and WGDs, and the mechanism by which neighboring genes are separated. Additionally, we studied whether neighboring genes tend to show intrachromosomal colocalization after their neighborhood was disrupted and the factors facilitating the intrachromosomal colocalization of separated neighboring genes. RESULTS The separation of neighboring gene pairs is closely related to whole genome duplication events. Furthermore, we found that there is a double linear relationship between separated neighboring genes, total genes, and WGDs. The process of separation of neighboring genes caused by WGDs is also not random but abides by the double linear model. Separated neighboring gene pairs tend to show intrachromosomal colocalization. The conservativism of separated neighboring genes and histone modification facilitate the intrachromosomal colocalization of neighboring genes after their separation. CONCLUSIONS These results provide new insight into the understanding of evolutionary roles of locations and the relationship of neighboring gene pairs with whole genome duplications. Furthermore, understanding the proposed mechanism for intrachromosomal colocalization of separated genes benefits our knowledge of chromosomal interactions in the nucleus.
Collapse
Affiliation(s)
- Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Tianliang Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Zaibao Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hongyu Yuan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- College of Life Sciences, Xinyang Normal University, Xinyang, China.
| |
Collapse
|
48
|
Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson AH. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 2019; 20:38. [PMID: 30791939 PMCID: PMC6383267 DOI: 10.1186/s13059-019-1650-2] [Citation(s) in RCA: 570] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The sharp increase of plant genome and transcriptome data provide valuable resources to investigate evolutionary consequences of gene duplication in a range of taxa, and unravel common principles underlying duplicate gene retention. RESULTS We survey 141 sequenced plant genomes to elucidate consequences of gene and genome duplication, processes central to the evolution of biodiversity. We develop a pipeline named DupGen_finder to identify different modes of gene duplication in plants. Genes derived from whole-genome, tandem, proximal, transposed, or dispersed duplication differ in abundance, selection pressure, expression divergence, and gene conversion rate among genomes. The number of WGD-derived duplicate genes decreases exponentially with increasing age of duplication events-transposed duplication- and dispersed duplication-derived genes declined in parallel. In contrast, the frequency of tandem and proximal duplications showed no significant decrease over time, providing a continuous supply of variants available for adaptation to continuously changing environments. Moreover, tandem and proximal duplicates experienced stronger selective pressure than genes formed by other modes and evolved toward biased functional roles involved in plant self-defense. The rate of gene conversion among WGD-derived gene pairs declined over time, peaking shortly after polyploidization. To provide a platform for accessing duplicated gene pairs in different plants, we constructed the Plant Duplicate Gene Database. CONCLUSIONS We identify a comprehensive landscape of different modes of gene duplication across the plant kingdom by comparing 141 genomes, which provides a solid foundation for further investigation of the dynamic evolution of duplicate genes.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qionghou Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Yin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Runze Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605 USA
| |
Collapse
|
49
|
Zhao H, Su W, Zhu C, Zeng T, Yang S, Wu W, Wang D. Cell fate regulation by reticulon-4 in human prostate cancers. J Cell Physiol 2018; 234:10372-10385. [PMID: 30480803 DOI: 10.1002/jcp.27704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Abstract
Reticulon-4 (RTN4), a reticulon family protein localized in the endoplasmic reticulum, is reported to be involved in multiple physiological processes like neuroendocrine secretion and membrane trafficking in neuroendocrine cells. Previous studies have presented a great potential of RTN4 for the treatment of autoimmune-mediated demyelinating diseases and spinal cord injury regeneration. While interaction with Bcl-2 and Bcl-2-like family in apoptosis modulation implicated its possible role in various human cancers. However, the investigation of this gene in prostate cancer is mainly ignored. Here in our current study, we focused on its role in prostate cancer and found that RTN4 DNA copy numbers were higher in prostate cancer than normal prostate gland while its RNA and protein expressions were relatively lower. Chromosomal neighbor gene EML6 had similar expression patterns with RTN4 in prostate cancer tissues and cell lines, and further research found that they could be both targeted by miR-148a-3p. Lentivirus-mediated RTN4 overexpression potently inhibited DU145 and LNCaP cells proliferation. Cell cycle was blocked in G2/M phase and significant cell senescence was observed in RTN4 overexpressed prostate cancer cells. Finally, interaction networks in the normal prostate gland and cancer tissues further revealed that RTN4 maybe phosphorylated by MAPKAPK2 and FYN at tyrosine 591 and serine 107, respectively. All these results implied that RTN4 might somehow participate in prostate tumor progression, and this elicits possibility to develop or identify selective agents targeting RTN4 for prostate cancer therapy.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Weipeng Su
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Changyan Zhu
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Tengyue Zeng
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Shunliang Yang
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Weizhen Wu
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Wang
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
50
|
Liang C, Musser JM, Cloutier A, Prum RO, Wagner GP. Pervasive Correlated Evolution in Gene Expression Shapes Cell and Tissue Type Transcriptomes. Genome Biol Evol 2018; 10:538-552. [PMID: 29373668 PMCID: PMC5800078 DOI: 10.1093/gbe/evy016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
The evolution and diversification of cell types is a key means by which animal complexity evolves. Recently, hierarchical clustering and phylogenetic methods have been applied to RNA-seq data to infer cell type evolutionary history and homology. A major challenge for interpreting this data is that cell type transcriptomes may not evolve independently due to correlated changes in gene expression. This nonindependence can arise for several reasons, such as common regulatory sequences for genes expressed in multiple tissues, that is, pleiotropic effects of mutations. We develop a model to estimate the level of correlated transcriptome evolution (LCE) and apply it to different data sets. The results reveal pervasive correlated transcriptome evolution among different cell and tissue types. In general, tissues related by morphology or developmental lineage exhibit higher LCE than more distantly related tissues. Analyzing new data collected from bird skin appendages suggests that LCE decreases with the phylogenetic age of tissues compared, with recently evolved tissues exhibiting the highest LCE. Furthermore, we show correlated evolution can alter patterns of hierarchical clustering, causing different tissue types from the same species to cluster together. To identify genes that most strongly contribute to the correlated evolution signal, we performed a gene-wise estimation of LCE on a data set with ten species. Removing genes with high LCE allows for accurate reconstruction of evolutionary relationships among tissue types. Our study provides a statistical method to measure and account for correlated gene expression evolution when interpreting comparative transcriptome data.
Collapse
Affiliation(s)
- Cong Liang
- Yale Systems Biology Institute, West Haven, Connecticut.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University.,Integrated Graduate Program in Physical and Engineering Biology, Yale University
| | - Jacob M Musser
- Yale Systems Biology Institute, West Haven, Connecticut.,Department of Ecology and Evolutionary Biology, Yale University.,European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Alison Cloutier
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, Yale University.,Yale Peabody Museum of Natural History, New Haven, Connecticut
| | - Günter P Wagner
- Yale Systems Biology Institute, West Haven, Connecticut.,Department of Ecology and Evolutionary Biology, Yale University.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, Connecticut.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|