1
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
3
|
Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat Commun 2022; 13:5120. [PMID: 36045135 PMCID: PMC9433436 DOI: 10.1038/s41467-022-32843-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of precursor tRNAs (ptRNAs) by bacterial ribonuclease P (RNase P) involves an encounter complex (ES) that isomerizes to a catalytic conformation (ES*). However, the structures of intermediates and the conformational changes that occur during binding are poorly understood. Here, we show that pairing between the 5′ leader and 3′RCCA extending the acceptor stem of ptRNA inhibits ES* formation. Cryo-electron microscopy single particle analysis reveals a dynamic enzyme that becomes ordered upon formation of ES* in which extended acceptor stem pairing is unwound. Comparisons of structures with alternative ptRNAs reveals that once unwinding is completed RNase P primarily uses stacking interactions and shape complementarity to accommodate alternative sequences at its cleavage site. Our study reveals active site interactions and conformational changes that drive molecular recognition by RNase P and lays the foundation for understanding how binding interactions are linked to helix unwinding and catalysis. Ribonuclease P efficiently processes all tRNA precursors despite sequence variation at the site of cleavage. Here, authors use high-throughput enzymology and cryoEM to reveal conformational changes that drive recognition by bacterial RNase P.
Collapse
|
4
|
Sekulovski S, Trowitzsch S. Transfer RNA processing - from a structural and disease perspective. Biol Chem 2022; 403:749-763. [PMID: 35728022 DOI: 10.1515/hsz-2021-0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Transfer RNAs (tRNAs) are highly structured non-coding RNAs which play key roles in translation and cellular homeostasis. tRNAs are initially transcribed as precursor molecules and mature by tightly controlled, multistep processes that involve the removal of flanking and intervening sequences, over 100 base modifications, addition of non-templated nucleotides and aminoacylation. These molecular events are intertwined with the nucleocytoplasmic shuttling of tRNAs to make them available at translating ribosomes. Defects in tRNA processing are linked to the development of neurodegenerative disorders. Here, we summarize structural aspects of tRNA processing steps with a special emphasis on intron-containing tRNA splicing involving tRNA splicing endonuclease and ligase. Their role in neurological pathologies will be discussed. Identification of novel RNA substrates of the tRNA splicing machinery has uncovered functions unrelated to tRNA processing. Future structural and biochemical studies will unravel their mechanistic underpinnings and deepen our understanding of neurological diseases.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
5
|
How RNases Shape Mitochondrial Transcriptomes. Int J Mol Sci 2022; 23:ijms23116141. [PMID: 35682820 PMCID: PMC9181182 DOI: 10.3390/ijms23116141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution. RNA biology is thus particularly diverse in mitochondria. It involves an unexpectedly vast array of factors, some of which being universal to all mitochondria and others being specific from specific eukaryote clades. Among them, ribonucleases are particularly prominent. They play pivotal functions such as the maturation of transcript ends, RNA degradation and surveillance functions that are required to attain the pool of mature RNAs required to synthesize essential mitochondrial proteins such as respiratory chain proteins. Beyond these functions, mitochondrial ribonucleases are also involved in the maintenance and replication of mitochondrial DNA, and even possibly in the biogenesis of mitochondrial ribosomes. The diversity of mitochondrial RNases is reviewed here, showing for instance how in some cases a bacterial-type enzyme was kept in some eukaryotes, while in other clades, eukaryote specific enzymes were recruited for the same function.
Collapse
|
6
|
Shaukat AN, Kaliatsi EG, Skeparnias I, Stathopoulos C. The Dynamic Network of RNP RNase P Subunits. Int J Mol Sci 2021; 22:ijms221910307. [PMID: 34638646 PMCID: PMC8509007 DOI: 10.3390/ijms221910307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Ribonuclease P (RNase P) is an important ribonucleoprotein (RNP), responsible for the maturation of the 5′ end of precursor tRNAs (pre-tRNAs). In all organisms, the cleavage activity of a single phosphodiester bond adjacent to the first nucleotide of the acceptor stem is indispensable for cell viability and lies within an essential catalytic RNA subunit. Although RNase P is a ribozyme, its kinetic efficiency in vivo, as well as its structural variability and complexity throughout evolution, requires the presence of one protein subunit in bacteria to several protein partners in archaea and eukaryotes. Moreover, the existence of protein-only RNase P (PRORP) enzymes in several organisms and organelles suggests a more complex evolutionary timeline than previously thought. Recent detailed structures of bacterial, archaeal, human and mitochondrial RNase P complexes suggest that, although apparently dissimilar enzymes, they all recognize pre-tRNAs through conserved interactions. Interestingly, individual protein subunits of the human nuclear and mitochondrial holoenzymes have additional functions and contribute to a dynamic network of elaborate interactions and cellular processes. Herein, we summarize the role of each RNase P subunit with a focus on the human nuclear RNP and its putative role in flawless gene expression in light of recent structural studies.
Collapse
|
7
|
Phan HD, Lai LB, Zahurancik WJ, Gopalan V. The many faces of RNA-based RNase P, an RNA-world relic. Trends Biochem Sci 2021; 46:976-991. [PMID: 34511335 DOI: 10.1016/j.tibs.2021.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
RNase P is an essential enzyme that catalyzes removal of the 5' leader from precursor transfer RNAs. The ribonucleoprotein (RNP) form of RNase P is present in all domains of life and comprises a single catalytic RNA (ribozyme) and a variable number of protein cofactors. Recent cryo-electron microscopy structures of representative archaeal and eukaryotic (nuclear) RNase P holoenzymes bound to tRNA substrate/product provide high-resolution detail on subunit organization, topology, and substrate recognition in these large, multisubunit catalytic RNPs. These structures point to the challenges in understanding how proteins modulate the RNA functional repertoire and how the structure of an ancient RNA-based catalyst was reshaped during evolution by new macromolecular associations that were likely necessitated by functional/regulatory coupling.
Collapse
Affiliation(s)
- Hong-Duc Phan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lien B Lai
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Walter J Zahurancik
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Bhatta A, Dienemann C, Cramer P, Hillen HS. Structural basis of RNA processing by human mitochondrial RNase P. Nat Struct Mol Biol 2021; 28:713-723. [PMID: 34489609 PMCID: PMC8437803 DOI: 10.1038/s41594-021-00637-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Feyh R, Waeber NB, Prinz S, Giammarinaro PI, Bange G, Hochberg G, Hartmann RK, Altegoer F. Structure and mechanistic features of the prokaryotic minimal RNase P. eLife 2021; 10:70160. [PMID: 34180399 PMCID: PMC8266387 DOI: 10.7554/elife.70160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by ribonuclease P (RNase P) is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here, we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-electron microscopy, revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.
Collapse
Affiliation(s)
- Rebecca Feyh
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nadine B Waeber
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Simone Prinz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Pietro Ivan Giammarinaro
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg Hochberg
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
10
|
Gobert A, Quan Y, Arrivé M, Waltz F, Da Silva N, Jomat L, Cohen M, Jupin I, Giegé P. Towards plant resistance to viruses using protein-only RNase P. Nat Commun 2021; 12:1007. [PMID: 33579946 PMCID: PMC7881203 DOI: 10.1038/s41467-021-21338-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
Plant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases. New approaches to plant disease control are important for pathogens that are difficult to control by existing methods. Here, the authors report a potential strategy to combat plant viruses by cytosolic expressed protein-only RNase P and show its ability for in vitro cleavage of tRNA-like structures existing in many plant viruses.
Collapse
Affiliation(s)
- Anthony Gobert
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| | - Yifat Quan
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mathilde Arrivé
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Florent Waltz
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nathalie Da Silva
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Lucile Jomat
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Mathias Cohen
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Isabelle Jupin
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France.
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Teramoto T, Kaitany KJ, Kakuta Y, Kimura M, Fierke CA, Hall TMT. Pentatricopeptide repeats of protein-only RNase P use a distinct mode to recognize conserved bases and structural elements of pre-tRNA. Nucleic Acids Res 2020; 48:11815-11826. [PMID: 32719843 DOI: 10.1093/nar/gkaa627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Pentatricopeptide repeat (PPR) motifs are α-helical structures known for their modular recognition of single-stranded RNA sequences with each motif in a tandem array binding to a single nucleotide. Protein-only RNase P 1 (PRORP1) in Arabidopsis thaliana is an endoribonuclease that uses its PPR domain to recognize precursor tRNAs (pre-tRNAs) as it catalyzes removal of the 5'-leader sequence from pre-tRNAs with its NYN metallonuclease domain. To gain insight into the mechanism by which PRORP1 recognizes tRNA, we determined a crystal structure of the PPR domain in complex with yeast tRNAPhe at 2.85 Å resolution. The PPR domain of PRORP1 bound to the structurally conserved elbow of tRNA and recognized conserved structural features of tRNAs using mechanisms that are different from the established single-stranded RNA recognition mode of PPR motifs. The PRORP1 PPR domain-tRNAPhe structure revealed a conformational change of the PPR domain upon tRNA binding and moreover demonstrated the need for pronounced overall flexibility in the PRORP1 enzyme conformation for substrate recognition and catalysis. The PRORP1 PPR motifs have evolved strategies for protein-tRNA interaction analogous to tRNA recognition by the RNA component of ribonucleoprotein RNase P and other catalytic RNAs, indicating convergence on a common solution for tRNA substrate recognition.
Collapse
Affiliation(s)
- Takamasa Teramoto
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.,Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Makoto Kimura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Departments of Chemistry and Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Perederina A, Berezin I, Krasilnikov AS. In vitro reconstitution and analysis of eukaryotic RNase P RNPs. Nucleic Acids Res 2019; 46:6857-6868. [PMID: 29722866 PMCID: PMC6061874 DOI: 10.1093/nar/gky333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/22/2018] [Indexed: 12/23/2022] Open
Abstract
RNase P is a ubiquitous site-specific endoribonuclease primarily responsible for the maturation of tRNA. Throughout the three domains of life, the canonical form of RNase P is a ribonucleoprotein (RNP) built around a catalytic RNA. The core RNA is well conserved from bacteria to eukaryotes, whereas the protein parts vary significantly. The most complex and the least understood form of RNase P is found in eukaryotes, where multiple essential proteins playing largely unknown roles constitute the bulk of the enzyme. Eukaryotic RNase P was considered intractable to in vitro reconstitution, mostly due to insolubility of its protein components, which hindered its studies. We have developed a robust approach to the in vitro reconstitution of Saccharomyces cerevisiae RNase P RNPs and used it to analyze the interplay and roles of RNase P components. The results eliminate the major obstacle to biochemical and structural studies of eukaryotic RNase P, identify components required for the activation of the catalytic RNA, reveal roles of proteins in the enzyme stability, localize proteins on RNase P RNA, and demonstrate the interdependence of the binding of RNase P protein modules to the core RNA.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of Non-Coding RNAs into Human Mitochondria: A Critical Review and Emerging Approaches. Cells 2019; 8:E286. [PMID: 30917553 PMCID: PMC6468882 DOI: 10.3390/cells8030286] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
Mitochondria harbor their own genetic system, yet critically depend on the import of a number of nuclear-encoded macromolecules to ensure their expression. In all eukaryotes, selected non-coding RNAs produced from the nuclear genome are partially redirected into the mitochondria, where they participate in gene expression. Therefore, the mitochondrial RNome represents an intricate mixture of the intrinsic transcriptome and the extrinsic RNA importome. In this review, we summarize and critically analyze data on the nuclear-encoded transcripts detected in human mitochondria and outline the proposed molecular mechanisms of their mitochondrial import. Special attention is given to the various experimental approaches used to study the mitochondrial RNome, including some recently developed genome-wide and in situ techniques.
Collapse
Affiliation(s)
- Damien Jeandard
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Anna Smirnova
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Ivan Tarassov
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Eric Barrey
- GABI-UMR1313, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Nina Entelis
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| |
Collapse
|
15
|
Daniels CJ, Lai LB, Chen TH, Gopalan V. Both kinds of RNase P in all domains of life: surprises galore. RNA (NEW YORK, N.Y.) 2019; 25:286-291. [PMID: 30578286 PMCID: PMC6380272 DOI: 10.1261/rna.068379.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/18/2018] [Indexed: 05/03/2023]
Abstract
RNase P, an essential housekeeping endonuclease needed for 5'-processing of tRNAs, exists in two distinct forms: one with an RNA- and the other with a protein-based active site. The notion that the protein form of RNase P exists only in eukaryotes has been upended by the recent discovery of a protein-only variant in Bacteria and Archaea. The use of these two divergent scaffolds, shaped by convergent evolution, in all three domains of life inspires questions relating to the ancestral form of RNase P, as well as their origins and function(s) in vivo. Results from our analysis of publicly available bacterial and archaeal genomes suggest that the widespread RNA-based ribonucleoprotein variant is likely the ancient form. We also discuss the possible genetic origins and function of RNase P, including how the simultaneous presence of its variants may contribute to the fitness of their host organisms.
Collapse
Affiliation(s)
- Charles J Daniels
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lien B Lai
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Tien-Hao Chen
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Venkat Gopalan
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
16
|
Zhao J, Harris ME. Distributive enzyme binding controlled by local RNA context results in 3' to 5' directional processing of dicistronic tRNA precursors by Escherichia coli ribonuclease P. Nucleic Acids Res 2019; 47:1451-1467. [PMID: 30496557 PMCID: PMC6379654 DOI: 10.1093/nar/gky1162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022] Open
Abstract
RNA processing by ribonucleases and RNA modifying enzymes often involves sequential reactions of the same enzyme on a single precursor transcript. In Escherichia coli, processing of polycistronic tRNA precursors involves separation into individual pre-tRNAs by one of several ribonucleases followed by 5′ end maturation by ribonuclease P. A notable exception are valine and lysine tRNAs encoded by three polycistronic precursors that follow a recently discovered pathway involving initial 3′ to 5′ directional processing by RNase P. Here, we show that the dicistronic precursor containing tRNAvalV and tRNAvalW undergoes accurate and efficient 3′ to 5′ directional processing by RNase P in vitro. Kinetic analyses reveal a distributive mechanism involving dissociation of the enzyme between the two cleavage steps. Directional processing is maintained despite swapping or duplicating the two tRNAs consistent with inhibition of processing by 3′ trailer sequences. Structure-function studies identify a stem–loop in 5′ leader of tRNAvalV that inhibits RNase P cleavage and further enforces directional processing. The results demonstrate that directional processing is an intrinsic property of RNase P and show how RNA sequence and structure context can modulate reaction rates in order to direct precursors along specific pathways.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
17
|
Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2018; 11:215-245. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Anastasakis
- National Institute of Musculoskeletal & Arthritis & Skin, NIH, 50 South Drive, Room 1152, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
18
|
Chen TH, Sotomayor M, Gopalan V. Biochemical Studies Provide Insights into the Necessity for Multiple Arabidopsis thaliana Protein-Only RNase P Isoenzymes. J Mol Biol 2018; 431:615-624. [PMID: 30414965 DOI: 10.1016/j.jmb.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/22/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
RNase P catalyzes removal of the 5' leader from precursor tRNAs (pre-tRNAs) in all three domains of life. Some eukaryotic cells contain multiple forms of the protein-only RNase P (PRORP) variant, prompting efforts to unravel this seeming redundancy. Previous studies concluded that there were only modest differences in the processing of typical pre-tRNAs by the three isoforms in Arabidopsis thaliana [AtPRORP1 (organellar), AtPRORP2 and AtPRORP3 (nuclear)]. Here, we investigated if different physical attributes of the three isoforms might engender payoffs under specific conditions. Our temperature-activity profiling studies revealed that AtPRORPs display substrate-identity dependent behavior at elevated temperatures (37-45 °C), with the organellar variant outperforming the nuclear counterparts. Echoing these findings, molecular dynamics simulations revealed that AtPRORP2 relative to AtPRORP1 samples a wider conformational ensemble that deviates from the crystal structure. Results from our biochemical studies and molecular dynamics simulations support the idea that AtPRORPs have overlapping but not necessarily redundant attributes and inspire new perspectives on the suitability of each variant to perform its function(s) in a specific cellular locale.
Collapse
Affiliation(s)
- Tien-Hao Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Shang J, Yang Y, Wu L, Zou M, Huang Y. The S. pombe mitochondrial transcriptome. RNA (NEW YORK, N.Y.) 2018; 24:1241-1254. [PMID: 29954949 PMCID: PMC6097661 DOI: 10.1261/rna.064477.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/26/2018] [Indexed: 05/22/2023]
Abstract
Mitochondrial gene expression is largely controlled through post-transcriptional processes including mitochondrial RNA (mt-RNA) processing, modification, decay, and quality control. Defective mitochondrial gene expression results in mitochondrial oxidative phosphorylation (OXPHOS) deficiency and has been implicated in human disease. To fully understand mitochondrial transcription and RNA processing, we performed RNA-seq analyses of mt-RNAs from the fission yeast Schizosaccharomyces pombe RNA-seq analyses show that the abundance of mt-RNAs vary greatly. Analysis of data also reveals mt-RNA processing sites including an unusual RNA cleavage event by mitochondrial tRNA (mt-tRNA) 5'-end processing enzyme RNase P. Additionally, this analysis reveals previously unknown mitochondrial transcripts including the rnpB-derived fragment, mitochondrial small RNAs (mitosRNAs) such as mt-tRNA-derived fragments (mt-tRFs) and mt-tRNA halves, and mt-tRNAs marked with 3'-CCACCA/CCACC in S. pombe Finally, RNA-seq reveals that inactivation of trz2 encoding S. pombe mitochondrial tRNA 3'-end processing enzyme globally impairs mt-tRNA 3'-end processing, inhibits mt-mRNA 5'-end processing, and causes accumulation of unprocessed transcripts, demonstrating the feasibility of using RNA-seq to examine the protein known or predicted to be involved in mt-RNA processing in S. pombe Our work uncovers the complexity of a fungal mitochondrial transcriptome and provides a framework for future studies of mitochondrial gene expression using S. pombe as a model system.
Collapse
Affiliation(s)
- Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yanmei Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengting Zou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
20
|
Ferreira N, Rackham O, Filipovska A. Regulation of a minimal transcriptome by repeat domain proteins. Semin Cell Dev Biol 2018; 76:132-141. [DOI: 10.1016/j.semcdb.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
21
|
Gammage PA, Moraes CT, Minczuk M. Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized. Trends Genet 2018; 34:101-110. [PMID: 29179920 PMCID: PMC5783712 DOI: 10.1016/j.tig.2017.11.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial.
Collapse
Affiliation(s)
- Payam A Gammage
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Carlos T Moraes
- Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Michal Minczuk
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Gopalan V, Jarrous N, Krasilnikov AS. Chance and necessity in the evolution of RNase P. RNA (NEW YORK, N.Y.) 2018; 24:1-5. [PMID: 28971852 PMCID: PMC5733564 DOI: 10.1261/rna.063107.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
RNase P catalyzes 5'-maturation of tRNAs in all three domains of life. This primary function is accomplished by either a ribozyme-centered ribonucleoprotein (RNP) or a protein-only variant (with one to three polypeptides). The large, multicomponent archaeal and eukaryotic RNase P RNPs appear disproportionate to the simplicity of their role in tRNA 5'-maturation, prompting the question of why the seemingly gratuitously complex RNP forms of RNase P were not replaced with simpler protein counterparts. Here, motivated by growing evidence, we consider the hypothesis that the large RNase P RNP was retained as a direct consequence of multiple roles played by its components in processes that are not related to the canonical RNase P function.
Collapse
Affiliation(s)
- Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
23
|
Sikorska N, Zuber H, Gobert A, Lange H, Gagliardi D. RNA degradation by the plant RNA exosome involves both phosphorolytic and hydrolytic activities. Nat Commun 2017; 8:2162. [PMID: 29255150 PMCID: PMC5735172 DOI: 10.1038/s41467-017-02066-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
The RNA exosome provides eukaryotic cells with an essential 3'-5' exoribonucleolytic activity, which processes or eliminates many classes of RNAs. Its nine-subunit core (Exo9) is structurally related to prokaryotic phosphorolytic exoribonucleases. Yet, yeast and animal Exo9s have lost the primordial phosphorolytic capacity and rely instead on associated hydrolytic ribonucleases for catalytic activity. Here, we demonstrate that Arabidopsis Exo9 has retained a distributive phosphorolytic activity, which contributes to rRNA maturation processes, the hallmark of exosome function. High-density mapping of 3' extremities of rRNA maturation intermediates reveals the intricate interplay between three exoribonucleolytic activities coordinated by the plant exosome. Interestingly, the analysis of RRP41 protein diversity across eukaryotes suggests that Exo9's intrinsic activity operates throughout the green lineage, and possibly in some earlier-branching non-plant eukaryotes. Our results reveal a remarkable evolutionary variation of this essential RNA degradation machine in eukaryotes.
Collapse
Affiliation(s)
- Natalia Sikorska
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France
| | - Hélène Zuber
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France
| | - Anthony Gobert
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France
| | - Heike Lange
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France
| | - Dominique Gagliardi
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France.
| |
Collapse
|
24
|
Lai LB, Tanimoto A, Lai SM, Chen WY, Marathe IA, Westhof E, Wysocki VH, Gopalan V. A novel double kink-turn module in euryarchaeal RNase P RNAs. Nucleic Acids Res 2017; 45:7432-7440. [PMID: 28525600 PMCID: PMC5499556 DOI: 10.1093/nar/gkx388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 01/18/2023] Open
Abstract
RNase P is primarily responsible for the 5΄ maturation of transfer RNAs (tRNAs) in all domains of life. Archaeal RNase P is a ribonucleoprotein made up of one catalytic RNA and five protein cofactors including L7Ae, which is known to bind the kink-turn (K-turn), an RNA structural element that causes axial bending. However, the number and location of K-turns in archaeal RNase P RNAs (RPRs) are unclear. As part of an integrated approach, we used native mass spectrometry to assess the number of L7Ae copies that bound the RPR and site-specific hydroxyl radical-mediated footprinting to localize the K-turns. Mutagenesis of each of the putative K-turns singly or in combination decreased the number of bound L7Ae copies, and either eliminated or changed the L7Ae footprint on the mutant RPRs. In addition, our results support an unprecedented ‘double K-turn’ module in type A and type M archaeal RPR variants.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Wen-Yi Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ila A Marathe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Westhof
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l'ARN, UPR9002, F-67084, Strasbourg, France
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
26
|
Abstract
RNase P is an essential tRNA-processing enzyme in all domains of life. We identified an unknown type of protein-only RNase P in the hyperthermophilic bacterium Aquifex aeolicus: Without an RNA subunit and the smallest of its kind, the 23-kDa polypeptide comprises a metallonuclease domain only. The protein has RNase P activity in vitro and rescued the growth of Escherichia coli and Saccharomyces cerevisiae strains with inactivations of their more complex and larger endogenous ribonucleoprotein RNase P. Homologs of Aquifex RNase P (HARP) were identified in many Archaea and some Bacteria, of which all Archaea and most Bacteria also encode an RNA-based RNase P; activity of both RNase P forms from the same bacterium or archaeon could be verified in two selected cases. Bioinformatic analyses suggest that A. aeolicus and related Aquificaceae likely acquired HARP by horizontal gene transfer from an archaeon.
Collapse
|
27
|
Pinker F, Schelcher C, Fernandez-Millan P, Gobert A, Birck C, Thureau A, Roblin P, Giegé P, Sauter C. Biophysical analysis of Arabidopsis protein-only RNase P alone and in complex with tRNA provides a refined model of tRNA binding. J Biol Chem 2017; 292:13904-13913. [PMID: 28696260 PMCID: PMC5572917 DOI: 10.1074/jbc.m117.782078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/06/2017] [Indexed: 11/06/2022] Open
Abstract
RNase P is a universal enzyme that removes 5' leader sequences from tRNA precursors. The enzyme is therefore essential for maturation of functional tRNAs and mRNA translation. RNase P represents a unique example of an enzyme that can occur either as ribonucleoprotein or as protein alone. The latter form of the enzyme, called protein-only RNase P (PRORP), is widespread in eukaryotes in which it can provide organellar or nuclear RNase P activities. Here, we have focused on Arabidopsis nuclear PRORP2 and its interaction with tRNA substrates. Affinity measurements helped assess the respective importance of individual pentatricopeptide repeat motifs in PRORP2 for RNA binding. We characterized the PRORP2 structure by X-ray crystallography and by small-angle X-ray scattering in solution as well as that of its complex with a tRNA precursor by small-angle X-ray scattering. Of note, our study reports the first structural data of a PRORP-tRNA complex. Combined with complementary biochemical and biophysical analyses, our structural data suggest that PRORP2 undergoes conformational changes to accommodate its substrate. In particular, the catalytic domain and the RNA-binding domain can move around a central hinge. Altogether, this work provides a refined model of the PRORP-tRNA complex that illustrates how protein-only RNase P enzymes specifically bind tRNA and highlights the contribution of protein dynamics to achieve this specific interaction.
Collapse
Affiliation(s)
- Franziska Pinker
- From the Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France,; Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR 2357, F-67084 Strasbourg, France
| | - Cédric Schelcher
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR 2357, F-67084 Strasbourg, France
| | - Pablo Fernandez-Millan
- From the Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Anthony Gobert
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR 2357, F-67084 Strasbourg, France
| | - Catherine Birck
- Université de Strasbourg, CNRS, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, F-67404 Illkirch, France
| | - Aurélien Thureau
- Synchrotron SOLEIL, l'Orme des Merisiers, F-91410 Saint Aubin, France
| | - Pierre Roblin
- Synchrotron SOLEIL, l'Orme des Merisiers, F-91410 Saint Aubin, France; Unité de Recherche Biopolymères, Interactions, Assemblages (URBIA-Nantes), Institut National de la Recherche Agronomique Centre de Nantes, 60 rue de la Géraudière, UR 1268, F-44316 Nantes, France
| | - Philippe Giegé
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR 2357, F-67084 Strasbourg, France,.
| | - Claude Sauter
- From the Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France,.
| |
Collapse
|
28
|
Walczyk D, Willkomm DK, Hartmann RK. Bacterial type B RNase P: functional characterization of the L5.1-L15.1 tertiary contact and antisense inhibition. RNA (NEW YORK, N.Y.) 2016; 22:1699-1709. [PMID: 27604960 PMCID: PMC5066622 DOI: 10.1261/rna.057422.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Ribonuclease P is the ubiquitous endonuclease that generates the mature 5'-ends of precursor tRNAs. In bacteria, the enzyme is composed of a catalytic RNA (∼400 nucleotides) and a small essential protein subunit (∼13 kDa). Most bacterial RNase P RNAs (P RNAs) belong to the architectural type A; type B RNase P RNA is confined to the low-G+C Gram-positive bacteria. Here we demonstrate that the L5.1-L15.1 intradomain contact in the catalytic domain of the prototypic type B RNase P RNA of Bacillus subtilis is crucial for adopting a compact functional conformation: Disruption of the L5.1-L15.1 contact by antisense oligonucleotides or mutation reduced P RNA-alone and holoenzyme activity by one to two orders of magnitude in vitro, largely retarded gel mobility of the RNA and further affected the structure of regions P7/P8/P10.1, P15 and L15.2, and abolished the ability of B. subtilis P RNA to complement a P RNA-deficient Escherichia coli strain. We also provide mutational evidence that an L9-P1 tertiary contact, as found in some Mycoplasma type B RNAs, is not formed in canonical type B RNAs as represented by B. subtilis P RNA. We finally explored the P5.1 and P15 stem-loop structures as targets for LNA-modified antisense oligonucleotides. Oligonucleotides targeting P15, but not those directed against P5.1, were found to efficiently anneal to P RNA and to inhibit activity (IC50 of ∼2 nM) when incubated with preassembled B. subtilis RNase P holoenzymes.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Dagmar K Willkomm
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein Campus Lübeck, D-23538 Lübeck, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
29
|
Schelcher C, Sauter C, Giegé P. Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity. Biomolecules 2016; 6:biom6030030. [PMID: 27348014 PMCID: PMC5039416 DOI: 10.3390/biom6030030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/16/2022] Open
Abstract
RNase P, the essential activity that performs the 5′ maturation of tRNA precursors, can be achieved either by ribonucleoproteins containing a ribozyme present in the three domains of life or by protein-only enzymes called protein-only RNase P (PRORP) that occur in eukaryote nuclei and organelles. A fast growing list of studies has investigated three-dimensional structures and mode of action of PRORP proteins. Results suggest that similar to ribozymes, PRORP proteins have two main domains. A clear functional analogy can be drawn between the specificity domain of the RNase P ribozyme and PRORP pentatricopeptide repeat domain, and between the ribozyme catalytic domain and PRORP N4BP1, YacP-like Nuclease domain. Moreover, both types of enzymes appear to dock with the acceptor arm of tRNA precursors and make specific contacts with the corner of pre-tRNAs. While some clear differences can still be delineated between PRORP and ribonucleoprotein (RNP) RNase P, the two types of enzymes seem to use, fundamentally, the same catalytic mechanism involving two metal ions. The occurrence of PRORP and RNP RNase P represents a remarkable example of convergent evolution. It might be the unique witness of an ongoing replacement of catalytic RNAs by proteins for enzymatic activities.
Collapse
Affiliation(s)
- Cédric Schelcher
- UPR 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du général Zimmer, F-67084 Strasbourg, France.
| | - Claude Sauter
- UPR 9002, Centre National de la Recherche Scientifique, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, Strasbourg F-67084, France.
| | - Philippe Giegé
- UPR 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du général Zimmer, F-67084 Strasbourg, France.
| |
Collapse
|
30
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
31
|
Chen TH, Tanimoto A, Shkriabai N, Kvaratskhelia M, Wysocki V, Gopalan V. Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme. Nucleic Acids Res 2016; 44:5344-55. [PMID: 27166372 PMCID: PMC4914120 DOI: 10.1093/nar/gkw391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Among all enzymes in nature, RNase P is unique in that it can use either an RNA- or a protein-based active site for its function: catalyzing cleavage of the 5′-leader from precursor tRNAs (pre-tRNAs). The well-studied catalytic RNase P RNA uses a specificity module to recognize the pre-tRNA and a catalytic module to perform cleavage. Similarly, the recently discovered proteinaceous RNase P (PRORP) possesses two domains – pentatricopeptide repeat (PPR) and metallonuclease (NYN) – that are present in some other RNA processing factors. Here, we combined chemical modification of lysines and multiple-reaction monitoring mass spectrometry to identify putative substrate-contacting residues in Arabidopsis thaliana PRORP1 (AtPRORP1), and subsequently validated these candidate sites by site-directed mutagenesis. Using biochemical studies to characterize the wild-type (WT) and mutant derivatives, we found that AtPRORP1 exploits specific lysines strategically positioned at the tips of it's V-shaped arms, in the first PPR motif and in the NYN domain proximal to the catalytic center, to bind and cleave pre-tRNA. Our results confirm that the protein- and RNA-based forms of RNase P have distinct modules for substrate recognition and cleavage, an unanticipated parallel in their mode of action.
Collapse
Affiliation(s)
- Tien-Hao Chen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Nikoloz Shkriabai
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | - Vicki Wysocki
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Howard MJ, Karasik A, Klemm BP, Mei C, Shanmuganathan A, Fierke CA, Koutmos M. Differential substrate recognition by isozymes of plant protein-only Ribonuclease P. RNA (NEW YORK, N.Y.) 2016; 22:782-92. [PMID: 26966150 PMCID: PMC4836652 DOI: 10.1261/rna.055541.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/10/2016] [Indexed: 05/22/2023]
Abstract
Ribonuclease P (RNase P) catalyzes the cleavage of leader sequences from precursor tRNA (pre-tRNA). Typically, these enzymes are ribonucleic protein complexes that are found in all domains of life. However, a new class of RNase P has been discovered that is composed entirely of protein, termed protein-only RNase P (PRORP). To investigate the molecular determinants of PRORP substrate recognition, we measured the binding affinities and cleavage kinetics of Arabidopsis PRORP1 for varied pre-tRNA substrates. This analysis revealed that PRORP1 does not make significant contacts within the trailer or beyond N-1of the leader, indicating that this enzyme recognizes primarily the tRNA body. To determine the extent to which sequence variation within the tRNA body modulates substrate selectivity and to provide insight into the evolution and function of PRORP enzymes, we measured the reactivity of the three Arabidopsis PRORP isozymes (PRORP1-3) with four pre-tRNA substrates. A 13-fold range in catalytic efficiencies (10(4)-10(5)M(-1)s(-1)) was observed, demonstrating moderate selectivity for pre-tRNA substrates. Although PRORPs bind the different pre-tRNA species with affinities varying by as much as 100-fold, the three isozymes have similar affinities for a given pre-tRNA, suggesting similar binding modes. However, PRORP isozymes have varying degrees of cleavage fidelity, which is dependent on the pre-tRNA species and the presence of a 3'-discriminator base. This work defines molecular determinants of PRORP substrate recognition that provides insight into this new class of RNA processing enzymes.
Collapse
Affiliation(s)
- Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christine Mei
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aranganathan Shanmuganathan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Markos Koutmos
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
33
|
Samanta MP, Lai SM, Daniels CJ, Gopalan V. Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P. Biomolecules 2016; 6:biom6020022. [PMID: 27104580 PMCID: PMC4919917 DOI: 10.3390/biom6020022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 5′-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to the single bacterial RPP. Here, we analyzed the sequence and structure of archaeal RPPs from over 600 available genomes. All five RPPs are found in eight archaeal phyla, suggesting that these RPPs arose early in archaeal evolutionary history. The putative ancestral genomic loci of archaeal RPPs include genes encoding several members of ribosome, exosome, and proteasome complexes, which may indicate coevolution/coordinate regulation of RNase P with other core cellular machineries. Despite being ancient, RPPs generally lack sequence conservation compared to other universal proteins. By analyzing the relative frequency of residues at every position in the context of the high-resolution structures of each of the RPPs (either alone or as functional binary complexes), we suggest residues for mutational analysis that may help uncover structure-function relationships in RPPs.
Collapse
Affiliation(s)
| | - Stella M Lai
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Charles J Daniels
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Brillante N, Gößringer M, Lindenhofer D, Toth U, Rossmanith W, Hartmann RK. Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P. Nucleic Acids Res 2016; 44:2323-36. [PMID: 26896801 PMCID: PMC4797305 DOI: 10.1093/nar/gkw080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/01/2016] [Indexed: 01/22/2023] Open
Abstract
RNase P is the enzyme that removes 5′ extensions from tRNA precursors. With its diversity of enzyme forms—either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins—the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site selection by the nuclear single-subunit proteinaceous RNase P PRORP3 from Arabidopsis thaliana. Compared to bacterial RNase P, the best-characterized RNA-based enzyme form, PRORP3 requires a larger part of intact tRNA structure, but little to no determinants at the cleavage site or interactions with the 5′ or 3′ extensions of the tRNA. The cleavage site depends on the combined dimensions of acceptor stem and T domain, but also requires the leader to be single-stranded. Overall, the single-subunit PRORP appears mechanistically more similar to the complex nuclear ribonucleoprotein enzymes than to the simpler bacterial RNase P. Mechanistic similarity or dissimilarity among different forms of RNase P thus apparently do not necessarily reflect molecular composition or evolutionary relationship.
Collapse
Affiliation(s)
- Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Dominik Lindenhofer
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| |
Collapse
|