1
|
Tong M, Palmer N, Dailamy A, Kumar A, Khaliq H, Han S, Finburgh E, Wing M, Hong C, Xiang Y, Miyasaki K, Portell A, Rainaldi J, Suhardjo A, Nourreddine S, Chew WL, Kwon EJ, Mali P. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat Biomed Eng 2025; 9:109-126. [PMID: 39187662 DOI: 10.1038/s41551-024-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40-75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR-Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.
Collapse
Affiliation(s)
- Michael Tong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Palmer
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Emma Finburgh
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Madeleine Wing
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Camilla Hong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katelyn Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amanda Suhardjo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Tu MM, Carfrae LA, Rachwalski K, French S, Catacutan D, Gordzevich R, MacNair CR, Speagle ME, Werah F, Stokes JM, Brown ED. Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens. Nat Microbiol 2025; 10:53-65. [PMID: 39747690 DOI: 10.1038/s41564-024-01883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Carbapenems are last-resort antibiotics for treating bacterial infections. The widespread acquisition of metallo-β-lactamases, such as VIM-2, contributes to the emergence of carbapenem-resistant pathogens, and currently, no metallo-β-lactamase inhibitors are available in the clinic. Here we show that bacteria expressing VIM-2 have impaired growth in zinc-deprived environments, including human serum and murine infection models. Using transcriptomic, genomic and chemical probes, we identified molecular pathways critical for VIM-2 expression under zinc limitation. In particular, disruption of envelope stress response pathways reduced the growth of VIM-2-expressing bacteria in vitro and in vivo. Furthermore, we showed that VIM-2 expression disrupts the integrity of the outer membrane, rendering VIM-2-expressing bacteria more susceptible to azithromycin. Using a systemic murine infection model, we showed azithromycin's therapeutic potential against VIM-2-expressing pathogens. In all, our findings provide a framework to exploit the fitness trade-offs of resistance, potentially accelerating the discovery of additional treatments for infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Megan M Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Denise Catacutan
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Rodion Gordzevich
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Craig R MacNair
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Melissa E Speagle
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Firas Werah
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan M Stokes
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Zhu XX, Zheng WQ, Xia ZW, Chen XR, Jin T, Ding XW, Chen FF, Chen Q, Xu JH, Kong XD, Zheng GW. Evolutionary insights into the stereoselectivity of imine reductases based on ancestral sequence reconstruction. Nat Commun 2024; 15:10330. [PMID: 39609402 PMCID: PMC11605051 DOI: 10.1038/s41467-024-54613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
The stereoselectivity of enzymes plays a central role in asymmetric biocatalytic reactions, but there remains a dearth of evolution-driven biochemistry studies investigating the evolutionary trajectory of this vital property. Imine reductases (IREDs) are one such enzyme that possesses excellent stereoselectivity, and stereocomplementary members are pervasive in the family. However, the regulatory mechanism behind stereocomplementarity remains cryptic. Herein, we reconstruct a panel of active ancestral IREDs and trace the evolution of stereoselectivity from ancestors to extant IREDs. Combined with coevolution analysis, we reveal six historical mutations capable of recapitulating stereoselectivity evolution. An investigation of the mechanism with X-ray crystallography shows that they collectively reshape the substrate-binding pocket to regulate stereoselectivity inversion. In addition, we construct an empirical fitness landscape and discover that epistasis is prevalent in stereoselectivity evolution. Our findings emphasize the power of ASR in circumventing the time-consuming large-scale mutagenesis library screening for identifying mutations that change functions and support a Darwinian premise from a molecular perspective that the evolution of biological functions is a stepwise process.
Collapse
Affiliation(s)
- Xin-Xin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Wen-Qing Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Zi-Wei Xia
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Xin-Ru Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Tian Jin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Xu-Wei Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Xu-Dong Kong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Muir DF, Asper GPR, Notin P, Posner JA, Marks DS, Keiser MJ, Pinney MM. Evolutionary-Scale Enzymology Enables Biochemical Constant Prediction Across a Multi-Peaked Catalytic Landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619915. [PMID: 39484523 PMCID: PMC11526920 DOI: 10.1101/2024.10.23.619915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Quantitatively mapping enzyme sequence-catalysis landscapes remains a critical challenge in understanding enzyme function, evolution, and design. Here, we expand an emerging microfluidic platform to measure catalytic constants-k cat and K M-for hundreds of diverse naturally occurring sequences and mutants of the model enzyme Adenylate Kinase (ADK). This enables us to dissect the sequence-catalysis landscape's topology, navigability, and mechanistic underpinnings, revealing distinct catalytic peaks organized by structural motifs. These results challenge long-standing hypotheses in enzyme adaptation, demonstrating that thermophilic enzymes are not slower than their mesophilic counterparts. Combining the rich representations of protein sequences provided by deep-learning models with our custom high-throughput kinetic data yields semi-supervised models that significantly outperform existing models at predicting catalytic parameters of naturally occurring ADK sequences. Our work demonstrates a promising strategy for dissecting sequence-catalysis landscapes across enzymatic evolution and building family-specific models capable of accurately predicting catalytic constants, opening new avenues for enzyme engineering and functional prediction.
Collapse
Affiliation(s)
- Duncan F Muir
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Garrison P R Asper
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Jacob A Posner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Margaux M Pinney
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Valhalla Fellow, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Medrano FJ, Hernando-Amado S, Martínez JL, Romero A. A new type of Class C β-lactamases defined by PIB-1. A metal-dependent carbapenem-hydrolyzing β-lactamase, from Pseudomonas aeruginosa: Structural and functional analysis. Int J Biol Macromol 2024; 277:134298. [PMID: 39097051 DOI: 10.1016/j.ijbiomac.2024.134298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Antibiotic resistance is one of most important health concerns nowadays, and β-lactamases are the most important resistance determinants. These enzymes, based on their structural and functional characteristics, are grouped in four categories (A, B, C and D). We have solved the structure of PIB-1, a Pseudomonas aeruginosa chromosomally-encoded β-lactamase, in its apo form and in complex with meropenem and zinc. These crystal structures show that it belongs to the Class C β-lactamase group, although it shows notable differences, especially in the Ω- and P2-loops, which are important for the enzymatic activity. Functional analysis showed that PIB-1 is able to degrade carbapenems but not cephalosporins, the typical substrate of Class C β-lactamases, and that its catalytic activity increases in the presence of metal ions, especially zinc. They do not bind to the active-site but they induce the formation of trimers that show an increased capacity for the degradation of the antibiotics, suggesting that this oligomer is more active than the other oligomeric species. While PIB-1 is structurally a Class C β-lactamase, the low sequence conservation, substrate profile and its metal-dependence, prompts us to position this enzyme as the founder of a new group inside the Class C β-lactamases. Consequently, its diversity might be wider than expected.
Collapse
Affiliation(s)
- Francisco Javier Medrano
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Sara Hernando-Amado
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28043 Madrid, Spain
| | - José Luis Martínez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28043 Madrid, Spain
| | - Antonio Romero
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Chen SK, Liu J, Van Nynatten A, Tudor-Price BM, Chang BSW. Sampling Strategies for Experimentally Mapping Molecular Fitness Landscapes Using High-Throughput Methods. J Mol Evol 2024:10.1007/s00239-024-10179-8. [PMID: 38886207 DOI: 10.1007/s00239-024-10179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Empirical studies of genotype-phenotype-fitness maps of proteins are fundamental to understanding the evolutionary process, in elucidating the space of possible genotypes accessible through mutations in a landscape of phenotypes and fitness effects. Yet, comprehensively mapping molecular fitness landscapes remains challenging since all possible combinations of amino acid substitutions for even a few protein sites are encoded by an enormous genotype space. High-throughput mapping of genotype space can be achieved using large-scale screening experiments known as multiplexed assays of variant effect (MAVEs). However, to accommodate such multi-mutational studies, the size of MAVEs has grown to the point where a priori determination of sampling requirements is needed. To address this problem, we propose calculations and simulation methods to approximate minimum sampling requirements for multi-mutational MAVEs, which we combine with a new library construction protocol to experimentally validate our approximation approaches. Analysis of our simulated data reveals how sampling trajectories differ between simulations of nucleotide versus amino acid variants and among mutagenesis schemes. For this, we show quantitatively that marginal gains in sampling efficiency demand increasingly greater sampling effort when sampling for nucleotide sequences over their encoded amino acid equivalents. We present a new library construction protocol that efficiently maximizes sequence variation, and demonstrate using ultradeep sequencing that the library encodes virtually all possible combinations of mutations within the experimental design. Insights learned from our analyses together with the methodological advances reported herein are immediately applicable toward pooled experimental screens of arbitrary design, enabling further assay upscaling and expanded testing of genotype space.
Collapse
Affiliation(s)
- Steven K Chen
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jing Liu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alexander Van Nynatten
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Metzger BPH, Park Y, Starr TN, Thornton JW. Epistasis facilitates functional evolution in an ancient transcription factor. eLife 2024; 12:RP88737. [PMID: 38767330 PMCID: PMC11105156 DOI: 10.7554/elife.88737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
A protein's genetic architecture - the set of causal rules by which its sequence produces its functions - also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest - excluding the vast majority of possible genotypes and evolutionary trajectories - and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor's specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor's capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.
Collapse
Affiliation(s)
- Brian PH Metzger
- Department of Ecology and Evolution, University of ChicagoChicagoUnited States
| | - Yeonwoo Park
- Program in Genetics, Genomics, and Systems Biology, University of ChicagoChicagoUnited States
| | - Tyler N Starr
- Department of Biochemistry and Molecular Biophysics, University of ChicagoChicagoUnited States
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of ChicagoChicagoUnited States
- Department of Human Genetics, University of ChicagoChicagoUnited States
| |
Collapse
|
8
|
Fröhlich C, Bunzel HA, Buda K, Mulholland AJ, van der Kamp MW, Johnsen PJ, Leiros HKS, Tokuriki N. Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase. Nat Catal 2024; 7:499-509. [PMID: 38828429 PMCID: PMC11136654 DOI: 10.1038/s41929-024-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/25/2024] [Indexed: 06/05/2024]
Abstract
Epistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a β-lactamase yielded highly epistatic activity enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold, despite their marginal individual effects (≤2-fold). Synergistic improvements coincided with the introduction of super-stochiometric burst kinetics, indicating that epistasis is rooted in the enzyme's conformational dynamics. Our analysis reveals that epistasis stemmed from distinct effects of each mutation on the catalytic cycle. The initial mutation increased protein flexibility and accelerated substrate binding, which is rate-limiting in the wild-type enzyme. Subsequent mutations predominantly boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an overlooked cause for epistasis: changing the rate-limiting step can result in substantial synergy that boosts enzyme activity.
Collapse
Affiliation(s)
| | - H. Adrian Bunzel
- Department of Biosystem Science and Engineering, ETH Zurich, Basel, Switzerland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia Canada
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Pål J. Johnsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia Canada
| |
Collapse
|
9
|
Chi YI, Jorge SD, Jensen DR, Smith BC, Volkman BF, Mathison AJ, Lomberk G, Zimmermann MT, Urrutia R. A multi-layered computational structural genomics approach enhances domain-specific interpretation of Kleefstra syndrome variants in EHMT1. Comput Struct Biotechnol J 2023; 21:5249-5258. [PMID: 37954151 PMCID: PMC10632586 DOI: 10.1016/j.csbj.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
This study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretations of these variants are yet to be made, limiting diagnoses and future research. To overcome this, we integrate conventional tools for variant calling with computational biophysics and biochemistry to conduct multi-layered mechanistic analyses of the SET catalytic domain of EHMT1, which is critical for this protein function. We use molecular mechanics and molecular dynamics (MD)-based metrics to analyze the SET domain structure and functional motions resulting from 97 Kleefstra syndrome missense variants within the domain. Our approach allows us to classify the variants in a mechanistic manner into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Significance). Our findings reveal that the damaging variants are mostly mapped around the active site, substrate binding site, and pre-SET regions. Overall, we report an improvement for this method over conventional tools for variant interpretation and simultaneously provide a molecular mechanism for variant dysfunction.
Collapse
Affiliation(s)
- Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Salomão D. Jorge
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Davin R. Jensen
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian C. Smith
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian F. Volkman
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela J. Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
10
|
Dong X, Liu W, Dong Y, Wang K, Li K, Bian L. Metallo-β-lactamase SMB-1 evolves into a more efficient hydrolase under the selective pressure of meropenem. J Inorg Biochem 2023; 247:112323. [PMID: 37478781 DOI: 10.1016/j.jinorgbio.2023.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Metallo-β-lactamases (MβLs) are the primary mechanism of resistance to carbapenem antibiotics. To elucidate how MβLs have evolved with the introduction and use of antibiotics, the mutation and evolution of SMB-1 from Serratia marcescens were investigated in microbial evolution plates containing discontinuous meropenem (MEM) concentration gradients. The results revealed 2-point mutations, A242G and S257R; 1 double-site mutation, C240G/E258G; and 3 frameshift mutations, M5, M12, and M13, which are all missense mutations situated at the C-terminus. Compared with that of the wild-type (WT), the minimum inhibitory concentrations (MICs) of MEM for A242G, C240G/E258G, M5, M12, and M13 increased at least 120-fold, and that of S257R increased 8-fold. The catalytic efficiency kcat/Km increased by 365% and 647%, respectively. Concerning the structural changes, the structure at the active site changed from an ordered structure to an unordered conformation. Simultaneously, the flexibility of loop 1 was enhanced. These changes increased the volume of the active site cavity; thus, this was more conducive to exposing the Zn2+ site, facilitating substrate binding and conversion to products. In A242G, structural changes in Gly-242 can be transmitted to the active region via a network of interactions between the side chains of Gly-242 and the amino acid side chains near the active pocket. Together, these results pointed to the process of persistent drug tolerance and resistance, the SMB-1 enzyme evolved into a more exquisite structure with increased flexibility and stability, and stronger hydrolysis activity via genetic mutations and structural changes.
Collapse
Affiliation(s)
- Xiaoting Dong
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Wenli Liu
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yuxuan Dong
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Kun Wang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Kewei Li
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
11
|
González LJ, Bahr G, González MM, Bonomo RA, Vila AJ. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat Chem Biol 2023; 19:1116-1126. [PMID: 37188957 PMCID: PMC11534350 DOI: 10.1038/s41589-023-01319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Protein stability is an essential property for biological function. In contrast to the vast knowledge on protein stability in vitro, little is known about the factors governing in-cell stability. Here we show that the metallo-β-lactamase (MBL) New Delhi MBL-1 (NDM-1) is a kinetically unstable protein on metal restriction that has evolved by acquiring different biochemical traits that optimize its in-cell stability. The nonmetalated (apo) NDM-1 is degraded by the periplasmic protease Prc that recognizes its partially unstructured C-terminal domain. Zn(II) binding renders the protein refractory to degradation by quenching the flexibility of this region. Membrane anchoring makes apo-NDM-1 less accessible to Prc and protects it from DegP, a cellular protease degrading misfolded, nonmetalated NDM-1 precursors. NDM variants accumulate substitutions at the C terminus that quench its flexibility, enhancing their kinetic stability and bypassing proteolysis. These observations link MBL-mediated resistance with the essential periplasmic metabolism, highlighting the importance of the cellular protein homeostasis.
Collapse
Affiliation(s)
- Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariano M González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA.
| |
Collapse
|
12
|
Maatouk M, Merhej V, Pontarotti P, Ibrahim A, Rolain JM, Bittar F. Metallo-Beta-Lactamase-like Encoding Genes in Candidate Phyla Radiation: Widespread and Highly Divergent Proteins with Potential Multifunctionality. Microorganisms 2023; 11:1933. [PMID: 37630493 PMCID: PMC10459063 DOI: 10.3390/microorganisms11081933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The Candidate Phyla Radiation (CPR) was found to harbor a vast repertoire of genes encoding for enzymes with potential antibiotic resistance activity. Among these, as many as 3349 genes were predicted in silico to contain a metallo-beta-lactamase-like (MBL-like) fold. These proteins were subject to an in silico functional characterization by comparing their protein profiles (presence/absence of conserved protein domains) to other MBLs, including 24 already expressed in vitro, along with those of the beta-lactamase database (BLDB) (n = 761). The sequence similarity network (SSN) was then used to predict the functional clusters of CPR MBL-like sequences. Our findings showed that CPR MBL-like sequences were longer and more diverse than bacterial MBL sequences, with a high content of functional domains. Most CPR MBL-like sequences did not show any SSN connectivity with expressed MBLs, indicating the presence of many potential, yet unidentified, functions in CPR. In conclusion, CPR was shown to have many protein functions and a large sequence variability of MBL-like folds, exceeding all known MBLs. Further experimental and evolutionary studies of this superfamily of hydrolyzing enzymes are necessary to illustrate their functional annotation, origin, and expansion for adaptation or specialization within a given niche or compared to a specific substrate.
Collapse
Affiliation(s)
- Mohamad Maatouk
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Vicky Merhej
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Pierre Pontarotti
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Ahmad Ibrahim
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Jean-Marc Rolain
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Fadi Bittar
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
13
|
Moulana A, Dupic T, Phillips AM, Desai MM. Genotype-phenotype landscapes for immune-pathogen coevolution. Trends Immunol 2023; 44:384-396. [PMID: 37024340 PMCID: PMC10147585 DOI: 10.1016/j.it.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023]
Abstract
Our immune systems constantly coevolve with the pathogens that challenge them, as pathogens adapt to evade our defense responses, with our immune repertoires shifting in turn. These coevolutionary dynamics take place across a vast and high-dimensional landscape of potential pathogen and immune receptor sequence variants. Mapping the relationship between these genotypes and the phenotypes that determine immune-pathogen interactions is crucial for understanding, predicting, and controlling disease. Here, we review recent developments applying high-throughput methods to create large libraries of immune receptor and pathogen protein sequence variants and measure relevant phenotypes. We describe several approaches that probe different regions of the high-dimensional sequence space and comment on how combinations of these methods may offer novel insight into immune-pathogen coevolution.
Collapse
Affiliation(s)
- Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angela M Phillips
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA; Quantitative Biology Initiative, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Standley M, Blay V, Beleva Guthrie V, Kim J, Lyman A, Moya A, Karchin R, Camps M. Experimental and In Silico Analysis of TEM β-Lactamase Adaptive Evolution. ACS Infect Dis 2022; 8:2451-2463. [PMID: 36377311 PMCID: PMC9745794 DOI: 10.1021/acsinfecdis.2c00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple mutations often have non-additive (epistatic) phenotypic effects. Epistasis is of fundamental biological relevance but is not well understood mechanistically. Adaptive evolution, i.e., the evolution of new biochemical activities, is rich in epistatic interactions. To better understand the principles underlying epistasis during genetic adaptation, we studied the evolution of TEM-1 β-lactamase variants exhibiting cefotaxime resistance. We report the collection of a library of 487 observed evolutionary trajectories for TEM-1 and determine the epistasis status based on cefotaxime resistance phenotype for 206 combinations of 2-3 TEM-1 mutations involving 17 positions under adaptive selective pressure. Gain-of-function (GOF) mutations are gatekeepers for adaptation. To see if GOF phenotypes can be inferred based solely on sequence data, we calculated the enrichment of GOF mutations in the different categories of epistatic pairs. Our results suggest that this is possible because GOF mutations are particularly enriched in sign and reciprocal sign epistasis, which leave a major imprint on the sequence space accessible to evolution. We also used FoldX to explore the relationship between thermodynamic stability and epistasis. We found that mutations in observed evolutionary trajectories tend to destabilize the folded structure of the protein, albeit their cumulative effects are consistently below the protein's free energy of folding. The destabilizing effect is stronger for epistatic pairs, suggesting that modest or local alterations in folding stability can modulate catalysis. Finally, we report a significant relationship between epistasis and the degree to which two protein positions are structurally and dynamically coupled, even in the absence of ligand.
Collapse
Affiliation(s)
- Melissa Standley
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Vincent Blay
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States,Institute
for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980Valencia, Spain,
| | - Violeta Beleva Guthrie
- Department
of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Jay Kim
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Audrey Lyman
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Andrés Moya
- Institute
for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980Valencia, Spain,Foundation
for the Promotion of Sanitary and Biomedical Research of Valencia
Region (FISABIO), 46021Valencia, Spain,CIBER
in Epidemiology and Public Health (CIBEResp), 28029Madrid, Spain
| | - Rachel Karchin
- Department
of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Manel Camps
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States,
| |
Collapse
|
15
|
Colque CA, albarracín Orio AG, Tomatis PE, Dotta G, Moreno DM, Hedemann LG, Hickman RA, Sommer LM, Feliziani S, Moyano AJ, Bonomo RA, K. Johansen H, Molin S, Vila AJ, Smania AM. Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. mBio 2022; 13:e0166322. [PMID: 36073814 PMCID: PMC9600753 DOI: 10.1128/mbio.01663-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C β-lactamase (blaPDC). These multiple mutations within blaPDC shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in blaPDC provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A "gain of function" of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. IMPORTANCE Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC β-lactamase is the main mechanism driving resistance in this notorious pathogen to β-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the β-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Claudia A. Colque
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea G. albarracín Orio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Pablo E. Tomatis
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gina Dotta
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- IQUIR, Instituto de Química de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura G. Hedemann
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Rachel A. Hickman
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea M. Sommer
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sofía Feliziani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alejandro J. Moyano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Robert A. Bonomo
- Departments of Molecular Biology and Microbiology, Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Senior Clinical Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
16
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
17
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases and a tug-of-war for the available zinc at the host-pathogen interface. Curr Opin Chem Biol 2022; 66:102103. [PMID: 34864439 PMCID: PMC8860843 DOI: 10.1016/j.cbpa.2021.102103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
Metallo-β-lactamases (MBLs) are zinc-dependent hydrolases that inactivate virtually all β-lactam antibiotics. The expression of MBLs by Gram-negative bacteria severely limits the therapeutic options to treat infections. MBLs bind the essential metal ions in the bacterial periplasm, and their activity is challenged upon the zinc starvation conditions elicited by the native immune response. Metal depletion compromises both the enzyme activity and stability in the periplasm, impacting on the resistance profile in vivo. Thus, novel inhibitory approaches involve the use of chelating agents or metal-based drugs that displace the native metal ion. However, newer MBL variants incorporate mutations that improve their metal binding abilities or stabilize the metal-depleted form, revealing that metal starvation is a driving force acting on MBL evolution. Future challenges require addressing the gap between in cell and in vitro studies, dissecting the mechanism for MBL metalation and determining the metal content in situ.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
18
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
19
|
The adaptive landscape of a metallo-enzyme is shaped by environment-dependent epistasis. Nat Commun 2021; 12:3867. [PMID: 34162839 PMCID: PMC8222346 DOI: 10.1038/s41467-021-23943-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/18/2021] [Indexed: 11/08/2022] Open
Abstract
Enzymes can evolve new catalytic activity when environmental changes present them with novel substrates. Despite this seemingly straightforward relationship, factors other than the direct catalytic target can also impact adaptation. Here, we characterize the catalytic activity of a recently evolved bacterial methyl-parathion hydrolase for all possible combinations of the five functionally relevant mutations under eight different laboratory conditions (in which an alternative divalent metal is supplemented). The resultant adaptive landscapes across this historical evolutionary transition vary in terms of both the number of “fitness peaks” as well as the genotype(s) at which they are found as a result of genotype-by-environment interactions and environment-dependent epistasis. This suggests that adaptive landscapes may be fluid and molecular adaptation is highly contingent not only on obvious factors (such as catalytic targets), but also on less obvious secondary environmental factors that can direct it towards distinct outcomes. The metaphor of an adaptive landscape is presented quantitatively by looking at molecular adaptations and their catalytic consequences in a recently evolved bacterial enzyme. The study identifies both genotype-by-environment interactions and environment-dependent epistasis as factors that can alter the fitness of functional mutations.
Collapse
|
20
|
Miton CM, Buda K, Tokuriki N. Epistasis and intramolecular networks in protein evolution. Curr Opin Struct Biol 2021; 69:160-168. [PMID: 34077895 DOI: 10.1016/j.sbi.2021.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 12/01/2022]
Abstract
Proteins are molecular machines composed of complex, highly connected amino acid networks. Their functional optimization requires the reorganization of these intramolecular networks by evolution. In this review, we discuss the mechanisms by which epistasis, that is, the dependence of the effect of a mutation on the genetic background, rewires intramolecular interactions to alter protein function. Deciphering the biophysical basis of epistasis is crucial to our understanding of evolutionary dynamics and the elucidation of sequence-structure-function relationships. We featured recent studies that provide insights into the molecular mechanisms giving rise to epistasis, particularly at the structural level. These studies illustrate the convoluted and fascinating nature of the intramolecular networks co-opted by epistasis during the evolution of protein function.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| |
Collapse
|
21
|
Antelo GT, Vila AJ, Giedroc DP, Capdevila DA. Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface. Trends Microbiol 2021; 29:441-457. [PMID: 32951986 PMCID: PMC7969482 DOI: 10.1016/j.tim.2020.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
The molecular evolution of the adaptive response at the host-pathogen interface has been frequently referred to as an 'arms race' between the host and bacterial pathogens. The innate immune system employs multiple strategies to starve microbes of metals. Pathogens, in turn, develop successful strategies to maintain access to bioavailable metal ions under conditions of extreme restriction of transition metals, or nutritional immunity. However, the processes by which evolution repurposes or re-engineers host and pathogen proteins to perform or refine new functions have been explored only recently. Here we review the molecular evolution of several human metalloproteins charged with restricting bacterial access to transition metals. These include the transition metal-chelating S100 proteins, natural resistance-associated macrophage protein-1 (NRAMP-1), transferrin, lactoferrin, and heme-binding proteins. We examine their coevolution with bacterial transition metal acquisition systems, involving siderophores and membrane-spanning metal importers, and the biological specificity of allosteric transcriptional regulatory proteins tasked with maintaining bacterial metallostasis. We also discuss the evolution of metallo-β-lactamases; this illustrates how rapid antibiotic-mediated evolution of a zinc metalloenzyme obligatorily occurs in the context of host-imposed nutritional immunity.
Collapse
Affiliation(s)
- Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Alejaldre L, Lemay-St-Denis C, Perez Lopez C, Sancho Jodar F, Guallar V, Pelletier JN. Known Evolutionary Paths Are Accessible to Engineered ß-Lactamases Having Altered Protein Motions at the Timescale of Catalytic Turnover. Front Mol Biosci 2020; 7:599298. [PMID: 33330628 PMCID: PMC7716773 DOI: 10.3389/fmolb.2020.599298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of new protein functions is dependent upon inherent biophysical features of proteins. Whereas, it has been shown that changes in protein dynamics can occur in the course of directed molecular evolution trajectories and contribute to new function, it is not known whether varying protein dynamics modify the course of evolution. We investigate this question using three related ß-lactamases displaying dynamics that differ broadly at the slow timescale that corresponds to catalytic turnover yet have similar fast dynamics, thermal stability, catalytic, and substrate recognition profiles. Introduction of substitutions E104K and G238S, that are known to have a synergistic effect on function in the parent ß-lactamase, showed similar increases in catalytic efficiency toward cefotaxime in the related ß-lactamases. Molecular simulations using Protein Energy Landscape Exploration reveal that this results from stabilizing the catalytically-productive conformations, demonstrating the dominance of the synergistic effect of the E014K and G238S substitutions in vitro in contexts that vary in terms of sequence and dynamics. Furthermore, three rounds of directed molecular evolution demonstrated that known cefotaximase-enhancing mutations were accessible regardless of the differences in dynamics. Interestingly, specific sequence differences between the related ß-lactamases were shown to have a higher effect in evolutionary outcomes than did differences in dynamics. Overall, these ß-lactamase models show tolerance to protein dynamics at the timescale of catalytic turnover in the evolution of a new function.
Collapse
Affiliation(s)
- Lorea Alejaldre
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | - Claudèle Lemay-St-Denis
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | | | | | - Victor Guallar
- Barcelona Supercomputing Center, Barcelona, Spain
- ICREA: Institució Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| | - Joelle N. Pelletier
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec City, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Chemistry Department, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
23
|
Prunotto A, Bahr G, González LJ, Vila AJ, Dal Peraro M. Molecular Bases of the Membrane Association Mechanism Potentiating Antibiotic Resistance by New Delhi Metallo-β-lactamase 1. ACS Infect Dis 2020; 6:2719-2731. [PMID: 32865963 DOI: 10.1021/acsinfecdis.0c00341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resistance to last-resort carbapenem antibiotics is an increasing threat to human health, as it critically limits therapeutic options. Metallo-β-lactamases (MBLs) are the largest family of carbapenemases, enzymes that inactivate these drugs. Among MBLs, New Delhi metallo-β-lactamase 1 (NDM-1) has experienced the fastest and largest worldwide dissemination. This success has been attributed to the fact that NDM-1 is a lipidated protein anchored to the outer membrane of bacteria, while all other MBLs are soluble periplasmic enzymes. By means of a combined experimental and computational approach, we show that NDM-1 interacts with the surface of bacterial membranes in a stable, defined conformation, in which the active site is not occluded by the bilayer. Although the lipidation is required for a long-lasting interaction, the globular domain of NDM-1 is tuned to interact specifically with the outer bacterial membrane. In contrast, this affinity is not observed for VIM-2, a natively soluble MBL. Finally, we identify key residues involved in the membrane interaction with NDM-1, which constitute potential targets for developing therapeutic strategies able to combat resistance granted by this enzyme.
Collapse
Affiliation(s)
- Alessio Prunotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Yang G, Miton CM, Tokuriki N. A mechanistic view of enzyme evolution. Protein Sci 2020; 29:1724-1747. [PMID: 32557882 PMCID: PMC7380680 DOI: 10.1002/pro.3901] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
New enzyme functions often evolve through the recruitment and optimization of latent promiscuous activities. How do mutations alter the molecular architecture of enzymes to enhance their activities? Can we infer general mechanisms that are common to most enzymes, or does each enzyme require a unique optimization process? The ability to predict the location and type of mutations necessary to enhance an enzyme's activity is critical to protein engineering and rational design. In this review, via the detailed examination of recent studies that have shed new light on the molecular changes underlying the optimization of enzyme function, we provide a mechanistic perspective of enzyme evolution. We first present a global survey of the prevalence of activity-enhancing mutations and their distribution within protein structures. We then delve into the molecular solutions that mediate functional optimization, specifically highlighting several common mechanisms that have been observed across multiple examples. As distinct protein sequences encounter different evolutionary bottlenecks, different mechanisms are likely to emerge along evolutionary trajectories toward improved function. Identifying the specific mechanism(s) that need to be improved upon, and tailoring our engineering efforts to each sequence, may considerably improve our chances to succeed in generating highly efficient catalysts in the future.
Collapse
Affiliation(s)
- Gloria Yang
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Charlotte M. Miton
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Nobuhiko Tokuriki
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
25
|
Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nat Chem Biol 2019; 15:1120-1128. [DOI: 10.1038/s41589-019-0386-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
|
26
|
Abstract
: The New Delhi metallo-β-lactamase-1 (NDM-1) is a typical carbapenemase and plays a crucial role in antibiotic-resistance bacterial infection. Phylogenetic analysis, performed on known NDM-variants, classified NDM enzymes in seven clusters. Three of them include a major number of NDM-variants. In this study, we evaluated the role of the V88L substitution in NDM-24 by kinetical and structural analysis. Functional results showed that V88L did not significantly increase the resistance level in the NDM-24 transformant toward penicillins, cephalosporins, meropenem, and imipenem. Concerning ertapenem, E. coli DH5α/NDM-24 showed a MIC value 4-fold higher than that of E. coli DH5α/NDM-1. The determination of the kcat, Km, and kcat/Km values for NDM-24, compared with NDM-1 and NDM-5, demonstrated an increase of the substrate hydrolysis compared to all the β-lactams tested, except penicillins. The thermostability testing revealed that V88L generated a destabilized effect on NDM-24. The V88L substitution occurred in the β-strand and low β-sheet content in the secondary structure, as evidenced by the CD analysis data. In conclusion, the V88L substitution increases the enzyme activity and decreases the protein stability. This study characterizes the role of the V88L substitution in NDM-24 and provides insight about the NDM variants evolution.
Collapse
|
27
|
Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat Commun 2019; 10:3617. [PMID: 31399590 PMCID: PMC6689000 DOI: 10.1038/s41467-019-11615-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
The worldwide dissemination of metallo-β-lactamases (MBLs), mediating resistance to carbapenem antibiotics, is a major public health problem. The extent of dissemination of MBLs such as VIM-2, SPM-1 and NDM among Gram-negative pathogens cannot be explained solely based on the associated mobile genetic elements or the resistance phenotype. Here, we report that MBL host range is determined by the impact of MBL expression on bacterial fitness. The signal peptide sequence of MBLs dictates their adaptability to each host. In uncommon hosts, inefficient processing of MBLs leads to accumulation of toxic intermediates that compromises bacterial growth. This fitness cost explains the exclusion of VIM-2 and SPM-1 from Escherichia coli and Acinetobacter baumannii, and their confinement to Pseudomonas aeruginosa. By contrast, NDMs are expressed without any apparent fitness cost in different bacteria, and are secreted into outer membrane vesicles. We propose that the successful dissemination and adaptation of MBLs to different bacterial hosts depend on protein determinants that enable host adaptability and carbapenem resistance. Metallo-β-lactamases (MBLs) confer resistance to carbapenem antibiotics. Here, López et al. show that the host range of MBLs depends on the efficiency of MBL signal peptide processing and secretion into outer membrane vesicles, which affects bacterial fitness.
Collapse
|
28
|
Polte C, Wedemeyer D, Oliver KE, Wagner J, Bijvelds MJC, Mahoney J, de Jonge HR, Sorscher EJ, Ignatova Z. Assessing cell-specific effects of genetic variations using tRNA microarrays. BMC Genomics 2019; 20:549. [PMID: 31307398 PMCID: PMC6632033 DOI: 10.1186/s12864-019-5864-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background By definition, effect of synonymous single-nucleotide variants (SNVs) on protein folding and function are neutral, as they alter the codon and not the encoded amino acid. Recent examples indicate tissue-specific and transfer RNA (tRNA)-dependent effects of some genetic variations arguing against neutrality of synonymous SNVs for protein biogenesis. Results We performed systematic analysis of tRNA abunandance across in various models used in cystic fibrosis (CF) research and drug development, including Fischer rat thyroid (FRT) cells, patient-derived primary human bronchial epithelia (HBE) from lung biopsies, primary human nasal epithelia (HNE) from nasal curettage, intestinal organoids, and airway progenitor-directed differentiation of human induced pluripotent stem cells (iPSCs). These were compared to an immortalized CF bronchial cell model (CFBE41o−) and two widely used laboratory cell lines, HeLa and HEK293. We discovered that specific synonymous SNVs exhibited differential effects which correlated with variable concentrations of cognate tRNAs. Conclusions Our results highlight ways in which the presence of synonymous SNVs may alter local kinetics of mRNA translation; and thus, impact protein biogenesis and function. This effect is likely to influence results from mechansistic analysis and/or drug screeining efforts, and establishes importance of cereful model system selection based on genetic variation profile. Electronic supplementary material The online version of this article (10.1186/s12864-019-5864-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Polte
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Daniel Wedemeyer
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Kathryn E Oliver
- Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Johannes Wagner
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Marcel J C Bijvelds
- Gastroenterology and Hepatology Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - John Mahoney
- Cystic Fibrosis Foundation CFFT Lab, Lexington, MA, 02421, USA
| | - Hugo R de Jonge
- Gastroenterology and Hepatology Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146, Hamburg, Germany.
| |
Collapse
|
29
|
Pokusaeva VO, Usmanova DR, Putintseva EV, Espinar L, Sarkisyan KS, Mishin AS, Bogatyreva NS, Ivankov DN, Akopyan AV, Avvakumov SY, Povolotskaya IS, Filion GJ, Carey LB, Kondrashov FA. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genet 2019; 15:e1008079. [PMID: 30969963 PMCID: PMC6476524 DOI: 10.1371/journal.pgen.1008079] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/22/2019] [Accepted: 03/11/2019] [Indexed: 11/18/2022] Open
Abstract
Characterizing the fitness landscape, a representation of fitness for a large set of genotypes, is key to understanding how genetic information is interpreted to create functional organisms. Here we determined the evolutionarily-relevant segment of the fitness landscape of His3, a gene coding for an enzyme in the histidine synthesis pathway, focusing on combinations of amino acid states found at orthologous sites of extant species. Just 15% of amino acids found in yeast His3 orthologues were always neutral while the impact on fitness of the remaining 85% depended on the genetic background. Furthermore, at 67% of sites, amino acid replacements were under sign epistasis, having both strongly positive and negative effect in different genetic backgrounds. 46% of sites were under reciprocal sign epistasis. The fitness impact of amino acid replacements was influenced by only a few genetic backgrounds but involved interaction of multiple sites, shaping a rugged fitness landscape in which many of the shortest paths between highly fit genotypes are inaccessible. An intuitive understanding of protein evolution dictates that, with the exception of adaptive substitutions, amino acid states should be freely exchangeable between the same gene from different species. However, the extent to which this assertion holds true has not been tested in a controlled experiment. Here, we show that whether an amino acid state can be exchanged between orthologues depends on other amino acid states in the same protein. Furthermore, we show that the mode of interaction of amino acid states is multidimensional. Assuming that amino acid replacements influence the protein in several independent ways substantially improves our ability to predict the effect of an amino acid state in a protein sequence that has not been observed in nature.
Collapse
Affiliation(s)
| | - Dinara R. Usmanova
- Department of Systems Biology, Columbia University, New York, NY, United States of America
| | | | - Lorena Espinar
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), 88 Dr. Aiguader, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karen S. Sarkisyan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Medical Research Council London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | | | - Natalya S. Bogatyreva
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), 88 Dr. Aiguader, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Laboratory of Protein Physics, Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Dmitry N. Ivankov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
- Laboratory of Protein Physics, Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Arseniy V. Akopyan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Sergey Ya. Avvakumov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Inna S. Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Guillaume J. Filion
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), 88 Dr. Aiguader, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lucas B. Carey
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- * E-mail: (LBC); (FAK)
| | - Fyodor A. Kondrashov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
- * E-mail: (LBC); (FAK)
| |
Collapse
|
30
|
Kinetic Profile and Molecular Dynamic Studies Show that Y229W Substitution in an NDM-1/L209F Variant Restores the Hydrolytic Activity of the Enzyme toward Penicillins, Cephalosporins, and Carbapenems. Antimicrob Agents Chemother 2019; 63:AAC.02270-18. [PMID: 30917978 DOI: 10.1128/aac.02270-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
The New Delhi metallo-β-lactamase-1 (NDM-1) enzyme is the most common metallo-β-lactamase identified in many Gram-negative bacteria causing severe nosocomial infections. The aim of this study was to focus the attention on non-active-site residues L209 and Y229 of NDM-1 and to investigate their role in the catalytic mechanism. Specifically, the effect of the Y229W substitution in the L209F variant was evaluated by antimicrobial susceptibility testing, kinetic, and molecular dynamic (MD) studies. The Y229W single mutant and L209F-Y229W double mutant were generated by site-directed mutagenesis. The Km , k cat, and k cat/Km kinetic constants, calculated for the two mutants, were compared with those of (wild-type) NDM-1 and the L209F variant. Compared to the L209F single mutant, the L209F-Y229W double mutant showed a remarkable increase in k cat values of 100-, 240-, 250-, and 420-fold for imipenem, meropenem, benzylpenicillin, and cefepime, respectively. In the L209F-Y229W enzyme, we observed a remarkable increase in k cat/Km of 370-, 140-, and 80-fold for cefepime, meropenem, and cefazolin, respectively. The same behavior was noted using the antimicrobial susceptibility test. MD simulations were carried out on both L209F and L209F-Y229W enzymes complexed with benzylpenicillin, focusing attention on the overall mechanical features and on the differences between the two systems. With respect to the L209F variant, the L209F-Y229W double mutant showed mechanical stabilization of loop 10 and the N-terminal region. In addition, Y229W substitution destabilized both the C-terminal region and the region from residues 149 to 154. The epistatic effect of the Y229W mutation jointly with the stabilization of loop 10 led to a better catalytic efficiency of β-lactams. NDM numbering is used in order to facilitate the comparison with other NDM-1 studies.
Collapse
|
31
|
Hawkins NJ, Fraaije BA. Fitness Penalties in the Evolution of Fungicide Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:339-360. [PMID: 29958074 DOI: 10.1146/annurev-phyto-080417-050012] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The evolution of resistance poses an ongoing threat to crop protection. Fungicide resistance provides a selective advantage under fungicide selection, but resistance-conferring mutations may also result in fitness penalties, resulting in an evolutionary trade-off. These penalties may result from the functional constraints of an evolving target site or from the resource allocation costs of overexpression or active transport. The extent to which such fitness penalties are present has important implications for resistance management strategies, determining whether resistance persists or declines between treatments, and for resistance risk assessments for new modes of action. Experimental results have proven variable, depending on factors such as temperature, nutrient status, osmotic or oxidative stress, and pathogen life-cycle stage. Functional genetics tools allow pathogen genetic background to be controlled, but this in turn raises the question of epistatic interactions. Combining fitness penalties under various conditions into a field-realistic scenario poses an important future challenge.
Collapse
Affiliation(s)
- N J Hawkins
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| | - B A Fraaije
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| |
Collapse
|
32
|
Evolutionary constraints in fitness landscapes. Heredity (Edinb) 2018; 121:466-481. [PMID: 29993041 DOI: 10.1038/s41437-018-0110-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/29/2022] Open
Abstract
In the last years, several genotypic fitness landscapes-combinations of a small number of mutations-have been experimentally resolved. To learn about the general properties of "real" fitness landscapes, it is key to characterize these experimental landscapes via simple measures of their structure, related to evolutionary features. Some of the most relevant measures are based on the selectively acessible paths and their properties. In this paper, we present some measures of evolutionary constraints based on (i) the similarity between accessible paths and (ii) the abundance and characteristics of "chains" of obligatory mutations, that are paths going through genotypes with a single fitter neighbor. These measures have a clear evolutionary interpretation. Furthermore, we show that chains are only weakly correlated to classical measures of epistasis. In fact, some of these measures of constraint are non-monotonic in the amount of epistatic interactions, but have instead a maximum for intermediate values. Finally, we show how these measures shed light on evolutionary constraints and predictability in experimentally resolved landscapes.
Collapse
|
33
|
Gautier G, Guillard T, Podac B, Bercot B, Vernet-Garnier V, de Champs C. Detection of different classes of carbapenemases: Adaptation and assessment of a phenotypic method applied to Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, and proposal of a new algorithm. J Microbiol Methods 2018; 147:26-35. [PMID: 29486226 DOI: 10.1016/j.mimet.2018.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 10/18/2022]
Abstract
A new phenotypic method for detecting carbapenemases has been adapted (assembling of two MAST® kits, including one that contains faropenem to which a temocillin disk has been added) then assessed using 101 bacterial strains (Enterobacteriaceae with assays on Pseudomonas aeruginosa and Acinetobacter baumannii) including 62 which produce genetically identified carbapenemases. Concerning Carbapenemase-Producing Enterobacteriaceae (CPE), there is 100% sensitivity for Klebsiella pneumoniae carbapenemase (KPC, Ambler class A) and OXA-48 (Ambler class D), and 91% for metallo-beta-lactamase (MBL, Ambler class B), with a 97% sensitivity for all carbapenemases, with a specificity of 100%. The test is also efficient for detecting Pseudomonas aeruginosa carbapenemases (sensitivity between 82 and 100% and 100% specificity). The major innovation is the combined use of faropenem and temocillin for reliable detection (excellent performance with 100% sensitivity and specificity) of OXA-48. This study has led to the development of a new algorithm to detect the different classes of carbapenemases, for first-line diagnosis, by combining this modified MAST® test with immunochromatographic methods and molecular biology techniques.
Collapse
Affiliation(s)
- Guillaume Gautier
- Bacteriology-Virology-Hygiene Department, Bacteriology Unit, Robert Debré University Hospital, avenue du général Koenig, 51092 Reims Cedex, France; Medical Biology Laboratory, Microbiology Department, Bacteriology Unit, William Morey General Hospital, 4 rue capitaine Drillien, 71321 Chalon-sur-Saône Cedex, France.
| | - Thomas Guillard
- Bacteriology-Virology-Hygiene Department, Bacteriology Unit, Robert Debré University Hospital, avenue du général Koenig, 51092 Reims Cedex, France; Research Unit EA 4687 SFR Cap-Santé (FED 4231), Acquired Resistance in Enterobacteriaceae, Reims Champagne-Ardenne University, 51 rue Cognacq-Jay, 51095 Reims Cedex, France.
| | - Bianca Podac
- Medical Biology Laboratory, Microbiology Department, Bacteriology Unit, William Morey General Hospital, 4 rue capitaine Drillien, 71321 Chalon-sur-Saône Cedex, France.
| | - Béatrice Bercot
- AP-HP, Saint-Louis-Lariboisière-Fernand-Widal Hospital Group, Laboratory of Bacteriology, associated for the National Reference Center for gonococci, 1 avenue Claude Vellefaux, 75010 Paris, France; IAME, UMR 1137, INSERM, Paris Diderot University, 16 rue Henri Huchard, 75890 Paris Cedex 18, France.
| | - Véronique Vernet-Garnier
- Bacteriology-Virology-Hygiene Department, Bacteriology Unit, Robert Debré University Hospital, avenue du général Koenig, 51092 Reims Cedex, France; Research Unit EA 4687 SFR Cap-Santé (FED 4231), Acquired Resistance in Enterobacteriaceae, Reims Champagne-Ardenne University, 51 rue Cognacq-Jay, 51095 Reims Cedex, France.
| | - Christophe de Champs
- Bacteriology-Virology-Hygiene Department, Bacteriology Unit, Robert Debré University Hospital, avenue du général Koenig, 51092 Reims Cedex, France; Research Unit EA 4687 SFR Cap-Santé (FED 4231), Acquired Resistance in Enterobacteriaceae, Reims Champagne-Ardenne University, 51 rue Cognacq-Jay, 51095 Reims Cedex, France.
| |
Collapse
|
34
|
Weinreich DM, Lan Y, Jaffe J, Heckendorn RB. The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography. JOURNAL OF STATISTICAL PHYSICS 2018; 172:208-225. [PMID: 29904213 PMCID: PMC5986866 DOI: 10.1007/s10955-018-1975-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/24/2018] [Indexed: 05/31/2023]
Abstract
The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.
Collapse
Affiliation(s)
- Daniel M. Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912 USA
| | - Yinghong Lan
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Jacob Jaffe
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Robert B. Heckendorn
- Computer Science Department, University of Idaho, 875 Perimeter Drive, MS 1010, Moscow, ID 83844 USA
| |
Collapse
|
35
|
.Newton MS, Arcus VL, Gerth ML, Patrick WM. Enzyme evolution: innovation is easy, optimization is complicated. Curr Opin Struct Biol 2018; 48:110-116. [DOI: 10.1016/j.sbi.2017.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
36
|
Obolski U, Ram Y, Hadany L. Key issues review: evolution on rugged adaptive landscapes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:012602. [PMID: 29051394 DOI: 10.1088/1361-6633/aa94d4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adaptive landscapes represent a mapping between genotype and fitness. Rugged adaptive landscapes contain two or more adaptive peaks: allele combinations with higher fitness than any of their neighbors in the genetic space. How do populations evolve on such rugged landscapes? Evolutionary biologists have struggled with this question since it was first introduced in the 1930s by Sewall Wright. Discoveries in the fields of genetics and biochemistry inspired various mathematical models of adaptive landscapes. The development of landscape models led to numerous theoretical studies analyzing evolution on rugged landscapes under different biological conditions. The large body of theoretical work suggests that adaptive landscapes are major determinants of the progress and outcome of evolutionary processes. Recent technological advances in molecular biology and microbiology allow experimenters to measure adaptive values of large sets of allele combinations and construct empirical adaptive landscapes for the first time. Such empirical landscapes have already been generated in bacteria, yeast, viruses, and fungi, and are contributing to new insights about evolution on adaptive landscapes. In this Key Issues Review we will: (i) introduce the concept of adaptive landscapes; (ii) review the major theoretical studies of evolution on rugged landscapes; (iii) review some of the recently obtained empirical adaptive landscapes; (iv) discuss recent mathematical and statistical analyses motivated by empirical adaptive landscapes, as well as provide the reader with instructions and source code to implement simulations of evolution on adaptive landscapes; and (v) discuss possible future directions for this exciting field.
Collapse
|
37
|
Perez AM, Gomez MM, Kalvapalle P, O'Brien-Gilbert E, Bennett MR, Shamoo Y. Using cellular fitness to map the structure and function of a major facilitator superfamily effluxer. Mol Syst Biol 2017; 13:964. [PMID: 29273640 PMCID: PMC5740499 DOI: 10.15252/msb.20177635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The major facilitator superfamily (MFS) effluxers are prominent mediators of antimicrobial resistance. The biochemical characterization of MFS proteins is hindered by their complex membrane environment that makes in vitro biochemical analysis challenging. Since the physicochemical properties of proteins drive the fitness of an organism, we posed the question of whether we could reverse that relationship and derive meaningful biochemical parameters for a single protein simply from fitness changes it confers under varying strengths of selection. Here, we present a physiological model that uses cellular fitness as a proxy to predict the biochemical properties of the MFS tetracycline efflux pump, TetB, and a family of single amino acid variants. We determined two lumped biochemical parameters roughly describing Km and Vmax for TetB and variants. Including in vivo protein levels into our model allowed for more specified prediction of pump parameters relating to substrate binding affinity and pumping efficiency for TetB and variants. We further demonstrated the general utility of our model by solely using fitness to assay a library of tet(B) variants and estimate their biochemical properties.
Collapse
Affiliation(s)
- Anisha M Perez
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Marcella M Gomez
- Department of Applied Mathematics & Statistics, University of California, Santa Cruz, CA, USA
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | | | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
38
|
Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation. Antimicrob Agents Chemother 2017; 62:AAC.01849-17. [PMID: 29038264 DOI: 10.1128/aac.01849-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are rapidly spreading and taking a staggering toll on all health care systems, largely due to the dissemination of genes coding for potent carbapenemases. An important family of carbapenemases are the Zn(II)-dependent β-lactamases, known as metallo-β-lactamases (MBLs). Among them, the New Delhi metallo-β-lactamase (NDM) has experienced the fastest and widest geographical spread. While other clinically important MBLs are soluble periplasmic enzymes, NDMs are lipoproteins anchored to the outer membrane in Gram-negative bacteria. This unique cellular localization endows NDMs with enhanced stability upon the Zn(II) starvation elicited by the immune system response at the sites of infection. Since the first report of NDM-1, new allelic variants (16 in total) have been identified in clinical isolates differing by a limited number of substitutions. Here, we show that these variants have evolved by accumulating mutations that enhance their stability or the Zn(II) binding affinity in vivo, overriding the most common evolutionary pressure acting on catalytic efficiency. We identified the ubiquitous substitution M154L as responsible for improving the Zn(II) binding capabilities of the NDM variants. These results also reveal that Zn(II) deprivation imposes a strict constraint on the evolution of this MBL, overriding the most common pressures acting on catalytic performance, and shed light on possible inhibitory strategies.
Collapse
|
39
|
Miller CR, Van Leuven JT, Wichman HA, Joyce P. Selecting among three basic fitness landscape models: Additive, multiplicative and stickbreaking. Theor Popul Biol 2017; 122:97-109. [PMID: 29198859 DOI: 10.1016/j.tpb.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Fitness landscapes map genotypes to organismal fitness. Their topographies depend on how mutational effects interact - epistasis - andare important for understanding evolutionary processes such as speciation, the rate of adaptation, the advantage of recombination, and the predictability versus stochasticity of evolution. The growing amount of data has made it possible to better test landscape models empirically. We argue that this endeavor will benefit from the development and use of meaningful basic models against which to compare more complex models. Here we develop statistical and computational methods for fitting fitness data from mutation combinatorial networks to three simple models: additive, multiplicative and stickbreaking. We employ a Bayesian framework for doing model selection. Using simulations, we demonstrate that our methods work and we explore their statistical performance: bias, error, and the power to discriminate among models. We then illustrate our approach and its flexibility by analyzing several previously published datasets. An R-package that implements our methods is available in the CRAN repository under the name Stickbreaker.
Collapse
Affiliation(s)
- Craig R Miller
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Department of Mathematics, University of Idaho, Moscow, ID 83844, United States.
| | - James T Van Leuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States
| | - Holly A Wichman
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Paul Joyce
- Department of Mathematics, University of Idaho, Moscow, ID 83844, United States
| |
Collapse
|
40
|
Knies JL, Cai F, Weinreich DM. Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase. Mol Biol Evol 2017; 34:1040-1054. [PMID: 28087769 PMCID: PMC5400381 DOI: 10.1093/molbev/msx053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation. Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes' contributions to organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This observation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 β-lactamase that jointly increase cefotaxime Minimum Inhibitory Concentration (MIC) ∼1500-fold. First, we report enzymatic efficiency (kcat/KM) and thermostability (Tm, and thence ΔG of folding) for all combinations of these mutations. Next, we fit a quantitative model that predicts MIC as a function of kcat/KM and ΔG. While kcat/KM explains ∼54% of the variance in cefotaxime MIC (∼92% after log transformation), ΔG does not improve explanatory power of the model. We also find that cefotaxime MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively "well-behaved" system.
Collapse
Affiliation(s)
- Jennifer L Knies
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Fei Cai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| |
Collapse
|
41
|
A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat Commun 2017; 8:538. [PMID: 28912448 PMCID: PMC5599593 DOI: 10.1038/s41467-017-00601-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae threaten human health, since carbapenems are last resort drugs for infections by such organisms. Metallo-β-lactamases (MβLs) are the main mechanism of resistance against carbapenems. Clinically approved inhibitors of MBLs are currently unavailable as design has been limited by the incomplete knowledge of their mechanism. Here, we report a biochemical and biophysical study of carbapenem hydrolysis by the B1 enzymes NDM-1 and BcII in the bi-Zn(II) form, the mono-Zn(II) B2 Sfh-I and the mono-Zn(II) B3 GOB-18. These MβLs hydrolyse carbapenems via a similar mechanism, with accumulation of the same anionic intermediates. We characterize the Michaelis complex formed by mono-Zn(II) enzymes, and we identify all intermediate species, enabling us to propose a chemical mechanism for mono and binuclear MβLs. This common mechanism open avenues for rationally designed inhibitors of all MβLs, notwithstanding the profound differences between these enzymes’ active site structure, β-lactam specificity and metal content. Carbapenem-resistant bacteria pose a major health threat by expressing metallo-β-lactamases (MβLs), enzymes able to hydrolyse these life-saving drugs. Here the authors use biophysical and computational methods and show that different MβLs share the same reaction mechanism, suggesting new strategies for drug design.
Collapse
|
42
|
Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1 H -pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. Eur J Med Chem 2017; 137:351-364. [DOI: 10.1016/j.ejmech.2017.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022]
|
43
|
Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding. Antimicrob Agents Chemother 2017; 61:AAC.02602-16. [PMID: 28559248 DOI: 10.1128/aac.02602-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) threaten the effectiveness of β-lactam antibiotics, including carbapenems, and are a concern for global public health. β-Lactam/β-lactamase inhibitor combinations active against class A and class D carbapenemases are used, but no clinically useful MBL inhibitor is currently available. Tripoli metallo-β-lactamase-1 (TMB-1) and TMB-2 are members of MBL subclass B1a, where TMB-2 is an S228P variant of TMB-1. The role of S228P was studied by comparisons of TMB-1 and TMB-2, and E119 was investigated through the construction of site-directed mutants of TMB-1, E119Q, E119S, and E119A (E119Q/S/A). All TMB variants were characterized through enzyme kinetic studies. Thermostability and crystallization analyses of TMB-1 were performed. Thiol-based inhibitors were investigated by determining the 50% inhibitory concentrations (IC50) and binding using surface plasmon resonance (SPR) for analysis of TMB-1. Thermostability measurements found TMB-1 to be stabilized by high NaCl concentrations. Steady-state enzyme kinetics analyses found substitutions of E119, in particular, substitutions associated with the penicillins, to affect hydrolysis to some extent. TMB-2 with S228P showed slightly reduced catalytic efficiency compared to TMB-1. The IC50 levels of the new thiol-based inhibitors were 0.66 μM (inhibitor 2a) and 0.62 μM (inhibitor 2b), and the equilibrium dissociation constant (KD ) of inhibitor 2a was 1.6 μM; thus, both were more potent inhibitors than l-captopril (IC50 = 47 μM; KD = 25 μM). The crystal structure of TMB-1 was resolved to 1.75 Å. Modeling of inhibitor 2b in the TMB-1 active site suggested that the presence of the W64 residue results in T-shaped π-π stacking and R224 cation-π interactions with the phenyl ring of the inhibitor. In sum, the results suggest that residues 119 and 228 affect the catalytic efficiency of TMB-1 and that inhibitors 2a and 2b are more potent inhibitors for TMB-1 than l-captopril.
Collapse
|
44
|
Hou CFD, Liu JW, Collyer C, Mitić N, Pedroso MM, Schenk G, Ollis DL. Insights into an evolutionary strategy leading to antibiotic resistance. Sci Rep 2017; 7:40357. [PMID: 28074907 PMCID: PMC5225480 DOI: 10.1038/srep40357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen's resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.
Collapse
Affiliation(s)
- Chun-Feng D Hou
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- CSIRO Entomology, Black Mountain, ACT 2601, Australia
| | - Charles Collyer
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L Ollis
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
45
|
Staude MW, Leonard DA, Peng JW. Expanded Substrate Activity of OXA-24/40 in Carbapenem-Resistant Acinetobacter baumannii Involves Enhanced Binding Loop Flexibility. Biochemistry 2016; 55:6535-6544. [DOI: 10.1021/acs.biochem.6b00806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael W. Staude
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David A. Leonard
- Department
of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Jeffrey W. Peng
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
46
|
González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol 2016; 12:516-22. [PMID: 27182662 PMCID: PMC4912412 DOI: 10.1038/nchembio.2083] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
Abstract
Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Departments of Medicine, Pharmacology, Microbiology and Molecular Biology, and Biochemistry; Case Western Reserve University, Cleveland, OH, USA
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
47
|
Local fitness landscape of the green fluorescent protein. Nature 2016; 533:397-401. [PMID: 27193686 PMCID: PMC4968632 DOI: 10.1038/nature17995] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/07/2016] [Indexed: 01/16/2023]
Abstract
Fitness landscapes1,2, depictions of how genotypes manifest at the phenotypic level, form the basis for our understanding of many areas of biology2–7 yet their properties remain elusive. Studies addressing this issue often consider specific genes and their function as proxy for fitness2,4, experimentally assessing the impact on function of single mutations and their combinations in a specific sequence2,5,8–15 or in different sequences2,3,5,16–18. However, systematic high-throughput studies of the local fitness landscape of an entire protein have not yet been reported. Here, we chart an extensive region of the local fitness landscape of the green fluorescent protein from Aequorea victoria (avGFP) by measuring the native function, fluorescence, of tens of thousands of derivative genotypes of avGFP. We find that its fitness landscape is narrow, with half of genotypes with two mutations showing reduced fluorescence and half of genotypes with five mutations being completely non-fluorescent. The narrowness is enhanced by epistasis, which was detected in up to 30% of genotypes with multiple mutations arising mostly through the cumulative impact of slightly deleterious mutations causing a threshold-like decrease of protein stability and concomitant loss of fluorescence. A model of orthologous sequence divergence spanning hundreds of millions of years predicted the extent of epistasis in our data, indicating congruence between the fitness landscape properties at the local and global scales. The characterization of the local fitness landscape of avGFP has important implications for a number of fields including molecular evolution, population genetics and protein design.
Collapse
|
48
|
González MM, Abriata LA, Tomatis PE, Vila AJ. Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory. Mol Biol Evol 2016; 33:1768-76. [PMID: 26983555 DOI: 10.1093/molbev/msw052] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The understanding of protein evolution depends on the ability to relate the impact of mutations on molecular traits to organismal fitness. Biological activity and robustness have been regarded as important features in shaping protein evolutionary landscapes. Conformational dynamics, which is essential for protein function, has received little attention in the context of evolutionary analyses. Here we employ NMR spectroscopy, the chief experimental tool to describe protein dynamics at atomic level in solution at room temperature, to study the intrinsic dynamic features of a metallo- Β: -lactamase enzyme and three variants identified during a directed evolution experiment that led to an expanded substrate profile. We show that conformational dynamics in the catalytically relevant microsecond to millisecond timescale is optimized along the favored evolutionary trajectory. In addition, we observe that the effects of mutations on dynamics are epistatic. Mutation Gly262Ser introduces slow dynamics on several residues that surround the active site when introduced in the wild-type enzyme. Mutation Asn70Ser removes the slow dynamics observed for few residues of the wild-type enzyme, but increases the number of residues that undergo slow dynamics when introduced in the Gly262Ser mutant. These effects on dynamics correlate with the epistatic interaction between these two mutations on the bacterial phenotype. These findings indicate that conformational dynamics is an evolvable trait, and that proteins endowed with more dynamic active sites also display a larger potential for promoting evolution.
Collapse
Affiliation(s)
- Mariano M González
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Luciano A Abriata
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Pablo E Tomatis
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Alejandro J Vila
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
49
|
Pasteran F, Gonzalez LJ, Albornoz E, Bahr G, Vila AJ, Corso A. Triton Hodge Test: Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other Carbapenemase Producers. J Clin Microbiol 2016; 54:640-9. [PMID: 26719442 PMCID: PMC4767956 DOI: 10.1128/jcm.01298-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/20/2015] [Indexed: 11/20/2022] Open
Abstract
Accurate detection of carbapenemase-producing Gram-negative bacilli is of utmost importance for the control of nosocomial spread and the initiation of appropriate antimicrobial therapy. The modified Hodge test (MHT), a carbapenem inactivation assay, has shown poor sensitivity in detecting the worldwide spread of New Delhi metallo-β-lactamase (NDM). Recent studies demonstrated that NDM is a lipoprotein anchored to the outer membrane in Gram-negative bacteria, unlike all other known carbapenemases. Here we report that membrane anchoring of β-lactamases precludes detection of carbapenemase activity by the MHT. We also show that this limitation can be overcome by the addition of Triton X-100 during the test, which allows detection of NDM. We propose an improved version of the assay, called the Triton Hodge test (THT), which allows detection of membrane-bound carbapenemases with the addition of this nonionic surfactant. This test was challenged with a panel of 185 clinical isolates (145 carrying known carbapenemase-encoding genes and 40 carbapenemase nonproducers). The THT displayed test sensitivity of >90% against NDM-producing clinical isolates, while improving performance against other carbapenemases. Ertapenem provided the highest sensitivity (97 to 100%, depending on the type of carbapenemase), followed by meropenem (92.5 to 100%). Test specificity was not affected by the addition of Triton (87.5% and 92.5% with ertapenem and meropenem, respectively). This simple inexpensive test confers a large improvement to the sensitivity of the MHT for the detection of NDM and other carbapenemases.
Collapse
Affiliation(s)
- Fernando Pasteran
- Servicio Antimicrobianos, Laboratorio Nacional y Regional de Referencia en Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lisandro J Gonzalez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fé, Argentina
| | - Ezequiel Albornoz
- Servicio Antimicrobianos, Laboratorio Nacional y Regional de Referencia en Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fé, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fé, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Laboratorio Nacional y Regional de Referencia en Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
50
|
Miton CM, Tokuriki N. How mutational epistasis impairs predictability in protein evolution and design. Protein Sci 2016; 25:1260-72. [PMID: 26757214 DOI: 10.1002/pro.2876] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/05/2023]
Abstract
There has been much debate about the extent to which mutational epistasis, that is, the dependence of the outcome of a mutation on the genetic background, constrains evolutionary trajectories. The degree of unpredictability introduced by epistasis, due to the non-additivity of functional effects, strongly hinders the strategies developed in protein design and engineering. While many studies have addressed this issue through systematic characterization of evolutionary trajectories within individual enzymes, the field lacks a consensus view on this matter. In this work, we performed a comprehensive analysis of epistasis by analyzing the mutational effects from nine adaptive trajectories toward new enzymatic functions. We quantified epistasis by comparing the effect of mutations occurring between two genetic backgrounds: the starting enzyme (for example, wild type) and the intermediate variant on which the mutation occurred during the trajectory. We found that most trajectories exhibit positive epistasis, in which the mutational effect is more beneficial when it occurs later in the evolutionary trajectory. Approximately half (49%) of functional mutations were neutral or negative on the wild-type background, but became beneficial at a later stage in the trajectory, indicating that these functional mutations were not predictable from the initial starting point. While some cases of strong epistasis were associated with direct interaction between residues, many others were caused by long-range indirect interactions between mutations. Our work highlights the prevalence of epistasis in enzyme adaptive evolution, in particular positive epistasis, and suggests the necessity of incorporating mutational epistasis in protein engineering and design to create highly efficient catalysts.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|