1
|
Gillet L, Bénéjat L, Jehanne Q, Maunet PL, Perreau C, Ducournau A, Aptel J, Jauvain M, Lehours P. Resistome and virulome determination in Helicobacter pylori using next-generation sequencing with target-enrichment technology. Microbiol Spectr 2025; 13:e0329824. [PMID: 40042287 PMCID: PMC11960115 DOI: 10.1128/spectrum.03298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 03/12/2025] Open
Abstract
The identification of Helicobacter pylori infection from gastric biopsy samples requires PCR or bacterial cultures. However, it is difficult to culture H. pylori because it is a fragile bacterium. Next-generation sequencing (NGS) allows direct assessment of the resistome and virulome. Here we describe a new NGS method for studying the resistome and virulome of H. pylori directly from gastric biopsies, based on enrichment analyses and targeted sequencing of H. pylori DNA. In all, 19 DNA samples from human gastric biopsies that tested positive for H. pylori were analyzed. The Agilent SureSelectXT target-enrichment protocol was used with a custom bait library prior to sequencing using the Agilent MagnisDx NGS Library Prep System. NGS sequencing was performed on the Illumina iSeq 100 sequencer using RNA probes for virulence, resistance, and molecular typing genes. The method yielded significant results with a limit of detection of around 1.8e5 CFU per mL H. pylori. Mutations in the 23S rDNA sequence associated with macrolide resistance and in the quinolone resistance-determining region of gyrase A associated with levofloxacin resistance were correctly identified. The results of MLST phylogeny analyses performed after target-enrichment were consistent with those obtained via conventional Sanger sequencing. Among the cagA-positive isolates, the gene was detected correctly, and the vacA genotype was determined. In conclusion, our enrichment method enables rapid assessment of the resistome and virulome of H. pylori directly from fresh gastric biopsies.IMPORTANCEHelicobacter pylori, a bacterium that infects at least 50% of the world population, is often treated by probabilistic antimicrobial therapies due to the lack of antimicrobial resistance data provided by clinical laboratories to clinicians. However, targeted antimicrobial therapies are increasingly recommended to achieve efficient eradication with a limited impact on the gut microbiota and with fewer adverse events for the patient. Recent advancements in next-generation sequencing strategies have opened new opportunities in the diagnosis of H. pylori infection. The significance of our research is the development of a novel next-generation sequencing strategy based on target-enrichment. This approach enables the identification of the resistome and the virulome of H. pylori directly from gastric biopsies, providing clinicians with a broad overview of therapeutic options.
Collapse
Affiliation(s)
- Léo Gillet
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Lucie Bénéjat
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Quentin Jehanne
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Pierre-Louis Maunet
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Claudie Perreau
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Astrid Ducournau
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Johanna Aptel
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Marine Jauvain
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
- INSERM U1312, UMR BRIC-Team 4, Bordeaux, France
| | - Philippe Lehours
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
- INSERM U1312, UMR BRIC-Team 4, Bordeaux, France
| |
Collapse
|
2
|
Tourrette E, Torres RC, Svensson SL, Matsumoto T, Miftahussurur M, Fauzia KA, Alfaray RI, Vilaichone RK, Tuan VP, Wang D, Yadegar A, Olsson LM, Zhou Z, Yamaoka Y, Thorell K, Falush D. An ancient ecospecies of Helicobacter pylori. Nature 2024; 635:178-185. [PMID: 39415013 PMCID: PMC11541087 DOI: 10.1038/s41586-024-07991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2024] [Indexed: 10/18/2024]
Abstract
Helicobacter pylori disturbs the stomach lining during long-term colonization of its human host, with sequelae including ulcers and gastric cancer1,2. Numerous H. pylori virulence factors have been identified, showing extensive geographic variation1. Here we identify a 'Hardy' ecospecies of H. pylori that shares the ancestry of 'Ubiquitous' H. pylori from the same region in most of the genome but has nearly fixed single-nucleotide polymorphism differences in 100 genes, many of which encode outer membrane proteins and host interaction factors. Most Hardy strains have a second urease, which uses iron as a cofactor rather than nickel3, and two additional copies of the vacuolating cytotoxin VacA. Hardy strains currently have a limited distribution, including in Indigenous populations in Siberia and the Americas and in lineages that have jumped from humans to other mammals. Analysis of polymorphism data implies that Hardy and Ubiquitous coexisted in the stomachs of modern humans since before we left Africa and that both were dispersed around the world by our migrations. Our results also show that highly distinct adaptive strategies can arise and be maintained stably within bacterial populations, even in the presence of continuous genetic exchange between strains.
Collapse
Affiliation(s)
- Elise Tourrette
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Roberto C Torres
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Sarah L Svensson
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | | | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Universitas Airlangga, Surabaya, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Universitas Airlangga, Surabaya, Indonesia
| | - Ratha-Korn Vilaichone
- Gastroenterology Unit, Department of Medicine and Center of Excellence in Digestive Diseases, Thammasat University, Bangkok, Thailand
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Difei Wang
- Cancer Genomics Research Lab, Frederick National Lab for Cancer Research, Rockville, MD, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lisa M Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.
- Universitas Airlangga, Surabaya, Indonesia.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
- Research center for global and local infectious diseases, Oita University, Yufu, Japan.
| | - Kaisa Thorell
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden.
| | - Daniel Falush
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Vital JS, Tanoeiro L, Lopes-Oliveira R, Vale FF. Biomarker Characterization and Prediction of Virulence and Antibiotic Resistance from Helicobacter pylori Next Generation Sequencing Data. Biomolecules 2022; 12:691. [PMID: 35625618 PMCID: PMC9138241 DOI: 10.3390/biom12050691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative bacterium Helicobacter pylori colonizes c.a. 50% of human stomachs worldwide and is the major risk factor for gastric adenocarcinoma. Its high genetic variability makes it difficult to identify biomarkers of early stages of infection that can reliably predict its outcome. Moreover, the increasing antibiotic resistance found in H. pylori defies therapy, constituting a major human health problem. Here, we review H. pylori virulence factors and genes involved in antibiotic resistance, as well as the technologies currently used for their detection. Furthermore, we show that next generation sequencing may lead to faster characterization of virulence factors and prediction of the antibiotic resistance profile, thus contributing to personalized treatment and management of H. pylori-associated infections. With this new approach, more and permanent data will be generated at a lower cost, opening the future to new applications for H. pylori biomarker identification and antibiotic resistance prediction.
Collapse
Affiliation(s)
- Joana S. Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Ricardo Lopes-Oliveira
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| |
Collapse
|
4
|
Hiraoka S, Sumida T, Hirai M, Toyoda A, Kawagucci S, Yokokawa T, Nunoura T. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Res 2022; 50:1531-1550. [PMID: 35051998 PMCID: PMC8919816 DOI: 10.1093/nar/gkab1292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
DNA chemical modifications, including methylation, are widespread and play important roles in prokaryotes and viruses. However, current knowledge of these modification systems is severely biased towards a limited number of culturable prokaryotes, despite the fact that a vast majority of microorganisms have not yet been cultured. Here, using single-molecule real-time sequencing, we conducted culture-independent 'metaepigenomic' analyses (an integrated analysis of metagenomics and epigenomics) of marine microbial communities. A total of 233 and 163 metagenomic-assembled genomes (MAGs) were constructed from diverse prokaryotes and viruses, respectively, and 220 modified motifs and 276 DNA methyltransferases (MTases) were identified. Most of the MTase genes were not genetically linked with the endonuclease genes predicted to be involved in defense mechanisms against extracellular DNA. The MTase-motif correspondence found in the MAGs revealed 10 novel pairs, 5 of which showed novel specificities and experimentally confirmed the catalytic specificities of the MTases. We revealed novel alternative specificities in MTases that are highly conserved in Alphaproteobacteria, which may enhance our understanding of the co-evolutionary history of the methylation systems and the genomes. Our findings highlight diverse unexplored DNA modifications that potentially affect the ecology and evolution of prokaryotes and viruses in nature.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Tomomi Sumida
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of
Genetics, Mishima,
Shizuoka 411-8540,
Japan
| | - Shinsuke Kawagucci
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
- Marine Biodiversity and Environmental Assessment Research
Center (BioEnv), Research Institute for Global Change (RIGC), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Taichi Yokokawa
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| |
Collapse
|
5
|
Wilkinson DJ, Dickins B, Robinson K, Winter JA. Genomic diversity of Helicobacter pylori populations from different regions of the human stomach. Gut Microbes 2022; 14:2152306. [PMID: 36469575 PMCID: PMC9728471 DOI: 10.1080/19490976.2022.2152306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Individuals infected with Helicobacter pylori harbor unique and diverse populations of quasispecies, but diversity between and within different regions of the human stomach and the process of bacterial adaptation to each location are not yet well understood. We applied whole-genome deep sequencing to characterize the within- and between-stomach region genetic diversity of H. pylori populations from paired antrum and corpus biopsies of 15 patients, along with single biopsies from one region of an additional 3 patients, by scanning allelic diversity. We combined population deep sequencing with more conventional sequencing of multiple H. pylori single colony isolates from individual biopsies to generate a unique dataset. Single colony isolates were used to validate the scanning allelic diversity pipelines. We detected extensive population allelic diversity within the different regions of each patient's stomach. Diversity was most commonly found within non-coding, hypothetical, outer membrane, restriction modification system, virulence, lipopolysaccharide biosynthesis, efflux systems, and chemotaxis-associated genes. Antrum and corpus populations from the same patient grouped together phylogenetically, indicating that most patients were initially infected with a single strain, which then diversified. Single colonies from the antrum and corpus of the same patients grouped into distinct clades, suggesting mechanisms for within-location adaptation across multiple H. pylori isolates from different patients. The comparisons made available by combined sequencing and analysis of isolates and populations enabled comprehensive analysis of the genetic changes associated with H. pylori diversification and stomach region adaptation.
Collapse
Affiliation(s)
- Daniel James Wilkinson
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- School of Science and Technology, Nottingham Trent University, UK
| | - Benjamin Dickins
- School of Science and Technology, Nottingham Trent University, UK
| | - Karen Robinson
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jody Anne Winter
- School of Science and Technology, Nottingham Trent University, UK
- CONTACT Jody Anne Winter School of Science and Technology, Nottingham Trent University Clifton Campus, Clifton Lane, NottinghamNG118NS, UK
| |
Collapse
|
6
|
Carter MQ, Pham A, Huynh S, Parker CT, Miller A, He X, Hu B, Chain PSG. DNA adenine methylase, not the PstI restriction-modification system, regulates virulence gene expression in Shiga toxin-producing Escherichia coli. Food Microbiol 2020; 96:103722. [PMID: 33494894 DOI: 10.1016/j.fm.2020.103722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
We previously reported a distinct methylome between the two Shiga toxin-producing Escherichia coli (STEC) O145:H28 strains linked to the 2010 U.S. lettuce-associated outbreak (RM13514) and the 2007 Belgium ice cream-associated outbreak (RM13516), respectively. This difference was thought to be attributed to a prophage encoded type II restriction-modification system (PstI R-M) in RM13514. Here, we characterized this PstI R-M system in comparison to DNA adenine methylase (Dam), a highly conserved enzyme in γ proteobacteria, by functional genomics. Deficiency in Dam led to a differential expression of over 1000 genes in RM13514, whereas deficiency in PstI R-M only impacted a few genes transcriptionally. Dam regulated genes involved in diverse functions, whereas PstI R-M regulated genes mostly encoding transporters and adhesins. Dam regulated a large number of genes located on prophages, pathogenicity islands, and plasmids, including Shiga toxin genes, type III secretion system (TTSS) genes, and enterohemolysin genes. Production of Stx2 in dam mutant was significantly higher than in RM13514, supporting a role of Dam in maintaining lysogeny of Stx2-prophage. However, following mitomycin C treatment, Stx2 in RM13514 was significantly higher than that of dam or PstI R-M deletion mutant, implying that both Dam and PstI R-M contributed to maximum Stx2 production.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA.
| | - Antares Pham
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Steven Huynh
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Craig T Parker
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Avalon Miller
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Xiaohua He
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Foodborne Toxin and Detection Research Unit, Albany, CA, USA
| | - Bin Hu
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
7
|
Yano H, Alam MZ, Rimbara E, Shibata TF, Fukuyo M, Furuta Y, Nishiyama T, Shigenobu S, Hasebe M, Toyoda A, Suzuki Y, Sugano S, Shibayama K, Kobayashi I. Networking and Specificity-Changing DNA Methyltransferases in Helicobacter pylori. Front Microbiol 2020; 11:1628. [PMID: 32765461 PMCID: PMC7379913 DOI: 10.3389/fmicb.2020.01628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic DNA base methylation plays important roles in gene expression regulation. We here describe a gene expression regulation network consisting of many DNA methyltransferases each frequently changing its target sequence-specificity. Our object Helicobacter pylori, a bacterium responsible for most incidence of stomach cancer, carries a large and variable repertoire of sequence-specific DNA methyltransferases. By creating a dozen of single-gene knockout strains for the methyltransferases, we revealed that they form a network controlling methylome, transcriptome and adaptive phenotype sets. The methyltransferases interact with each other in a hierarchical way, sometimes regulated positively by one methyltransferase but negatively with another. Motility, oxidative stress tolerance and DNA damage repair are likewise regulated by multiple methyltransferases. Their regulation sometimes involves translation start and stop codons suggesting coupling of methylation, transcription and translation. The methyltransferases frequently change their sequence-specificity through gene conversion of their target recognition domain and switch their target sets to remodel the network. The emerging picture of a metamorphosing gene regulation network, or firework, consisting of epigenetic systems ever-changing their specificity in search for adaptation, provides a new paradigm in understanding global gene regulation and adaptive evolution.
Collapse
Affiliation(s)
- Hirokazu Yano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Md Zobaidul Alam
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Emiko Rimbara
- Department of Bacteriology II, National Institute of Infectious Diseases (NIID), Musashimurayama, Japan
| | | | | | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Mitsuyasu Hasebe
- National Institute for Basic Biology (NIBB), Okazaki, Japan.,Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases (NIID), Musashimurayama, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Diseases, School of Medicine, Kyorin University, Mitaka, Japan.,Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
8
|
Matsuoka K, Nishiumi S, Yoshida M, Kodama Y. Effects of Helicobacter pylori on the glutathione-related pathway in gastric epithelial cells. Biochem Biophys Res Commun 2020; 526:1118-1124. [PMID: 32312521 DOI: 10.1016/j.bbrc.2020.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 01/25/2023]
Abstract
Virulence factors of Helicobacter pylori (H. pylori) are diverse, so various biological responses happen in a host infected with H. pylori. The aim of this study is to conduct the metabolomics-based evaluation on H. pylori infection. AGS human gastric carcinoma cells were infected with H. pylori strain 26695, and then the altered metabolite pathways in the infected AGS cells were analyzed by metabolomics. Metabolites related to the glutathione (GSH) cycle were downregulated by H. pylori infection. Next, we evaluated the effects of H. pylori on the GSH-related pathway in AGS cells infected with H. pylori isolated from patients with atrophic gastritis (AG), duodenal ulcer (DU) and gastric cancer (GC). We found that the declined degree of GSH levels and oxidative stress were greater in AGS cells infected with GC strains than DU and AG-derived strains. There were no significant differences in almost mRNA expressions of GSH-related factors among different clinical strains, but the protein expression of glutathione synthetase was lower in AGS cells infected with GC-derived strains than DU and AG-derived strains. Our data demonstrates that GC-derived H. pylori-induced oxidative stress in a host is stronger and GC-derived strains may have suppressive influences on the host's GSH-related defense systems.
Collapse
Affiliation(s)
- Koki Matsuoka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Omics Medicine, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
9
|
Narayanan N, Banerjee A, Jain D, Kulkarni DS, Sharma R, Nirwal S, Rao DN, Nair DT. Tetramerization at Low pH Licenses DNA Methylation Activity of M.HpyAXI in the Presence of Acid Stress. J Mol Biol 2020; 432:324-342. [DOI: 10.1016/j.jmb.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/25/2022]
|
10
|
Noureen M, Tada I, Kawashima T, Arita M. Rearrangement analysis of multiple bacterial genomes. BMC Bioinformatics 2019; 20:631. [PMID: 31881830 PMCID: PMC6933940 DOI: 10.1186/s12859-019-3293-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background Genomes are subjected to rearrangements that change the orientation and ordering of genes during evolution. The most common rearrangements that occur in uni-chromosomal genomes are inversions (or reversals) to adapt to the changing environment. Since genome rearrangements are rarer than point mutations, gene order with sequence data can facilitate more robust phylogenetic reconstruction. Helicobacter pylori is a good model because of its unique evolution in niche environment. Results We have developed a method to identify genome rearrangements by comparing almost-conserved genes among closely related strains. Orthologous gene clusters, rather than the gene sequences, are used to align the gene order so that comparison of large number of genomes becomes easier. Comparison of 72 Helicobacter pylori strains revealed shared as well as strain-specific reversals, some of which were found in different geographical locations. Conclusion Degree of genome rearrangements increases with time. Therefore, gene orders can be used to study the evolutionary relationship among species and strains. Multiple genome comparison helps to identify the strain-specific as well as shared reversals. Identification of the time course of rearrangements can provide insights into evolutionary events.
Collapse
Affiliation(s)
- Mehwish Noureen
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Ipputa Tada
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Takeshi Kawashima
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Masanori Arita
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan. .,RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
11
|
Atack JM, Yang Y, Seib KL, Zhou Y, Jennings MP. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions. Nucleic Acids Res 2019; 46:3532-3542. [PMID: 29554328 PMCID: PMC5909438 DOI: 10.1093/nar/gky192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022] Open
Abstract
Many bacteria utilize simple DNA sequence repeats as a mechanism to randomly switch genes on and off. This process is called phase variation. Several phase-variable N6-adenine DNA-methyltransferases from Type III restriction-modification systems have been reported in bacterial pathogens. Random switching of DNA methyltransferases changes the global DNA methylation pattern, leading to changes in gene expression. These epigenetic regulatory systems are called phasevarions — phase-variable regulons. The extent of these phase-variable genes in the bacterial kingdom is unknown. Here, we interrogated a database of restriction-modification systems, REBASE, by searching for all simple DNA sequence repeats in mod genes that encode Type III N6-adenine DNA-methyltransferases. We report that 17.4% of Type III mod genes (662/3805) contain simple sequence repeats. Of these, only one-fifth have been previously identified. The newly discovered examples are widely distributed and include many examples in opportunistic pathogens as well as in environmental species. In many cases, multiple phasevarions exist in one genome, with examples of up to 4 independent phasevarions in some species. We found several new types of phase-variable mod genes, including the first example of a phase-variable methyltransferase in pathogenic Escherichia coli. Phasevarions are a common epigenetic regulation contingency strategy used by both pathogenic and non-pathogenic bacteria.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
12
|
Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat Commun 2019; 10:159. [PMID: 30635580 PMCID: PMC6329791 DOI: 10.1038/s41467-018-08103-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
DNA methylation plays important roles in prokaryotes, and their genomic landscapes—prokaryotic epigenomes—have recently begun to be disclosed. However, our knowledge of prokaryotic methylation systems is focused on those of culturable microbes, which are rare in nature. Here, we used single-molecule real-time and circular consensus sequencing techniques to reveal the ‘metaepigenomes’ of a microbial community in the largest lake in Japan, Lake Biwa. We reconstructed 19 draft genomes from diverse bacterial and archaeal groups, most of which are yet to be cultured. The analysis of DNA chemical modifications in those genomes revealed 22 methylated motifs, nine of which were novel. We identified methyltransferase genes likely responsible for methylation of the novel motifs, and confirmed the catalytic specificities of four of them via transformation experiments using synthetic genes. Our study highlights metaepigenomics as a powerful approach for identification of the vast unexplored variety of prokaryotic DNA methylation systems in nature. Our knowledge of DNA methylation systems in prokaryotes is mostly limited to those of culturable microbes. Here, Hiraoka et al. analyse DNA methylation patterns in metagenomic data from a microbial community, revealing new methylated motifs and experimentally validating the methyltransferases’ specificities.
Collapse
|
13
|
Smet A, Yahara K, Rossi M, Tay A, Backert S, Armin E, Fox JG, Flahou B, Ducatelle R, Haesebrouck F, Corander J. Macroevolution of gastric Helicobacter species unveils interspecies admixture and time of divergence. THE ISME JOURNAL 2018; 12:2518-2531. [PMID: 29942073 PMCID: PMC6154992 DOI: 10.1038/s41396-018-0199-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
Since the discovery of the human pathogen Helicobacter pylori, various other Helicobacter species have been identified in the stomach of domesticated and wild mammals. To better understand the evolutionary history of these ecologically similar but genetically distinct species, we analyzed 108 gastric Helicobacter genomes and included 54 enterohepatic Helicobacter genomes for comparison purposes. An admixture analysis supported the presence of an ecological barrier, preventing the genetic exchange between the gastric and enterohepatic Helicobacter species, and unraveled many gene flow events within and across species residing in the stomach. As pets can be colonized by multiple gastric Helicobacter species, the genetic exchange between the canine and feline strains was evident, with H. heilmannii and H. bizzozeronii showing the highest interspecies recombination. An admixture between H. pylori (in particular, the ancestral African strains), H. acinonychis from wild felines and H. cetorum from marine mammals was also identified. Because these latter species do not share the same host, this phenomenon is most likely a remaining signal of shared ancestry. A reconstruction of the time of divergence of the gastric Helicobacter spp. revealed that the domestic animal-related Helicobacter species evolved in parallel with H. pylori and its two closest relatives (H. acinonychis and H. cetorum), rather than together.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Alfred Tay
- The Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Perth, WA, Australia
| | - Steffen Backert
- Department Biology, Division Microbiology, University Erlangen Nuremberg, Erlangen, Germany
| | - Ensser Armin
- Institute of clinical and Molecular Virology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Welcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
14
|
Zhang Y, Matsuzaka T, Yano H, Furuta Y, Nakano T, Ishikawa K, Fukuyo M, Takahashi N, Suzuki Y, Sugano S, Ide H, Kobayashi I. Restriction glycosylases: involvement of endonuclease activities in the restriction process. Nucleic Acids Res 2017; 45:1392-1403. [PMID: 28180312 PMCID: PMC5388411 DOI: 10.1093/nar/gkw1250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
All restriction enzymes examined are phosphodiesterases generating 3΄-OH and 5΄-P ends, but one restriction enzyme (restriction glycosylase) excises unmethylated bases from its recognition sequence. Whether its restriction activity involves endonucleolytic cleavage remains unclear. One report on this enzyme, R.PabI from a hyperthermophile, ascribed the breakage to high temperature while another showed its weak AP lyase activity generates atypical ends. Here, we addressed this issue in mesophiles. We purified R.PabI homologs from Campylobacter coli (R.CcoLI) and Helicobacter pylori (R.HpyAXII) and demonstrated their DNA cleavage, DNA glycosylase and AP lyase activities in vitro at 37°C. The AP lyase activity is more coupled with glycosylase activity in R.CcoLI than in R.PabI. R.CcoLI/R.PabI expression caused restriction of incoming bacteriophage/plasmid DNA and endogenous chromosomal DNA within Escherichia coli at 37°C. The R.PabI-mediated restriction was promoted by AP endonuclease action in vivo or in vitro. These results reveal the role of endonucleolytic DNA cleavage in restriction and yet point to diversity among the endonucleases. The cleaved ends are difficult to repair in vivo, which may indicate their biological significance. These results support generalization of the concept of restriction–modification system to the concept of self-recognizing epigenetic system, which combines any epigenetic labeling and any DNA damaging.
Collapse
Affiliation(s)
- Yingbiao Zhang
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyuki Matsuzaka
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Hirokazu Yano
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Ken Ishikawa
- National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Noriko Takahashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
- Institut for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560 064, India
- To whom correspondence should be addressed. Tel: +81 90 2487 7510; ; ;
| |
Collapse
|
15
|
Bakkeren E, Dolowschiak T, R J Diard M. Detection of Mutations Affecting Heterogeneously Expressed Phenotypes by Colony Immunoblot and Dedicated Semi-Automated Image Analysis Pipeline. Front Microbiol 2017; 8:2044. [PMID: 29104568 PMCID: PMC5655795 DOI: 10.3389/fmicb.2017.02044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/06/2017] [Indexed: 11/28/2022] Open
Abstract
To understand how bacteria evolve and adapt to their environment, it can be relevant to monitor phenotypic changes that occur in a population. Single cell level analyses and sorting of mutant cells according to a particular phenotypic readout can constitute efficient strategies. However, when the phenotype of interest is expressed heterogeneously in ancestral isogenic populations of cells, single cell level sorting approaches are not optimal. Phenotypic heterogeneity can for instance make no-expression mutant cells indistinguishable from a subpopulation of wild-type cells transiently not expressing the phenotype. The analysis of clonal populations (e.g., isolated colonies), in which the average phenotype is measured, can circumvent this issue. Indeed, no-expression mutants form negative populations while wild-type clones form populations in which average expression of the phenotype yields a positive signal. We present here an optimized colony immunoblot protocol and a semi-automated image analysis pipeline (ImageJ macro) allowing for rapid detection of clones harboring mutations that affect the heterogeneous (i.e., bimodal) expression of the Type Three Secretion System-1 (TTSS-1) in Salmonella enterica serovar Typhimurium. We show that this protocol can efficiently differentiate clones expressing TTSS-1 at various levels in mixed populations. We were able to detect the emergence of hilC mutants in which the proportion of cells expressing TTSS-1 was reduced compared to the ancestor. We could also follow changes in the frequency of different mutants during long-term infections. This demonstrates that our protocol constitutes a tractable approach to assess semi-quantitatively the evolutionary dynamics of heterogeneous phenotypes, such as the expression of virulence genes, in bacterial populations.
Collapse
Affiliation(s)
- Erik Bakkeren
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Tamas Dolowschiak
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Médéric R J Diard
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Abstract
As Helicobacter pylori infects half the world's population and displays an extensive intraspecies diversity, genomics is a powerful tool to understand evolution and disease, to identify factors that confer higher risk of severe sequelae, and to find new approaches for therapy both among bacterial and host targets. In line with these objectives, this review article summarizes the major findings in Helicobacter genomics in papers published between April 2016 and March 2017.
Collapse
Affiliation(s)
- Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Philippe Lehours
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| | - Filipa F Vale
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Cooper LP, Roberts GA, White JH, Luyten YA, Bower EKM, Morgan RD, Roberts RJ, Lindsay JA, Dryden DTF. DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus. Nucleic Acids Res 2017; 45:3395-3406. [PMID: 28180279 PMCID: PMC5399793 DOI: 10.1093/nar/gkx067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/03/2017] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA restriction–modification (RM) system given the generic name of Sau1, which maintains different patterns of methylation on specific target sequences on the genomes of different lineages. We have determined the target sequences recognized by the Sau1 Type I RM systems present in a wide range of the most prevalent S. aureus lineages and assigned the sequences recognized to particular target recognition domains within the RM enzymes. We used a range of biochemical assays on purified enzymes and single molecule real-time sequencing on genomic DNA to determine these target sequences and their patterns of methylation. Knowledge of the main target sequences for Sau1 will facilitate the synthesis of new vectors for transformation of the most prevalent lineages of this ‘untransformable’ bacterium.
Collapse
Affiliation(s)
- Laurie P Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - John H White
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - Edward K M Bower
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Richard D Morgan
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | | - Jodi A Lindsay
- Institute of Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - David T F Dryden
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
18
|
Oleastro M, Rocha R, Vale FF. Population genetic structure of Helicobacter pylori strains from Portuguese-speaking countries. Helicobacter 2017; 22. [PMID: 28271597 DOI: 10.1111/hel.12382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human gastric colonizer Helicobacter pylori is useful to track human migrations given the agreement between the bacterium phylogeographic distribution and human migrations. As Portugal was an African and Brazilian colonizer for over 400 years, we hypothesized that Portuguese isolates were likely genetically closer with those from countries colonized by Portuguese in the past. We aimed to characterize the population structure of several Portuguese-speaking countries, including Portugal, Brazil, Angola, and Cape Verde. MATERIALS AND METHODS We included strains isolated in Portugal from Portuguese and from former Portuguese colonies. These strains were typed by multilocus sequence typing (MLST) for seven housekeeping genes. We also retrieved from Multi Locus Sequence Typing Web site additional housekeeping gene sequences, namely from Angola and Brazil. RESULTS We provided evidence that strains from Portuguese belong to hpEurope and that the introgression of hpEurope in non-European countries that speak Portuguese is low, except for Brazil and Cape Verde, where hpEurope accounted for one quarter and one half of the population, respectively. We found genetic similarity for all strains from Portuguese-speaking countries that belong to hpEurope population. Moreover, these strains showed a predominance of ancestral Europe 2 (AE2) over ancestral Europe 1 (AE1), followed by ancestral Africa 1. CONCLUSIONS H. pylori is a useful marker even for relative recent human migration events and may become rapidly differentiated from founder populations. H. pylori from Portuguese-speaking countries assigned to hpEurope appears to be a hybrid population resulting from the admixture of AE1, AE2 and ancestral hpAfrica1.
Collapse
Affiliation(s)
- Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Raquel Rocha
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Abstract
Whether prokaryotes (Bacteria and Archaea) are naturally organized into phenotypically and genetically cohesive units comparable to animal or plant species remains contested, frustrating attempts to estimate how many such units there might be, or to identify the ecological roles they play. Analyses of gene sequences in various closely related prokaryotic groups reveal that sequence diversity is typically organized into distinct clusters, and processes such as periodic selection and extensive recombination are understood to be drivers of cluster formation ("speciation"). However, observed patterns are rarely compared with those obtainable with simple null models of diversification under stochastic lineage birth and death and random genetic drift. Via a combination of simulations and analyses of core and phylogenetic marker genes, we show that patterns of diversity for the genera Escherichia, Neisseria, and Borrelia are generally indistinguishable from patterns arising under a null model. We suggest that caution should thus be taken in interpreting observed clustering as a result of selective evolutionary forces. Unknown forces do, however, appear to play a role in Helicobacter pylori, and some individual genes in all groups fail to conform to the null model. Taken together, we recommend the presented birth-death model as a null hypothesis in prokaryotic speciation studies. It is only when the real data are statistically different from the expectations under the null model that some speciation process should be invoked.
Collapse
Affiliation(s)
- Timothy J Straub
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755;
- Department of Computer Science, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
20
|
Draper JL, Hansen LM, Bernick DL, Abedrabbo S, Underwood JG, Kong N, Huang BC, Weis AM, Weimer BC, van Vliet AHM, Pourmand N, Solnick JV, Karplus K, Ottemann KM. Fallacy of the Unique Genome: Sequence Diversity within Single Helicobacter pylori Strains. mBio 2017; 8:e02321-16. [PMID: 28223462 PMCID: PMC5358919 DOI: 10.1128/mbio.02321-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022] Open
Abstract
Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB α-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains.IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish "the genome" of a bacterial strain. Variability is usually reduced ("only sequence from a single colony"), ignored ("just publish the consensus"), or placed in the "too-hard" basket ("analysis of raw read data is more robust"). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as "the genome" of a bacterial strain may be misleading.
Collapse
Affiliation(s)
- Jenny L Draper
- Institute of Environmental Science and Research, Porirua, New Zealand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | - Lori M Hansen
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, UC Davis, California, USA
| | - David L Bernick
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Samar Abedrabbo
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | | | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Bihua C Huang
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Allison M Weis
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nader Pourmand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Jay V Solnick
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, UC Davis, California, USA
| | - Kevin Karplus
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Karen M Ottemann
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|