1
|
Deng Z, Yang W, Lin T, Wang Y, Hua X, Jiang X, Chen J, Liu D, Ye Z, Zhang Y, Lynch M, Long H, Pan J. Multidimensional insights into the biodiversity of Streptomyces in soils of China: a pilot study. Microbiol Spectr 2025; 13:e0169224. [PMID: 40172189 PMCID: PMC12054067 DOI: 10.1128/spectrum.01692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/11/2025] [Indexed: 04/04/2025] Open
Abstract
Streptomyces, a diverse group of filamentous bacteria found predominantly in soil, play a crucial role in nutrient cycling and produce many valuable secondary metabolites for the pharmaceutical industry. In this pilot study, we collected 19 soil samples from 14 provinces in China to preliminarily investigate the biodiversity and genetic structure of Streptomyces in soils of China from different dimensions, using recently developed cost-efficient amplicon and whole-genome library preparation methods. Amplicon analysis showed that Actinobacteria were among the most abundant bacteria, with 0.3% of amplicon sequence variants (ASVs) belonging to Streptomyces. Meanwhile, we successfully isolated 136 Streptomyces natural strains and assembled their genomes, including 26 previously unreported species, underscoring the need for further exploration of soil Streptomyces in China. Population genetics analysis revealed that homologous recombination may primarily drive the extensive genetic diversity observed in Streptomyces, as well as a complex population structure. Complementing this, pan-genome analysis shed light on gene diversity within Streptomyces and led to the discovery of rare genes, further emphasizing the vast genetic diversity of this genus. Additionally, multiple metabolic gene clusters were found in these Streptomyces strains, as well as some potentially unique or uncommon ones were found. These findings not only highlight the biological and metabolic diversity of Streptomyces but also provide a technical framework for future studies on the global biodiversity and evolution of this genus. IMPORTANCE Streptomyces, a prominent group of Actinobacteria, holds significant importance in ecosystems and biotechnology due to their diverse array of metabolic products. However, research on the biodiversity of soil Streptomyces across extensive geographical scales in China has been limited, and their genetic diversity has rarely been evaluated using modern population genetics principles. This pilot study successfully addresses these gaps by conducting a preliminary exploration on the biodiversity of Streptomyces in Chinese soils from multiple perspectives, providing valuable insights for a deeper understanding of their biodiversity and a novel technical framework for future large-scale explorations of its diversity.
Collapse
Affiliation(s)
- Ziguang Deng
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, China
| | - Wei Yang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Tongtong Lin
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yaohai Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xiaojing Hua
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xiaoyu Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Junhao Chen
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Dan Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Yu Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, China
| | - Jiao Pan
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
McHugh MP, Horsfield ST, von Wachsmann J, Toussaint J, Pettigrew KA, Czarniak E, Evans TJ, Leanord A, Tysall L, Gillespie SH, Templeton KE, Holden MTG, Croucher NJ, Lees JA. Integrated population clustering and genomic epidemiology with PopPIPE. Microb Genom 2025; 11:001404. [PMID: 40294103 PMCID: PMC12038005 DOI: 10.1099/mgen.0.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/22/2025] [Indexed: 04/30/2025] Open
Abstract
Genetic distances between bacterial DNA sequences can be used to cluster populations into closely related subpopulations and as an additional source of information when detecting possible transmission events. Due to their variable gene content and order, reference-free methods offer more sensitive detection of genetic differences, especially among closely related samples found in outbreaks. However, across longer genetic distances, frequent recombination can make calculation and interpretation of these differences more challenging, requiring significant bioinformatic expertise and manual intervention during the analysis process. Here, we present a Population analysis PIPEline (PopPIPE) which combines rapid reference-free genome analysis methods to analyse bacterial genomes across these two scales, splitting whole populations into subclusters and detecting plausible transmission events within closely related clusters. We use k-mer sketching to split populations into strains, followed by split k-mer analysis and recombination removal to create alignments and subclusters within these strains. We first show that this approach creates high-quality subclusters on a population-wide dataset of Streptococcus pneumoniae. When applied to nosocomial vancomycin-resistant Enterococcus faecium samples, PopPIPE finds transmission clusters that are more epidemiologically plausible than core genome or multilocus sequence typing (MLST) approaches. Our pipeline is rapid and reproducible, creates interactive visualizations and can easily be reconfigured and re-run on new datasets. Therefore, PopPIPE provides a user-friendly pipeline for analyses spanning species-wide clustering to outbreak investigations.
Collapse
Affiliation(s)
- Martin P. McHugh
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Division of Infection and Global Health, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Samuel T. Horsfield
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK
| | - Johanna von Wachsmann
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK
| | - Jacqueline Toussaint
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK
| | - Kerry A. Pettigrew
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Division of Infection and Global Health, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Elzbieta Czarniak
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Thomas J. Evans
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alistair Leanord
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK
- Scottish Microbiology Reference Laboratories, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Luke Tysall
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Stephen H. Gillespie
- Division of Infection and Global Health, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Kate E. Templeton
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Matthew T. G. Holden
- Division of Infection and Global Health, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - John A. Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK
| |
Collapse
|
3
|
Wang D, Li L, Ren Z, Yu Y, Zhang Z, Zhou J, Zhao H, Zhao Z, Shi P, Mi X, Jin X, Deng Z, Li J, Chen J. Host Specificity and Geographic Dispersion Shape Virome Diversity in Rhinolophus Bats. Mol Ecol 2025; 34:e17645. [PMID: 39825599 DOI: 10.1111/mec.17645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Rhinolophus bats have been identified as natural reservoirs for viruses with global health implications, including severe acute respiratory syndrome-related coronaviruses (SARSr-CoV) and swine acute diarrhoea syndrome-related coronavirus (SADSr-CoV). In this study, we characterised the individual viromes of 603 bats to systematically investigate the diversity, abundance and geographic distribution of viral communities within R. affinis, R. sinicus and 11 other bat species. The massive metatranscriptomic data revealed substantial viral genome resources of 133 vertebrate-infecting viral clusters, which contain occasional cross-species transmission across mammalian orders and especially across bat families. Notably, those viruses included nine clusters closely related to human and/or livestock pathogens, such as SARS-CoVs and SADS-CoVs. The investigation also highlighted distinct features of viral diversity between and within bat colonies, which appear to be influenced by the distinct host population genetics of R. affinis and R. sinicus species. The comparison of SARSr-CoVs further showed varied impact of host specificity along genome-wide diversification and modular viral evolution among Rhinolophus species. Overall, the findings point to a complex interaction between host genetic diversity, and the way viruses spread and structure within natural populations, calling for continued surveillance efforts to understand factors driving viral transmission and emergence in human populations. These results present the underestimated spillover risk of bat viruses, highlighting the importance of enhancing preparedness and surveillance for emerging zoonotic viruses.
Collapse
Affiliation(s)
- Daxi Wang
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zirui Ren
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhipeng Zhang
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hailong Zhao
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Zhiwen Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Peibo Shi
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinrui Mi
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | - Ziqing Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- BGI Research, Shenzhen, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Muto Y, Tanaka K. Comparative Evolutionary Genomics Reveals Genetic Diversity and Differentiation in Bacteroides fragilis. Genes (Basel) 2024; 15:1519. [PMID: 39766787 PMCID: PMC11675351 DOI: 10.3390/genes15121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacteroides fragilis is the pathogenic anaerobe most commonly isolated from intra-abdominal infections, abscesses, and blood. Despite its clinical importance, research on its pan-genome-scale evolution is still limited. METHODS Herein, we analyzed the pan-genome architecture of 374 B. fragilis strains to explore their intra-species genomic diversity and evolutionary patterns. RESULTS Our analysis revealed an open pan-genome with a high proportion of accessory genomes, indicating high genetic variability. Accessory genome genes were substantially enriched in the functions of "Replication, Recombination, and Repair" suggesting their roles in gene transfer and divergence. Phylogenomic analysis divided B. fragilis into two distinct clades: divisions I and II, differing in gene content, antimicrobial resistance genes, and mobile genetic elements. Division II revealed higher Tajima's D values, suggesting that it separated after B. fragilis's recent species diversification. The extreme shift in the distribution of gene-wise Hudson's fixation index (Fst) values for each division suggested that several genes are highly differentiated or evolved between the two clades. Average nucleotide identity and 16S rRNA analyses showed that B. fragilis division II represents a distinct species, Bacteroides hominis. Additionally, a considerable depletion of recombination in genes with Fst values > 0.99 was noted, suggesting that the highest Fst genes with little recombination are the basis for differentiation between divisions. CONCLUSIONS Overall, this study enhances the understanding of B. fragilis's genomic diversity, evolutionary dynamics, and potential role in pathogenesis, shedding light on its adaptation and diversification.
Collapse
Affiliation(s)
- Yoshinori Muto
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City 501-1194, Gifu, Japan;
| | - Kaori Tanaka
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City 501-1194, Gifu, Japan;
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City 501-1194, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City 501-1193, Gifu, Japan
| |
Collapse
|
5
|
Smith AC, Shrivastava A, Cartee JC, Bélanger M, Sharpe S, Lewis J, Budionno S, Gomez R, Khubbar MK, Neisseria gonorrhoeae Working Group TranMike1HunSopheay1OlusegunSoge O.1HuaChi1HiattBrian1VelizKirstin1JollyLindsay2SpannMaya2KellerEric3MooreTerence3LoomisJillian3ChapelNeil3LeeBenjamin3NeffLindsay4CaseyRavyn4WagnerJenni4YoungErin4OakesonKelly F.4BaldwinTamara5WangChun5RahmanMaliha5OhBonnie5Washington State Department of Health, Washington State Regional Lab, Shoreline, Washington, USATennessee Department of Health, Tennessee Regional Lab Nashville, Nashville, Tennessee, USAMaryland Department of Health, Maryland Regional Lab, Baltimore, Maryland, USAUtah Department of Health and Human Services, Utah Public Health Laboratory, Salt Lake City, Utah, USATexas Department of State Health Services, Texas Regional Lab Austin, Austin, Texas, USA, Pham CD, Gernert KM, Schmerer MW, Raphael BH, Learner ER, Kersh EN, Joseph SJ. Whole-genome sequencing resolves biochemical misidentification of Neisseria species from urogenital specimens. J Clin Microbiol 2024; 62:e0070424. [PMID: 39360841 PMCID: PMC11559007 DOI: 10.1128/jcm.00704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Neisseria meningitidis (Nm) and Neisseria gonorrhoeae (Ng) are human pathogens that sometimes occupy the same anatomical niche. Ng, the causative agent of gonorrhea, infects 87 million individuals annually worldwide and is an urgent threat due to increasing drug resistance. Ng is a pathogen of the urogenital tract and may infect the oropharyngeal or rectal site, often asymptomatically. Conversely, Nm is an opportunistic pathogen. While often a commensal in the oropharyngeal tract, it is also the leading cause of bacterial meningitis with 1.2 million cases globally, causing significant morbidity and mortality. Horizontal gene transfer (HGT) is likely to occur between Ng and Nm due to their shared anatomical niches and genetic similarity, which poses challenges for accurate detection and treatment. Routine surveillance through the Gonococcal Isolate Surveillance Project and Strengthening the U.S. Response to Resistant Gonorrhea detected six concerning urogenital Neisseria isolates with contradicting species identification in Milwaukee (MIL). While all six isolates were positive for Ng using nucleic acid amplification testing (NAAT) and matrix-assisted laser desorption/ionization time of flight identified the isolates as Ng, two biochemical tests, Gonochek-II and API NH, classified them as Nm. To address this discrepancy, we performed whole-genome sequencing (WGS) using Illumina MiSeq on all isolates and employed various bioinformatics tools. Species detection analysis using BMScan, which uses WGS data, identified all isolates as Ng. Furthermore, Kraken revealed over 98% of WGS reads mapped to the Ng genome and <1% to Nm. Recombination analysis identified putative HGT in all MIL isolates within the γ-glutamyl transpeptidase (ggt) gene, a key component in the biochemical tests used to differentiate between Nm and Ng. Further analysis identified Nm as the source of HGT event. Specifically, the active Nm ggt gene replaced the Ng pseudogenes, ggt1 and ggt2. Together, this study demonstrates that closely related Neisseria species sharing a niche underwent HGT, which led to the misidentification of species following biochemical testing. Importantly, NAAT accurately detected Ng. The misidentification highlights the importance of using WGS to continually evaluate diagnostic or bacterial identification tests.
Collapse
Affiliation(s)
- Amanda C. Smith
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Apurva Shrivastava
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - John C. Cartee
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Myriam Bélanger
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Samera Sharpe
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Jorden Lewis
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Suzanna Budionno
- City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin, USA
| | - Raquel Gomez
- City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin, USA
| | - Manjeet K. Khubbar
- City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin, USA
| | - Neisseria gonorrhoeae Working GroupTranMike1HunSopheay1OlusegunSoge O.1HuaChi1HiattBrian1VelizKirstin1JollyLindsay2SpannMaya2KellerEric3MooreTerence3LoomisJillian3ChapelNeil3LeeBenjamin3NeffLindsay4CaseyRavyn4WagnerJenni4YoungErin4OakesonKelly F.4BaldwinTamara5WangChun5RahmanMaliha5OhBonnie5Washington State Department of Health, Washington State Regional Lab, Shoreline, Washington, USATennessee Department of Health, Tennessee Regional Lab Nashville, Nashville, Tennessee, USAMaryland Department of Health, Maryland Regional Lab, Baltimore, Maryland, USAUtah Department of Health and Human Services, Utah Public Health Laboratory, Salt Lake City, Utah, USATexas Department of State Health Services, Texas Regional Lab Austin, Austin, Texas, USA
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
- City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin, USA
| | - Cau D. Pham
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Kim M. Gernert
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Matthew W. Schmerer
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Brian H. Raphael
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Emily R. Learner
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Ellen N. Kersh
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Sandeep J. Joseph
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Derelle R, von Wachsmann J, Mäklin T, Hellewell J, Russell T, Lalvani A, Chindelevitch L, Croucher NJ, Harris SR, Lees JA. Seamless, rapid, and accurate analyses of outbreak genomic data using split k-mer analysis. Genome Res 2024; 34:1661-1673. [PMID: 39406504 PMCID: PMC11529842 DOI: 10.1101/gr.279449.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024]
Abstract
Sequence variation observed in populations of pathogens can be used for important public health and evolutionary genomic analyses, especially outbreak analysis and transmission reconstruction. Identifying this variation is typically achieved by aligning sequence reads to a reference genome, but this approach is susceptible to reference biases and requires careful filtering of called genotypes. There is a need for tools that can process this growing volume of bacterial genome data, providing rapid results, but that remain simple so they can be used without highly trained bioinformaticians, expensive data analysis, and long-term storage and processing of large files. Here we describe split k-mer analysis (SKA2), a method that supports both reference-free and reference-based mapping to quickly and accurately genotype populations of bacteria using sequencing reads or genome assemblies. SKA2 is highly accurate for closely related samples, and in outbreak simulations, we show superior variant recall compared with reference-based methods, with no false positives. SKA2 can also accurately map variants to a reference and be used with recombination detection methods to rapidly reconstruct vertical evolutionary history. SKA2 is many times faster than comparable methods and can be used to add new genomes to an existing call set, allowing sequential use without the need to reanalyze entire collections. With an inherent absence of reference bias, high accuracy, and a robust implementation, SKA2 has the potential to become the tool of choice for genotyping bacteria. SKA2 is implemented in Rust and is freely available as open-source software.
Collapse
Affiliation(s)
- Romain Derelle
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W21PG, United Kingdom
| | - Johanna von Wachsmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Tommi Mäklin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- Department of Mathematics and Statistics, University of Helsinki, Helsinki 00014, Finland
| | - Joel Hellewell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Timothy Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W21PG, United Kingdom
| | - Leonid Chindelevitch
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W12 0BZ, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W12 0BZ, United Kingdom
| | - Simon R Harris
- Bill and Melinda Gates Foundation, Westminster, London SW1E 6AJ, United Kingdom
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom;
| |
Collapse
|
7
|
Thomas IV JC, Cartee JC, Hebrank K, St. Cyr SB, Schlanger K, Raphael BH, Kersh EN, Joseph SJ. Emergence and evolution of mosaic penA-60 and penA-237 alleles in a Neisseria gonorrhoeae core genogroup that was historically susceptible to extended spectrum cephalosporins. Front Microbiol 2024; 15:1401303. [PMID: 39411431 PMCID: PMC11473337 DOI: 10.3389/fmicb.2024.1401303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Neisseria gonorrhoeae (Ng) has successively developed resistance to all previously recommended antimicrobial therapies, with ceftriaxone being the last option for monotherapy of gonorrhea. Global emergence and international spread of the FC428 clone derived mosaic penA-60 allele, associated with highlevel ceftriaxone minimum inhibitory concentrations (MICs) in non FC428 clone Ng lineages, has become an increasing concern. The penA-60 allele carrying Ng was first identified in the U.S. in Las Vegas, Nevada (2019; GCWGS-102723), with a multi-locus sequence type (MLST)-1901 strain, in a non FC428 clone Ng lineage, which is associated with a historically ceftriaxone susceptible core genogroup. Later in 2022, an allele genetically similar to penA-60, mosaic penA-237, was identified in the UK (H22-722) and France (F92) with high-level ceftriaxone MICs and both belonged to MLST-1901. Methods In this study, we assessed phylogenomic relatedness and antimicrobial resistance (AMR) determinant profiles of these three isolates with high-level ceftriaxone MICs among a global collection of 2,104 genomes belonging to the MLST-1901 core genome cluster group 31, which includes strains separated by a locus threshold of 200 or fewer differences (Ng_cgc_200). Recombination events in and around the penA coding region were catalogued and potential sources of inter species recombinant DNA were also inferred. Results The global population structure of MLST-1901 core genogroup falls into 4 major lineages. Isolates GCWGS-10723, F92, and H22-722 clustered within Lineage 1, which was dominated by non-mosaic penA-5 alleles. These three isolates formed a clade within Lineage 1 that consisted of isolates from North America and southeast Asia. Neisseria subflava and Neisseria sicca were identified as likely progenitors of two independent recombination events that may have led to the generation of mosaic penA-60 and penA-237, within a possible non-mosaic penA-5 background. Discussions Our study suggests that there are multiple evolutionary pathways that could generate concerning mosaic penA alleles via homologous recombination of historically susceptible Ng lineages with Neisseria commensals. Enhanced surveillance of gonococcal strains and Neisseria commensals is crucial for understanding of the evolution of AMR, particularly in less-studied regions (e.g., Asia), where high-level ceftriaxone MICs and multi-drug resistance are more prevalent.
Collapse
Affiliation(s)
- Jesse C. Thomas IV
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John C. Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Katherine Hebrank
- Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, United States
| | - Sancta B. St. Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Karen Schlanger
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brian H. Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ellen N. Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
8
|
Mazzamurro F, Chirakadavil JB, Durieux I, Poiré L, Plantade J, Ginevra C, Jarraud S, Wilharm G, Charpentier X, P. C. Rocha E. Intragenomic conflicts with plasmids and chromosomal mobile genetic elements drive the evolution of natural transformation within species. PLoS Biol 2024; 22:e3002814. [PMID: 39401218 PMCID: PMC11472951 DOI: 10.1371/journal.pbio.3002814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/27/2024] [Indexed: 10/17/2024] Open
Abstract
Natural transformation is the only mechanism of genetic exchange controlled by the recipient bacteria. We quantified its rates in 786 clinical strains of the human pathogens Legionella pneumophila (Lp) and 496 clinical and environmental strains of Acinetobacter baumannii (Ab). The analysis of transformation rates in the light of phylogeny revealed they evolve by a mixture of frequent small changes and a few large quick jumps across 6 orders of magnitude. In standard conditions close to half of the strains of Lp and a more than a third in Ab are below the detection limit and thus presumably non-transformable. Ab environmental strains tend to have higher transformation rates than the clinical ones. Transitions to non-transformability were frequent and usually recent, suggesting that they are deleterious and subsequently purged by natural selection. Accordingly, we find that transformation decreases genetic linkage in both species, which might accelerate adaptation. Intragenomic conflicts with chromosomal mobile genetic elements (MGEs) and plasmids could explain these transitions and a GWAS confirmed systematic negative associations between transformation and MGEs: plasmids and other conjugative elements in Lp, prophages in Ab, and transposable elements in both. In accordance with the hypothesis of modulation of transformation rates by genetic conflicts, transformable strains have fewer MGEs in both species and some MGEs inactivate genes implicated in the transformation with heterologous DNA (in Ab). Innate defense systems against MGEs are associated with lower transformation rates, especially restriction-modification systems. In contrast, CRISPR-Cas systems are associated with higher transformation rates suggesting that adaptive defense systems may facilitate cell protection from MGEs while preserving genetic exchanges by natural transformation. Ab and Lp have different lifestyles, gene repertoires, and population structure. Nevertheless, they exhibit similar trends in terms of variation of transformation rates and its determinants, suggesting that genetic conflicts could drive the evolution of natural transformation in many bacteria.
Collapse
Affiliation(s)
- Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
- Collège Doctoral–Sorbonne Université, Paris, France
| | - Jason Baby Chirakadavil
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Isabelle Durieux
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Ludovic Poiré
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Julie Plantade
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Christophe Ginevra
- Centre national de Référence des Légionelles–Centre de biologie Nord, Lyon, Cedex 04, France
| | - Sophie Jarraud
- Centre national de Référence des Légionelles–Centre de biologie Nord, Lyon, Cedex 04, France
| | - Gottfried Wilharm
- Robert Koch Institute, Project group P2, Wernigerode Branch, Wernigerode, Germany
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
9
|
Molteni C, Forni D, Cagliani R, Sironi M. Comparative genomics reveal a novel phylotaxonomic order in the genus Fusobacterium. Commun Biol 2024; 7:1102. [PMID: 39244637 PMCID: PMC11380691 DOI: 10.1038/s42003-024-06825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Fusobacteria have been associated to different diseases, including colorectal cancer (CRC), but knowledge of which taxonomic groups contribute to specific conditions is incomplete. We analyzed the genetic diversity and relationships within the Fusobacterium genus. We report recent and ancestral recombination in core genes, indicating that fusobacteria have mosaic genomes and emphasizing that taxonomic demarcation should not rely on single genes/gene regions. Across databases, we found ample evidence of species miss-classification and of undescribed species, which are both expected to complicate disease association. By focusing on a lineage that includes F. periodonticum/pseudoperiodonticum and F. nucleatum, we show that genomes belong to four modern populations, but most known species/subspecies emerged from individual ancestral populations. Of these, the F. periodonticum/pseudoperiodonticum population experienced the lowest drift and displays the highest genetic diversity, in line with the less specialized distribution of these bacteria in oral sites. A highly drifted ancestral population instead contributed genetic ancestry to a new species, which includes genomes classified within the F. nucleatum animalis diversity in a recent CRC study. Thus, evidence herein calls for a re-analysis of F. nucleatum animalis features associated to CRC. More generally, our data inform future molecular profiling approaches to investigate the epidemiology of Fusobacterium-associated diseases.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
10
|
Feng Y, Wei R, Chen Q, Shang T, Zhou N, Wang Z, Chen Y, Chen G, Zhang G, Dong K, Zhong Y, Zhao H, Hu F, Zheng H. Host specificity and cophylogeny in the "animal-gut bacteria-phage" tripartite system. NPJ Biofilms Microbiomes 2024; 10:72. [PMID: 39191812 DOI: 10.1038/s41522-024-00557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Cophylogeny has been identified between gut bacteria and their animal host and is highly relevant to host health, but little research has extended to gut bacteriophages. Here we use bee model to investigate host specificity and cophylogeny in the "animal-gut bacteria-phage" tripartite system. Through metagenomic sequencing upon different bee species, the gut phageome revealed a more variable composition than the gut bacteriome. Nevertheless, the bacteriome and the phageome showed a significant association of their dissimilarity matrices, indicating a reciprocal interaction between the two kinds of communities. Most of the gut phages were host generalist at the viral cluster level but host specialist at the viral OTU level. While the dominant gut bacteria Gilliamella and Snodgrassella exhibited matched phylogeny with bee hosts, most of their phages showed a diminished level of cophylogeny. The evolutionary rates of the bee, the gut bacteria and the gut phages showed a remarkably increasing trend, including synonymous and non-synonymous substitution and gene content variation. For all of the three codiversified tripartite members, however, their genes under positive selection and genes involving gain/loss during evolution simultaneously enriched the functions into metabolism of nutrients, therefore highlighting the tripartite coevolution that results in an enhanced ecological fitness for the whole holobiont.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ruike Wei
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiuli Chen
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongyao Shang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Nihong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zeyu Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guozhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kun Dong
- Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yihai Zhong
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, Hainan, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Feng Y, Yang Y, Hu Y, Xiao Y, Xie Y, Wei L, Wen H, Zhang L, McNally A, Zong Z. Population genomics uncovers global distribution, antimicrobial resistance, and virulence genes of the opportunistic pathogen Klebsiella aerogenes. Cell Rep 2024; 43:114602. [PMID: 39137112 PMCID: PMC11372444 DOI: 10.1016/j.celrep.2024.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Klebsiella aerogenes is an understudied and clinically important pathogen. We therefore investigate its population structure by genome analysis aligned with metadata. We sequence 130 non-duplicated K. aerogenes clinical isolates and identify two inter-patient transmission events. We then retrieve all publicly available K. aerogenes genomes (n = 1,026, accessed by January 1, 2023) and analyze them with our 130 genomes. We develop a core-genome multi-locus sequence-typing scheme. We find that K. aerogenes is a species complex comprising four phylogroups undergoing evolutionary divergence, likely forming three species. We delineate remarkable clonal diversity and identify three worldwide-distributed carbapenemase-encoding clonal clusters, representing high-risk lineages. We uncover that K. aerogenes has an open genome equipped by a large arsenal of antimicrobial resistance genes. We identify two genetic regions specific for K. aerogenes, encoding a type VI secretion system and flagella/chemotaxis for motility, respectively, both contributing to the virulence. These results provide much-needed insights into the population structure and pan-genomes of K. aerogenes.
Collapse
Affiliation(s)
- Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Xiao
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Wen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Linwan Zhang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Andrews KR, Besser TE, Stalder T, Top EM, Baker KN, Fagnan MW, New DD, Schneider GM, Gal A, Andrews-Dickert R, Hunter SS, Beckmen KB, Christensen L, Justice-Allen A, Konetchy D, Lehman CP, Manlove K, Miyasaki H, Nordeen T, Roug A, Cassirer EF. Comparative genomic analysis identifies potential adaptive variation in Mycoplasma ovipneumoniae. Microb Genom 2024; 10:001279. [PMID: 39213169 PMCID: PMC11364169 DOI: 10.1099/mgen.0.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.
Collapse
Affiliation(s)
- Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Katherine N. Baker
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Matthew W. Fagnan
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - G. Maria Schneider
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Alexandra Gal
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Rebecca Andrews-Dickert
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Samuel S. Hunter
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Lauren Christensen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Denise Konetchy
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Todd Nordeen
- Nebraska Game and Parks Commission, Alliance, NE, USA
| | - Annette Roug
- Utah Division of Wildlife Resources, Salt Lake City, UT, USA
| | | |
Collapse
|
13
|
Machado E, Vasconcellos S, Gomes L, Catanho M, Ramos J, de Carvalho L, Goldenberg T, Redner P, Caldas P, Campos C, Dalcolmo M, Lourenço MC, Lasunskaia E, Mussi V, Spinassé L, Vinhas S, Rigouts L, Cogneau S, de Rijk P, Utpatel C, Kaustova J, van der Laan T, de Neeling H, Rastogi N, Levina K, Kütt M, Mokrousov I, Zhuravlev V, Makhado N, Žolnir-Dovč M, Jankovic V, de Waard J, Sisco MC, van Soolingen D, Niemann S, de Jong BC, Meehan CJ, Suffys P. Phylogenomic and genomic analysis reveals unique and shared genetic signatures of Mycobacterium kansasii complex species. Microb Genom 2024; 10:001266. [PMID: 39016539 PMCID: PMC11316565 DOI: 10.1099/mgen.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Species belonging to the Mycobacterium kansasii complex (MKC) are frequently isolated from humans and the environment and can cause serious diseases. The most common MKC infections are caused by the species M. kansasii (sensu stricto), leading to tuberculosis-like disease. However, a broad spectrum of virulence, antimicrobial resistance and pathogenicity of these non-tuberculous mycobacteria (NTM) are observed across the MKC. Many genomic aspects of the MKC that relate to these broad phenotypes are not well elucidated. Here, we performed genomic analyses from a collection of 665 MKC strains, isolated from environmental, animal and human sources. We inferred the MKC pangenome, mobilome, resistome, virulome and defence systems and show that the MKC species harbours unique and shared genomic signatures. High frequency of presence of prophages and different types of defence systems were observed. We found that the M. kansasii species splits into four lineages, of which three are lowly represented and mainly in Brazil, while one lineage is dominant and globally spread. Moreover, we show that four sub-lineages of this most distributed M. kansasii lineage emerged during the twentieth century. Further analysis of the M. kansasii genomes revealed almost 300 regions of difference contributing to genomic diversity, as well as fixed mutations that may explain the M. kansasii's increased virulence and drug resistance.
Collapse
Affiliation(s)
- Edson Machado
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Sidra Vasconcellos
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Lia Gomes
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Marcos Catanho
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jesus Ramos
- Laboratório de Referência Nacional para Tuberculose, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Luciana de Carvalho
- Laboratório de Referência Nacional para Tuberculose, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Telma Goldenberg
- Laboratório de Referência Nacional para Tuberculose, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Paulo Redner
- Laboratório de Referência Nacional para Tuberculose, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Paulo Caldas
- Laboratório de Referência Nacional para Tuberculose, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Carlos Campos
- Laboratório de Referência Nacional para Tuberculose, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Margareth Dalcolmo
- Serviço de Pesquisa Clínica, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Maria Cristina Lourenço
- Laboratório de Bacteriologia e Bioensaios, Instituto Nacional de Infectologia, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Elena Lasunskaia
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Vinicius Mussi
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Lizania Spinassé
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Solange Vinhas
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Leen Rigouts
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sari Cogneau
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pim de Rijk
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Jarmila Kaustova
- Department of Diagnostic Mycobacterioses, Regional Institute of Public Health, Ostrava, Czech Republic
| | - Tridia van der Laan
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Han de Neeling
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Nalin Rastogi
- TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe, Guadeloupe, France
| | - Klavdia Levina
- Mycobacteriology Section of Microbiology Laboratory, North Estonia Medical Centre, Tallinn, Estonia
| | - Marge Kütt
- Mycobacteriology Section of Microbiology Laboratory, North Estonia Medical Centre, Tallinn, Estonia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Ndivhu Makhado
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiological Pathology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- National Health Laboratory Service, Dr George Mukhari Tertiary Laboratory, Medical Microbiology, Pretoria, South Africa
- Global Institute of Health, University of Antwerp, Antwerp, Belgium
| | - Manca Žolnir-Dovč
- National Reference Laboratory for Mycobacteria, University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Vera Jankovic
- Mycobacteria Reference Laboratory, Croatian National Institute of Public Health, Zagreb, Croatia
| | - Jacobus de Waard
- Tuberculosis Department. Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas, Venezuela
- One Health Research Group, Universidad de Las Américas, Quito, Ecuador
| | - Maria Carolina Sisco
- Tuberculosis Department. Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas, Venezuela
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Bouke C. de Jong
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Philip Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Torrance EL, Burton C, Diop A, Bobay LM. Evolution of homologous recombination rates across bacteria. Proc Natl Acad Sci U S A 2024; 121:e2316302121. [PMID: 38657048 PMCID: PMC11067023 DOI: 10.1073/pnas.2316302121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
Bacteria are nonsexual organisms but are capable of exchanging DNA at diverse degrees through homologous recombination. Intriguingly, the rates of recombination vary immensely across lineages where some species have been described as purely clonal and others as "quasi-sexual." However, estimating recombination rates has proven a difficult endeavor and estimates often vary substantially across studies. It is unclear whether these variations reflect natural variations across populations or are due to differences in methodologies. Consequently, the impact of recombination on bacterial evolution has not been extensively evaluated and the evolution of recombination rate-as a trait-remains to be accurately described. Here, we developed an approach based on Approximate Bayesian Computation that integrates multiple signals of recombination to estimate recombination rates. We inferred the rate of recombination of 162 bacterial species and one archaeon and tested the robustness of our approach. Our results confirm that recombination rates vary drastically across bacteria; however, we found that recombination rate-as a trait-is conserved in several lineages but evolves rapidly in others. Although some traits are thought to be associated with recombination rate (e.g., GC-content), we found no clear association between genomic or phenotypic traits and recombination rate. Overall, our results provide an overview of recombination rate, its evolution, and its impact on bacterial evolution.
Collapse
Affiliation(s)
- Ellis L Torrance
- Department of Biology, University of North Carolina, Greensboro, NC 27412
| | - Corey Burton
- Department of Biology, University of North Carolina, Greensboro, NC 27412
| | - Awa Diop
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Louis-Marie Bobay
- Department of Biology, University of North Carolina, Greensboro, NC 27412
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
15
|
Wang D, Yang X, Ren Z, Hu B, Zhao H, Yang K, Shi P, Zhang Z, Feng Q, Nawenja CV, Obanda V, Robert K, Nalikka B, Waruhiu CN, Ochola GO, Onyuok SO, Ochieng H, Li B, Zhu Y, Si H, Yin J, Kristiansen K, Jin X, Xu X, Xiao M, Agwanda B, Ommeh S, Li J, Shi ZL. Substantial viral diversity in bats and rodents from East Africa: insights into evolution, recombination, and cocirculation. MICROBIOME 2024; 12:72. [PMID: 38600530 PMCID: PMC11005217 DOI: 10.1186/s40168-024-01782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.
Collapse
Affiliation(s)
- Daxi Wang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Xinglou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Lab, Wuhan, 430071, China
| | - Zirui Ren
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Hailong Zhao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Kaixin Yang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Peibo Shi
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Zhipeng Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Qikai Feng
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Carol Vannesa Nawenja
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Kityo Robert
- Department of Zoology, Entomology and Fisheries Sciences, School of BioSciences, Makerere University, Kampala, Uganda
| | - Betty Nalikka
- Department of Zoology, Entomology and Fisheries Sciences, School of BioSciences, Makerere University, Kampala, Uganda
| | - Cecilia Njeri Waruhiu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Griphin Ochieng Ochola
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Samson Omondi Onyuok
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Harold Ochieng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haorui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Minfeng Xiao
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China.
| | - Bernard Agwanda
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya.
| | - Sheila Ommeh
- Center for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Junhua Li
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China.
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
16
|
Xie O, Morris JM, Hayes AJ, Towers RJ, Jespersen MG, Lees JA, Ben Zakour NL, Berking O, Baines SL, Carter GP, Tonkin-Hill G, Schrieber L, McIntyre L, Lacey JA, James TB, Sriprakash KS, Beatson SA, Hasegawa T, Giffard P, Steer AC, Batzloff MR, Beall BW, Pinho MD, Ramirez M, Bessen DE, Dougan G, Bentley SD, Walker MJ, Currie BJ, Tong SYC, McMillan DJ, Davies MR. Inter-species gene flow drives ongoing evolution of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis. Nat Commun 2024; 15:2286. [PMID: 38480728 PMCID: PMC10937727 DOI: 10.1038/s41467-024-46530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Jacqueline M Morris
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rebecca J Towers
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton, Cambridgeshire, UK
| | - Nouri L Ben Zakour
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Olga Berking
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Layla Schrieber
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Taylah B James
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kadaba S Sriprakash
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Science & Technology, University of New England, Armidale, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Phil Giffard
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Parkville, Australia
| | - Michael R Batzloff
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Bernard W Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marcos D Pinho
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mario Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Debra E Bessen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Gordon Dougan
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David J McMillan
- School of Science, Technology and Engineering, and Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
17
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
18
|
Crowley C, Selvaraj A, Hariharan A, Healy CM, Moran GP. Fusobacterium nucleatum subsp. polymorphum recovered from malignant and potentially malignant oral disease exhibit heterogeneity in adhesion phenotypes and adhesin gene copy number, shaped by inter-subspecies horizontal gene transfer and recombination-derived mosaicism. Microb Genom 2024; 10:001217. [PMID: 38529905 PMCID: PMC10995627 DOI: 10.1099/mgen.0.001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Fusobacterium nucleatum is an anaerobic commensal of the oral cavity associated with periodontitis and extra-oral diseases, including colorectal cancer. Previous studies have shown an increased relative abundance of this bacterium associated with oral dysplasia or within oral tumours. Using direct culture, we found that 75 % of Fusobacterium species isolated from malignant or potentially malignant oral mucosa were F. nucleatum subsp. polymorphum. Whole genome sequencing and pangenome analysis with Panaroo was carried out on 76 F. nucleatum subsp. polymorphum genomes. F. nucleatum subsp. polymorphum was shown to possesses a relatively small core genome of 1604 genes in a pangenome of 7363 genes. Phylogenetic analysis based on the core genome shows the isolates can be separated into three main clades with no obvious genotypic associations with disease. Isolates recovered from healthy and diseased sites in the same patient are generally highly related. A large repertoire of adhesins belonging to the type V secretion system (TVSS) could be identified with major variation in repertoire and copy number between strains. Analysis of intergenic recombination using fastGEAR showed that adhesin complement is shaped by horizontal gene transfer and recombination. Recombination events at TVSS adhesin genes were not only common between lineages of subspecies polymorphum, but also between different subspecies of F. nucleatum. Strains of subspecies polymorphum with low copy numbers of TVSS adhesin encoding genes tended to have the weakest adhesion to oral keratinocytes. This study highlights the genetic heterogeneity of F. nucleatum subsp. polymorphum and provides a new framework for defining virulence in this organism.
Collapse
Affiliation(s)
- Claire Crowley
- Division of Oral Biosciences, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Ajith Selvaraj
- Division of Oral Biosciences, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Arvind Hariharan
- Division of Oral Biosciences, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Claire M. Healy
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Gary P. Moran
- Division of Oral Biosciences, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Dong X, Yu Y, Liu J, Cao D, Xiang Y, Bi K, Yuan X, Li S, Wu T, Zhang Y. Whole-genome sequencing provides insights into a novel species: Providencia hangzhouensis associated with urinary tract infections. Microbiol Spectr 2023; 11:e0122723. [PMID: 37732781 PMCID: PMC10581081 DOI: 10.1128/spectrum.01227-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Providencia rettgeri is a clinically significant opportunistic pathogen that is involved in urinary tract infections. Due to the resolution limitations of identification, distinguishing P. rettgeri from closely related species is challenging by commercial biochemical test systems. Here, we first reported a novel species, Providencia hangzhouensis, which had been misidentified as P. rettgeri. Exhibiting ≤91.97% average nucleotide identity (ANI) and ≤46.10% in silico DNA-DNA hybridization values with all known Providencia species, P. hangzhouensis falls well beneath the established species-defining thresholds. We conducted a population genomics analysis of P. hangzhouensis isolates worldwide. Our study revealed that P. hangzhouensis has emerged in many countries and has formed several transmission clusters. We found that P. hangzhouensis shared the highest ANI values (91.54% and 91.97%) with P. rettgeri and P. huaxiensis, respectively. The pan-genome analysis revealed that these three species possessed a similar component of pan-genomes. Two genes associated with metabolism, folE2 and ccmM, were identified to be specific to P. hangzhouensis. Furthermore, we also observed that carbapenem-resistance genes frequently occur in P. hangzhouensis with the blaIMP-27 being the most prevalent (46.15%; 36/78). The emergence of P. hangzhouensis is often accompanied by extended-spectrum β-lactamase and carbapenem-resistance genes, and calls for tailored surveillance of this species as a clinically relevant species in the future. IMPORTANCE Our study has identified and characterized a novel species, Providencia hangzhouensis, which is associated with urinary tract infections and was previously misidentified as Providencia rettgeri. Through this study, we have identified specific genes unique to P. hangzhouensis, which could serve as marker genes for rapid PCR identification. Additionally, our findings suggest that the emergence of P. hangzhouensis is often accompanied by extended-spectrum β-lactamase and carbapenem-resistance genes, emphasizing the need for attention to clinical management and the importance of accurate species identification and proper drug use.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyun Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengchao Li
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Souza SSR, Smith JT, Bruce SA, Gibson R, Martin IW, Andam CP. Multi-host infection and phylogenetically diverse lineages shape the recombination and gene pool dynamics of Staphylococcus aureus. BMC Microbiol 2023; 23:235. [PMID: 37626313 PMCID: PMC10463932 DOI: 10.1186/s12866-023-02985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Staphylococcus aureus can infect and adapt to multiple host species. However, our understanding of the genetic and evolutionary drivers of its generalist lifestyle remains inadequate. This is particularly important when considering local populations of S. aureus, where close physical proximity between bacterial lineages and between host species may facilitate frequent and repeated interactions between them. Here, we aim to elucidate the genomic differences between human- and animal-derived S. aureus from 437 isolates sampled from disease cases in the northeast region of the United States. RESULTS Multi-locus sequence typing revealed the existence of 75 previously recognized sequence types (ST). Our population genomic analyses revealed heterogeneity in the accessory genome content of three dominant S. aureus lineages (ST5, ST8, ST30). Genes related to antimicrobial resistance, virulence, and plasmid types were differentially distributed among isolates according to host (human versus non-human) and among the three major STs. Across the entire population, we identified a total of 1,912 recombination events that occurred in 765 genes. The frequency and impact of homologous recombination were comparable between human- and animal-derived isolates. Low-frequency STs were major donors of recombined DNA, regardless of the identity of their host. The most frequently recombined genes (clfB, aroA, sraP) function in host infection and virulence, which were also frequently shared between the rare lineages. CONCLUSIONS Taken together, these results show that frequent but variable patterns of recombination among co-circulating S. aureus lineages, including the low-frequency lineages, that traverse host barriers shape the structure of local gene pool and the reservoir of host-associated genetic variants. Our study provides important insights to the genetic and evolutionary factors that contribute to the ability of S. aureus to colonize and cause disease in multiple host species. Our study highlights the importance of continuous surveillance of S. aureus circulating in different ecological host niches and the need to systematically sample from them. These findings will inform development of effective measures to control S. aureus colonization, infection, and transmission across the One Health continuum.
Collapse
Affiliation(s)
- Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Joshua T Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Spencer A Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Isabella W Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
21
|
Youngblom MA, Imhoff MR, Smyth LM, Mohamed MA, Pepperell CS. Portrait of a generalist bacterium: pathoadaptation, metabolic specialization and extreme environments shape diversity of Staphylococcus saprophyticus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553882. [PMID: 37645846 PMCID: PMC10462137 DOI: 10.1101/2023.08.18.553882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Staphylococcus saprophyticus is a Gram-positive, coagulase-negative staphylococcus found in diverse environments including soil and freshwater, meat, and dairy foods. S. saprophyticus is also an important cause of urinary tract infections (UTIs) in humans, and mastitis in cattle. However, the genetic determinants of virulence have not yet been identified, and it remains unclear whether there are distinct sub-populations adapted to human and animal hosts. Using a diverse sample of S. saprophyticus isolates from food, animals, environmental sources, and human infections, we characterized the population structure and diversity of global populations of S. saprophyticus . We found that divergence of the two major clades of S. saprophyticus is likely facilitated by barriers to horizontal gene transfer (HGT) and differences in metabolism. Using genome-wide association study (GWAS) tools we identified the first Type VII secretion system (T7SS) described in S. saprophyticus and its association with bovine mastitis. Finally, we found that in general, strains of S. saprophyticus from different niches are genetically similar with the exception of built environments, which function as a 'sink' for S. saprophyticus populations. This work increases our understanding of the ecology of S. saprophyticus and of the genomics of bacterial generalists. Data summary Raw sequencing data for newly sequenced S. saprophyticus isolates have been deposited to the NCBI SRA under the project accession PRJNA928770. A list of all genomes used in this work and their associated metadata are available in the supplementary material. Custom scripts used in the comparative genomics and GWAS analyses are available here: https://github.com/myoungblom/sapro_genomics . Impact statement It is not known whether human and cattle diseases caused by S. saprophyticus represent spillover events from a generalist adapted to survive in a range of environments, or whether the capacity to cause disease represents a specific adaptation. Seasonal cycles of S. saprophyticus UTIs and molecular epidemiological evidence suggest that these infections may be environmentally-acquired rather than via transmission from person to person. Using comparative genomics and genome wide association study tools, we found that S. saprophyticus appears adapted to inhabit a wide range of environments (generalist), with isolates from animals, food, natural environments and human infections being closely related. Bacteria that routinely switch environments, particularly between humans and animals, are of particular concern when it comes to the spread of antibiotic resistance from farm environments into human populations. This work provides a framework for comparative genomic analyses of bacterial generalists and furthers our understanding of how bacterial populations move between humans, animals, and the environment.
Collapse
|
22
|
García E. Two putative glutamate decarboxylases of Streptococcus pneumoniae as possible antigens for the production of anti-GAD65 antibodies leading to type 1 diabetes mellitus. Int Microbiol 2023; 26:675-690. [PMID: 37154976 PMCID: PMC10165594 DOI: 10.1007/s10123-023-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been increasing in prevalence in the last decades and has become a global burden. Autoantibodies against human glutamate decarboxylase (GAD65) are among the first to be detected at the onset of T1DM. Diverse viruses have been proposed to be involved in the triggering of T1DM because of molecular mimicry, i.e., similarity between parts of some viral proteins and one or more epitopes of GAD65. However, the possibility that bacterial proteins might also be responsible for GAD65 mimicry has been seldom investigated. To date, many genomes of Streptococcus pneumoniae (the pneumococcus), a prominent human pathogen particularly prevalent among children and the elderly, have been sequenced. A dataset of more than 9000 pneumococcal genomes was mined and two different (albeit related) genes (gadA and gadB), presumably encoding two glutamate decarboxylases similar to GAD65, were found. The various gadASpn alleles were present only in serotype 3 pneumococci belonging to the global lineage GPSC83, although some homologs have also been discovered in two subspecies of Streptococcus constellatus (pharyngis and viborgensis), an isolate of the group B streptococci, and several strains of Lactobacillus delbrueckii. Besides, gadBSpn alleles are present in > 10% of the isolates in our dataset and represent 16 GPSCs with 123 sequence types and 20 different serotypes. Sequence analyses indicated that gadA- and gadB-like genes have been mobilized among different bacteria either by prophage(s) or by integrative and conjugative element(s), respectively. Substantial similarities appear to exist between the putative pneumococcal glutamate decarboxylases and well-known epitopes of GAD65. In this sense, the use of broader pneumococcal conjugate vaccines such as PCV20 would prevent the majority of serotypes expressing those genes that might potentially contribute to T1DM. These results deserve upcoming studies on the possible involvement of S. pneumoniae in the etiopathogenesis and clinical onset of T1DM.
Collapse
Affiliation(s)
- Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Pan-genome analysis of the Burkholderia gladioli PV. Cocovenenans reveal the extent of variation in the toxigenic gene cluster. Food Microbiol 2023; 113:104249. [PMID: 37098416 DOI: 10.1016/j.fm.2023.104249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/04/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Burkholderia gladioli has been reported as the pathogen responsible for cases of foodborne illness in many countries. The poisonous bongkrekic acid (BA) produced by B. gladioli was linked to a gene cluster absent in non-pathogenic strains. The whole genome sequence of eight bacteria strains, which were screened from the collected 175 raw food and environmental samples, were assembled and analyzed to detect a significant association of 19 protein-coding genes with the pathogenic status. Except for the common BA synthesis-related gene, several other genes, including the toxin-antitoxin genes, were also absent in the non-pathogenic strains. The bacteria strains with the BA gene cluster were found to form a single cluster in the analysis of all B. gladioli genome assemblies for the variants in the gene cluster. Divergence of this cluster was detected in the analysis for both the flanking sequences and those of the whole genome level, which indicates its complex origin. Genome recombination was found to cause a precise sequence deletion in the gene cluster region, which was found to be predominant in the non-pathogenic strains indicating the possible effect of horizontal gene transfer. Our study provided new information and resources for understanding the evolution and divergence of the B. gladioli species.
Collapse
|
24
|
Agarwal V, Stubits R, Nassrullah Z, Dillon MM. Pangenome insights into the diversification and disease specificity of worldwide Xanthomonas outbreaks. Front Microbiol 2023; 14:1213261. [PMID: 37476668 PMCID: PMC10356107 DOI: 10.3389/fmicb.2023.1213261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The bacterial genus Xanthomonas is responsible for disease outbreaks in several hundred plant species, many of them economically important crops. In the era of next-generation sequencing, thousands of strains from this genus have now been sequenced as part of isolated studies that focus on outbreak characterization, host range, diversity, and virulence factor identification. However, these data have not been synthesized and we lack a comprehensive phylogeny for the genus, with some species designations in public databases still relying on phenotypic similarities and representative sequence typing. The extent of genetic cohesiveness among Xanthomonas strains, the distribution of virulence factors across strains, and the impact of evolutionary history on host range across the genus are also poorly understood. In this study, we present a pangenome analysis of 1,910 diverse Xanthomonas genomes, highlighting their evolutionary relationships, the distribution of virulence-associated genes across strains, and rates of horizontal gene transfer. We find a number of broadly conserved classes of virulence factors and considerable diversity in the Type 3 Secretion Systems (T3SSs) and Type 3 Secreted Effector (T3SE) repertoires of different Xanthomonas species. We also use these data to re-assign incorrectly classified strains to phylogenetically informed species designations and find evidence of both monophyletic host specificity and convergent evolution of phylogenetically distant strains to the same host. Finally, we explore the role of recombination in maintaining genetic cohesion within the Xanthomonas genus as a result of both ancestral and recent recombination events. Understanding the evolutionary history of Xanthomonas species and the relationship of key virulence factors with host-specificity provides valuable insight into the mechanisms through which Xanthomonas species shift between hosts and will enable us to develop more robust resistance strategies against these highly virulent pathogens.
Collapse
Affiliation(s)
- Viplav Agarwal
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Rachel Stubits
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Zain Nassrullah
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Marcus M. Dillon
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
26
|
Komatsu T, Ohya K, Ota A, Nishiuchi Y, Yano H, Matsuo K, Odoi JO, Suganuma S, Sawai K, Hasebe A, Asai T, Yanai T, Fukushi H, Wada T, Yoshida S, Ito T, Arikawa K, Kawai M, Ato M, Baughn AD, Iwamoto T, Maruyama F. Unique genomic sequences in a novel Mycobacterium avium subsp. hominissuis lineage enable fine scale transmission route tracing during pig movement. One Health 2023; 16:100559. [PMID: 37363238 PMCID: PMC10288077 DOI: 10.1016/j.onehlt.2023.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most prevalent mycobacteria causing non-tuberculous mycobacterial disease in humans and animals. Of note, MAH is a major cause of mycobacterial granulomatous mesenteric lymphadenitis outbreaks in pig populations. To determine the precise source of infection of MAH in a pig farm and to clarify the epidemiological relationship among pig, human and environmental MAH lineages, we collected 50 MAH isolates from pigs reared in Japan and determined draft genome sequences of 30 isolates. A variable number of tandem repeat analysis revealed that most pig MAH isolates in Japan were closely related to North American, European and Russian human isolates but not to those from East Asian human and their residential environments. Historical recombination analysis revealed that most pig isolates could be classified into SC2/4 and SC3, which contain MAH isolated from pig, European human and environmental isolates. Half of the isolates in SC2/4 had many recombination events with MAH lineages isolated from humans in East Asia. To our surprise, four isolates belonged to a new lineage (SC5) in the global MAH population. Members of SC5 had few footprints of inter-lineage recombination in the genome, and carried 80 unique genes, most of which were located on lineage specific-genomic islands. Using unique genetic features, we were able to trace the putative transmission route via their host pigs. Together, we clarify the possibility of species-specificity of MAH in addition to local adaptation. Our results highlight two transmission routes of MAH, one exposure on pig farms from the environment and the other via pig movement. Moreover, our study also warns that the evolution of MAH in pigs is influenced by MAH from patients and their residential environments, even if the MAH are genetically distinct.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Tobu Livestock Hygiene Service Center, Toyohashi, Aichi, Japan
| | - Kenji Ohya
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Atsushi Ota
- Data Science Center, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yukiko Nishiuchi
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kayoko Matsuo
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Kumamoto Prefectural Aso Public Health Center, Aso, Kumamoto, Japan
| | - Justice Opare Odoi
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Shota Suganuma
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kotaro Sawai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Akemi Hasebe
- Toyama Prefectural Meat Inspection Center, Imizu, Toyama, Japan
| | - Tetsuo Asai
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Tokuma Yanai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Hiwa Natural History Museum, Shobara, Hiroshima, Japan
| | - Hideto Fukushi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Toshihiro Ito
- Laboratory of Proteome Research, Proteome Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Mikihiko Kawai
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Anthony D. Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Fumito Maruyama
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Project Research Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
27
|
Ikhimiukor OO, Souza SSR, Marcovici MM, Nye GJ, Gibson R, Andam CP. Leaky barriers to gene sharing between locally co-existing coagulase-negative Staphylococcus species. Commun Biol 2023; 6:482. [PMID: 37137974 PMCID: PMC10156822 DOI: 10.1038/s42003-023-04877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.
Collapse
Affiliation(s)
- Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Michael M Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Griffin J Nye
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Robert Gibson
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
28
|
Joseph SJ, Bommana S, Ziklo N, Kama M, Dean D, Read TD. Patterns of within-host spread of Chlamydia trachomatis between vagina, endocervix and rectum revealed by comparative genomic analysis. Front Microbiol 2023; 14:1154664. [PMID: 37056744 PMCID: PMC10086254 DOI: 10.3389/fmicb.2023.1154664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Chlamydia trachomatis, a gram-negative obligate intracellular bacterium, commonly causes sexually transmitted infections (STIs). Little is known about C. trachomatis transmission within the host, which is important for understanding disease epidemiology and progression. Methods We used RNA-bait enrichment and whole-genome sequencing to compare rectal, vaginal and endocervical samples collected at the same time from 26 study participants who attended Fijian Ministry of Health and Medical Services clinics and tested positive for C. trachomatis at each anatomic site. Results The 78 C. trachomatis genomes from participants resolved into two major clades of the C. trachomatis phylogeny (the "prevalent urogenital and anorectal" clade and "non-prevalent urogenital and anorectal" clade). For 21 participants, genome sequences were almost identical in each anatomic site. For the other five participants, two distinct C. trachomatis strains were present in different sites; in two cases, the vaginal sample was a mixture of strains. Discussion The absence of large numbers of fixed SNPs between C. trachomatis genomes within many of the participants could indicate recent acquisition of infection prior to the clinic visit without sufficient time to accumulate significant genetic variation in different body sites. This model suggests that many C. trachomatis infections may be resolved relatively quickly in the Fijian population, possibly reflecting common prescription or over-the-counter antibiotics usage.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sankhya Bommana
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
| | - Noa Ziklo
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Deborah Dean
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Joint Graduate Program, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Joint Graduate Program, University of California, Berkeley, Berkeley, CA, United States
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
29
|
Wang S, Ge S, Sobkowiak B, Wang L, Grandjean L, Colijn C, Elliott LT. Genome-Wide Association with Uncertainty in the Genetic Similarity Matrix. J Comput Biol 2023; 30:189-203. [PMID: 36374242 DOI: 10.1089/cmb.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genome-wide association studies (GWASs) are often confounded by population stratification and structure. Linear mixed models (LMMs) are a powerful class of methods for uncovering genetic effects, while controlling for such confounding. LMMs include random effects for a genetic similarity matrix, and they assume that a true genetic similarity matrix is known. However, uncertainty about the phylogenetic structure of a study population may degrade the quality of LMM results. This may happen in bacterial studies in which the number of samples or loci is small, or in studies with low-quality genotyping. In this study, we develop methods for linear mixed models in which the genetic similarity matrix is unknown and is derived from Markov chain Monte Carlo estimates of the phylogeny. We apply our model to a GWAS of multidrug resistance in tuberculosis, and illustrate our methods on simulated data.
Collapse
Affiliation(s)
- Shijia Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Shufei Ge
- Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China
| | | | - Liangliang Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Louis Grandjean
- Department of Infectious Diseases, University College London, London, United Kingdom
| | - Caroline Colijn
- Department of Mathematics and Simon Fraser University, Burnaby, Canada
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
30
|
A Comprehensive Genomic Analysis of the Emergent Klebsiella pneumoniae ST16 Lineage: Virulence, Antimicrobial Resistance and a Comparison with the Clinically Relevant ST11 Strain. Pathogens 2022; 11:pathogens11121394. [PMID: 36558729 PMCID: PMC9781218 DOI: 10.3390/pathogens11121394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen frequently involved with healthcare-associated infections. The genome of K. pneumoniae is versatile, harbors diverse virulence factors and easily acquires and exchanges resistance plasmids, facilitating the emergence of new threatening clones. In the last years, ST16 has been described as an emergent, clinically relevant strain, increasingly associated with outbreaks, and carrying virulence factors (such as ICEKp, iuc, rmpADC/2) and a diversity of resistance genes. However, a far-reaching phylogenetic study of ST16, including geographically, clinically and temporally distributed isolates is not available. In this work, we analyzed all publicly available ST16 K. pneumoniae genomes in terms of virulence factors, including capsular lipopolysaccharide and polysaccharide diversity, plasmids and antimicrobial resistance genes. A core genome SNP analysis shows that less than 1% of studied sites were variant sites, with a median pairwise single nucleotide polymorphism difference of 87 SNPs. The number and diversity of antimicrobial resistance genes, but not of virulence-related genes, increased consistently in ST16 strains during the studied period. A genomic comparison between ST16 and the high-risk clone ST11 K. pneumoniae, showed great similarities in their capacity to acquire resistance and virulence markers, differing mostly in the great diversity of capsular lipopolysaccharide and polysaccharide types in ST11, in comparison with ST16. While virulence and antimicrobial resistance scores indicated that ST11 might still constitute a more difficult-to-manage strain, results presented here demonstrate the great potential of the ST16 clone becoming critical in public health.
Collapse
|
31
|
Zecharia N, Krasnov H, Vanunu M, Siri AC, Haberman A, Dror O, Vakal L, Almeida RPP, Blank L, Shtienberg D, Bahar O. Xylella fastidiosa Outbreak in Israel: Population Genetics, Host Range, and Temporal and Spatial Distribution Analysis. PHYTOPATHOLOGY 2022; 112:2296-2309. [PMID: 35778787 DOI: 10.1094/phyto-03-22-0105-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diseases caused by the insect-transmitted bacterium Xylella fastidiosa have been reported in the Americas since the 19th century, causing diseases such as Pierce's disease of grapevine, almond leaf scorch (ALS), and citrus variegated chlorosis. In the last decade X. fastidiosa was reported from different parts of the world, most notably from southern Italy, infecting olives. In 2017, X. fastidiosa was reported to be associated with ALS symptoms in Israel. Here, we investigated the causal agent of ALS in Israel, its genetic diversity, and host range, and we characterized the temporal and spatial distribution of the disease. X. fastidiosa subsp. fastidiosa sequence type 1 was isolated from symptomatic almond trees and was used to infect almond and grapevine by mechanical inoculation. The pathogen, however, did not infect olive, peach, cherry, plum, nectarine, clementine, and grapefruit plants. Genomic analysis of local isolates revealed that the local population is derived from a single introduction and that they are closely related to X. fastidiosa strains from grapevines in California. Distribution analyses revealed that ALS did not expand from 2017 to 2019; however, since 2020, newly symptomatic trees appeared in the tested orchards. Symptomatic trees were located primarily in clusters, and symptoms tended to spread within rows. Our study confirms that X. fastidiosa is the causal agent of ALS in Israel and describes its genetic and host range characteristics. Although there is no clear evidence yet for the identity of the vectors in Israel, ALS spread continues to threat the almond and grapevine industries in Israel.
Collapse
Affiliation(s)
- Noa Zecharia
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Helena Krasnov
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Miri Vanunu
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Andreina Castillo Siri
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A
| | - Ami Haberman
- The Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - Orit Dror
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Lera Vakal
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A
| | - Lior Blank
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dani Shtienberg
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
32
|
Preska Steinberg A, Lin M, Kussell E. Core genes can have higher recombination rates than accessory genes within global microbial populations. eLife 2022; 11:78533. [PMID: 35801696 PMCID: PMC9444244 DOI: 10.7554/elife.78533] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome.
Collapse
Affiliation(s)
| | - Mingzhi Lin
- Department of Biology, New York University, New York, United States
| | - Edo Kussell
- Department of Biology, New York University, New York, United States
| |
Collapse
|
33
|
Shikov AE, Malovichko YV, Nizhnikov AA, Antonets KS. Current Methods for Recombination Detection in Bacteria. Int J Mol Sci 2022; 23:ijms23116257. [PMID: 35682936 PMCID: PMC9181119 DOI: 10.3390/ijms23116257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing recombination signals are available, however, their pros and cons as well as the spectra of solvable tasks have not yet been systematically reviewed. Moreover, there are two major groups of software. One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT). However, despite seemingly different goals, all the methods use similar algorithmic approaches, and the processes are interconnected in terms of genomic evolution influencing each other. In this review, we propose a classification of novel instruments for both HR and HGT detection based on the genomic consequences of recombination. In this context, we summarize available methodologies paying particular attention to the type of traceable events for which a certain program has been designed.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
34
|
Ceres KM, Stanhope MJ, Gröhn YT. A critical evaluation of Mycobacterium bovis pangenomics, with reference to its utility in outbreak investigation. Microb Genom 2022; 8:mgen000839. [PMID: 35763423 PMCID: PMC9455707 DOI: 10.1099/mgen.0.000839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
The increased accessibility of next generation sequencing has allowed enough genomes from a given bacterial species to be sequenced to describe the distribution of genes in the pangenome, without limiting analyses to genes present in reference strains. Although some taxa have thousands of whole genome sequences available on public databases, most genomes were sequenced with short read technology, resulting in incomplete assemblies. Studying pangenomes could lead to important insights into adaptation, pathogenicity, or molecular epidemiology, however given the known information loss inherent in analyzing contig-level assemblies, these inferences may be biased or inaccurate. In this study we describe the pangenome of a clonally evolving pathogen, Mycobacterium bovis , and examine the utility of gene content variation in M. bovis outbreak investigation. We constructed the M. bovis pangenome using 1463 de novo assembled genomes. We tested the assumption of strict clonal evolution by studying evidence of recombination in core genes and analyzing the distribution of accessory genes among core monophyletic groups. To determine if gene content variation could be utilized in outbreak investigation, we carefully examined accessory genes detected in a well described M. bovis outbreak in Minnesota. We found significant errors in accessory gene classification. After accounting for these errors, we show that M. bovis has a much smaller accessory genome than previously described and provide evidence supporting ongoing clonal evolution and a closed pangenome, with little gene content variation generated over outbreaks. We also identified frameshift mutations in multiple genes, including a mutation in glpK , which has recently been associated with antibiotic tolerance in Mycobacterium tuberculosis . A pangenomic approach enables a more comprehensive analysis of genome dynamics than is possible with reference-based approaches; however, without critical evaluation of accessory gene content, inferences of transmission patterns employing these loci could be misguided.
Collapse
Affiliation(s)
- Kristina M. Ceres
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yrjö T. Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Abstract
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.
Collapse
|
36
|
Habitat Adaptation Drives Speciation of a Streptomyces Species with Distinct Habitats and Disparate Geographic Origins. mBio 2022; 13:e0278121. [PMID: 35012331 PMCID: PMC8749437 DOI: 10.1128/mbio.02781-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microbial diversification is driven by geographic and ecological factors, but how the relative importance of these factors varies among species, geographic scales, and habitats remains unclear. Streptomyces, a genus of antibiotic-producing, spore-forming, and widespread bacteria, offers a robust model for identifying the processes underlying population differentiation. We examined the population structure of 37 Streptomyces olivaceus strains isolated from various sources, showing that they diverged into two habitat-associated (free-living and insect-associated) and geographically disparate lineages. More frequent gene flow within than between the lineages confirmed genetic isolation in S. olivaceus. Geographic isolation could not explain the genetic isolation; instead, habitat type was a strong predictor of genetic distance when controlling for geographic distance. The identification of habitat-specific genetic variations, including genes involved in regulation, resource use, and secondary metabolism, suggested a significant role of habitat adaptation in the diversification process. Physiological assays revealed fitness trade-offs under different environmental conditions in the two lineages. Notably, insect-associated isolates could outcompete free-living isolates in a free-iron-deficient environment. Furthermore, substrate (e.g., sialic acid and glycogen) utilization but not thermal traits differentiated the two lineages. Overall, our results argue that adaptive processes drove ecological divergence among closely related streptomycetes, eventually leading to dispersal limitation and gene flow barriers between the lineages. S. olivaceus may best be considered a species complex consisting of two cryptic species. IMPORTANCE Both isolation by distance and isolation by environment occur in bacteria, and different diversification patterns may apply to different species. Streptomyces species, typified by producing useful natural products, are widespread in nature and possess high genetic diversity. However, the ecological processes and evolutionary mechanisms that shape their distribution are not well understood. Here, we show that the population structure of a ubiquitous Streptomyces species complex matches its habitat distribution and can be defined by gene flow discontinuities. Using comparative genomics and physiological assays, we reveal that gains and losses of specific genomic traits play a significant role in the transition between free-living and host-associated lifestyles, driving speciation of the species. These results provide new insights into the evolutionary trajectory of Streptomyces and the notion of species.
Collapse
|
37
|
Sawhney SS, Ransom EM, Wallace MA, Reich PJ, Dantas G, Burnham CAD. Comparative Genomics of Borderline Oxacillin-Resistant Staphylococcus aureus Detected during a Pseudo-outbreak of Methicillin-Resistant S. aureus in a Neonatal Intensive Care Unit. mBio 2022; 13:e0319621. [PMID: 35038924 PMCID: PMC8764539 DOI: 10.1128/mbio.03196-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 01/26/2023] Open
Abstract
Active surveillance for methicillin-resistant Staphylococcus aureus (MRSA) is a component of our neonatal intensive care unit (NICU) infection prevention efforts. Recent atypical trends prompted review of 42 suspected MRSA isolates. Species identification was confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and methicillin resistance was reevaluated by PBP2a lateral flow assay, cefoxitin/oxacillin susceptibility testing, mecA and mecC PCR, and six commercially available MRSA detection agars. All isolates were confirmed S. aureus, but only eight were MRSA (cefoxitin resistant, PBP2a positive, mecA positive, growth on all MRSA screening agars). One MRSA isolate was cefoxitin susceptible but PBP2a and mecA positive, and the remaining 33 were cefoxitin susceptible, PBP2a negative, and mecA negative; interestingly, these isolates grew inconsistently across MRSA screening agars and had susceptibility profiles consistent with that of borderline oxacillin-resistant S. aureus (BORSA). Comparative genomic analyses found these BORSA isolates to be phylogenetically diverse and not representative of clonal expansion or shared gene content, though clones of two NICU strains were infrequently observed over 8 months. We identified 6 features-substitutions and truncations in PBP2, PBP4, and GdpP and beta-lactamase hyperproduction-that were used to generate a random forest classifier to distinguish BORSA from methicillin-susceptible S. aureus (MSSA) in our cohort. Our model demonstrated a robust ability to predict the BORSA phenotype among isolates collected across two continents (validation area under the curve [AUC], 0.902). Taking these findings together, we observed an unexpected prevalence of BORSA in our NICU, BORSA misclassification by existing MRSA screening methods, and markers that are together discriminatory for BORSA and MSSA within our cohort. This work has implications for epidemiological reporting of MRSA rates for centers using different screening methods. IMPORTANCE In this study, we found a high prevalence of Staphylococcus aureus isolates exhibiting a borderline oxacillin resistance phenotype (BORSA) in our neonatal intensive care unit (NICU) serendipitously due to the type of MRSA screening agar used by our laboratory for active surveillance cultures. Subsequent phenotypic and molecular characterization highlighted an unexpected prevalence and variability of BORSA isolates. Through whole-genome sequencing, we interrogated core and accessory genome content and generated a random forest classification model to identify mutations and truncations in the PBP2, PBP4, and GdpP proteins and beta-lactamase hyperproduction, which correlated with BORSA and MSSA phenotypes among S. aureus clinical isolates collected across two continents. In consideration of these findings, this work will help clinical microbiology laboratories and clinicians identify MRSA screening shortfalls and draw attention to the non-mecA-mediated BORSA phenotype.
Collapse
Affiliation(s)
- Sanjam S. Sawhney
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric M. Ransom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick J. Reich
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
38
|
van Hal SJ, Willems RJL, Gouliouris T, Ballard SA, Coque TM, Hammerum AM, Hegstad K, Pinholt M, Howden BP, Malhotra-Kumar S, Werner G, Yanagihara K, Earl AM, Raven KE, Corander J, Bowden R, Enterococcal Study Group. The interplay between community and hospital Enterococcus faecium clones within health-care settings: a genomic analysis. THE LANCET. MICROBE 2022; 3:e133-e141. [PMID: 35146465 PMCID: PMC8810393 DOI: 10.1016/s2666-5247(21)00236-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The genomic relationships among Enterococcus faecium isolates are the subject of ongoing research that seeks to clarify the origins of observed lineages and the extent of horizontal gene transfer between them, and to robustly identify links between genotypes and phenotypes. E faecium is considered to form distinct groups-A and B-corresponding to isolates derived from patients who were hospitalised (A) and isolates from humans in the community (B). The additional separation of A into the so-called clades A1 and A2 remains an area of uncertainty. We aimed to investigate the relationships between A1 and non-A1 groups and explore the potential role of non-A1 isolates in shaping the population structure of hospital E faecium. METHODS We collected short-read sequence data from invited groups that had previously published E faecium genome data. This hospital-based isolate collection could be separated into three groups (or clades, A1, A2, and B) by augmenting the study genomes with published sequences derived from human samples representing the previously defined genomic clusters. We performed phylogenetic analyses, by constructing maximum-likelihood phylogenetic trees, and identified historical recombination events. We assessed the pan-genome, did resistome analysis, and examined the genomic data to identify mobile genetic elements. Each genome underwent chromosome painting by use of ChromoPainter within FineSTRUCTURE software to assess ancestry and identify hybrid groups. We further assessed highly admixed regions to infer recombination directionality. FINDINGS We assembled a collection of 1095 hospital E faecium sequences from 34 countries, further augmented by 33 published sequences. 997 (88%) of 1128 genomes clustered as A1, 92 (8%) as A2, and 39 (4%) as B. We showed that A1 probably emerged as a clone from within A2 and that, because of ongoing gene flow, hospital isolates currently identified as A2 represent a genetic continuum between A1 and community E faecium. This interchange of genetic material between isolates from different groups results in the emergence of hybrid genomes between clusters. Of the 1128 genomes, 49 (4%) hybrid genomes were identified: 33 previously labelled as A2 and 16 previously labelled as A1. These interactions were fuelled by a directional pattern of recombination mediated by mobile genetic elements. By contrast, the contribution of B group genetic material to A1 was limited to a few small regions of the genome and appeared to be driven by genomic sweep events. INTERPRETATION A2 and B isolates coming into the hospital form an important reservoir for ongoing A1 adaptation, suggesting that effective long-term control of the effect of E faecium could benefit from strategies to reduce these genomic interactions, such as a focus on reducing the acquisition of hospital A1 strains by patients entering the hospital. FUNDING Wellcome Trust.
Collapse
Affiliation(s)
- Sebastiaan J van Hal
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia,Central Clinical School, University of Sydney, Sydney, NSW, Australia,Correspondence to: Sebastiaan J van Hal, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute, Madrid, Spain,Network Research Centre for Epidemiology and Public Health, Madrid, Spain
| | | | - Kristin Hegstad
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North-Norway, Department of Microbiology and Infection Control, Tromsø, Norway
| | - Mette Pinholt
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Wilrijk, Belgium
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, USA
| | | | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway,Parasites and Microbes, Wellcome Sanger Institute, Saffron Walden, UK
| | - Rory Bowden
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
39
|
Lee IPA, Andam CP. Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis. Sci Rep 2022; 12:1515. [PMID: 35087075 PMCID: PMC8795270 DOI: 10.1038/s41598-022-04995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Streptococcus consists of ecologically diverse species, some of which are important pathogens of humans and animals. We sought to quantify and compare the frequencies and characteristics of within-species recombination in the pan-genomes of Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus suis. We used 1081, 1813 and 1204 publicly available genome sequences of each species, respectively. Based on their core genomes, S. agalactiae had the highest relative rate of recombination to mutation (11.5743) compared to S. pyogenes (1.03) and S. suis (0.57). The proportion of the species pan-genome that have had a history of recombination was 12.85%, 24.18% and 20.50% of the pan-genomes of each species, respectively. The composition of recombining genes varied among the three species, and some of the most frequently recombining genes are implicated in adhesion, colonization, oxidative stress response and biofilm formation. For each species, a total of 22.75%, 29.28% and 18.75% of the recombining genes were associated with prophages. The cargo genes of integrative conjugative elements and integrative and mobilizable elements contained genes associated with antimicrobial resistance and virulence. Homologous recombination and mobilizable pan-genomes enable the creation of novel combinations of genes and sequence variants, and the potential for high-risk clones to emerge.
Collapse
Affiliation(s)
| | - Cheryl P Andam
- University at Albany, State University of New York, New York, 12222, USA.
| |
Collapse
|
40
|
Sicard A, Saponari M, Vanhove M, Castillo AI, Giampetruzzi A, Loconsole G, Saldarelli P, Boscia D, Neema C, Almeida RPP. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb Genom 2021; 7. [PMID: 34904938 PMCID: PMC8767334 DOI: 10.1099/mgen.0.000735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930–2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.
Collapse
Affiliation(s)
- Anne Sicard
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A.,PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Maria Saponari
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Mathieu Vanhove
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Andreina I Castillo
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Annalisa Giampetruzzi
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Piazza Umberto I, 70121 Bari, Italy
| | - Giuliana Loconsole
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Pasquale Saldarelli
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Donato Boscia
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Claire Neema
- PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Rodrigo P P Almeida
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| |
Collapse
|
41
|
Chaguza C, Tonkin-Hill G, Lo SW, Hadfield J, Croucher NJ, Harris SR, Bentley SD. RCandy: an R package for visualizing homologous recombinations in bacterial genomes. Bioinformatics 2021; 38:1450-1451. [PMID: 34864895 PMCID: PMC8826011 DOI: 10.1093/bioinformatics/btab814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
SUMMARY Homologous recombination is an important evolutionary process in bacteria and other prokaryotes, which increases genomic sequence diversity and can facilitate adaptation. Several methods and tools have been developed to detect genomic regions recently affected by recombination. Exploration and visualization of such recombination events can reveal valuable biological insights, but it remains challenging. Here, we present RCandy, a platform-independent R package for rapid, simple and flexible visualization of recombination events in bacterial genomes. AVAILABILITY AND IMPLEMENTATION RCandy is an R package freely available for use under the MIT license. It is platform-independent and has been tested on Windows, Linux and MacOSX. The source code comes together with a detailed vignette available on GitHub at https://github.com/ChrispinChaguza/RCandy. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Gerry Tonkin-Hill
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, UK
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
42
|
Castillo AI, Tsai CW, Su CC, Weng LW, Lin YC, Cho ST, Almeida RPP, Kuo CH. Genetic differentiation of Xylella fastidiosa following the introduction into Taiwan. Microb Genom 2021; 7:000727. [PMID: 34898423 PMCID: PMC8767338 DOI: 10.1099/mgen.0.000727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
The economically important plant pathogen Xylella fastidiosa has been reported in multiple regions of the globe during the last two decades, threatening a growing list of plants. Particularly, X. fastidiosa subspecies fastidiosa causes Pierce's disease (PD) of grapevines, which is a problem in the USA, Spain, and Taiwan. In this work, we studied PD-causing subsp. fastidiosa populations and compared the genome sequences of 33 isolates found in Central Taiwan with 171 isolates from the USA and two from Spain. Phylogenetic relationships, haplotype networks, and genetic diversity analyses confirmed that subsp. fastidiosa was recently introduced into Taiwan from the Southeast USA (i.e. the PD-I lineage). Recent core-genome recombination events were detected among introduced subsp. fastidiosa isolates in Taiwan and contributed to the development of genetic diversity. The genetic diversity observed includes contributions through recombination from unknown donors, suggesting that higher genetic diversity exists in the region. Nevertheless, no recombination event was detected between X. fastidiosa subsp. fastidiosa and the endemic sister species Xylella taiwanensis, which is the causative agent of pear leaf scorch disease. In summary, this study improved our understanding of the genetic diversity of an important plant pathogenic bacterium after its invasion to a new region.
Collapse
Affiliation(s)
- Andreina I. Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Chiou-Chu Su
- Division of Pesticide Application, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung 413, Taiwan, ROC
| | - Ling-Wei Weng
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| |
Collapse
|
43
|
Comparative Genomics of Mycobacterium avium Complex Reveals Signatures of Environment-Specific Adaptation and Community Acquisition. mSystems 2021; 6:e0119421. [PMID: 34665012 PMCID: PMC8525567 DOI: 10.1128/msystems.01194-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacteria, including those in the Mycobacterium avium complex (MAC), constitute an increasingly urgent threat to global public health. Ubiquitous in soil and water worldwide, MAC members cause a diverse array of infections in humans and animals that are often multidrug resistant, intractable, and deadly. MAC lung disease is of particular concern and is now more prevalent than tuberculosis in many countries, including the United States. Although the clinical importance of these microorganisms continues to expand, our understanding of their genomic diversity is limited, hampering basic and translational studies alike. Here, we leveraged a unique collection of genomes to characterize MAC population structure, gene content, and within-host strain dynamics in unprecedented detail. We found that different MAC species encode distinct suites of biomedically relevant genes, including antibiotic resistance genes and virulence factors, which may influence their distinct clinical manifestations. We observed that M. avium isolates from different sources—human pulmonary infections, human disseminated infections, animals, and natural environments—are readily distinguished by their core and accessory genomes, by their patterns of horizontal gene transfer, and by numerous specific genes, including virulence factors. We identified highly similar MAC strains from distinct patients within and across two geographically distinct clinical cohorts, providing important insights into the reservoirs which seed community acquisition. We also discovered a novel MAC genomospecies in one of these cohorts. Collectively, our results provide key genomic context for these emerging pathogens and will facilitate future exploration of MAC ecology, evolution, and pathogenesis. IMPORTANCE Members of the Mycobacterium avium complex (MAC), a group of mycobacteria encompassing M. avium and its closest relatives, are omnipresent in natural environments and emerging pathogens of humans and animals. MAC infections are difficult to treat, sometimes fatal, and increasingly common. Here, we used comparative genomics to illuminate key aspects of MAC biology. We found that different MAC species and M. avium isolates from different sources encode distinct suites of clinically relevant genes, including those for virulence and antibiotic resistance. We identified highly similar MAC strains in patients from different states and decades, suggesting community acquisition from dispersed and stable reservoirs, and we discovered a novel MAC species. Our work provides valuable insight into the genomic features underlying these versatile pathogens.
Collapse
|
44
|
Bansal K, Kumar S, Kaur A, Singh A, Patil PB. Deep phylo-taxono genomics reveals Xylella as a variant lineage of plant associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas. Genomics 2021; 113:3989-4003. [PMID: 34610367 DOI: 10.1016/j.ygeno.2021.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Genus Xanthomonas is a group of phytopathogens that is phylogenetically related to Xylella, Stenotrophomonas, and Pseudoxanthomonas, having diverse lifestyles. Xylella is a lethal plant pathogen with a highly reduced genome, atypical GC content and is taxonomically related to these three genera. Deep phylo-taxono genomics reveals that Xylella is a variant Xanthomonas lineage that is sandwiched between Xanthomonas clades. Comparative studies suggest the role of unique pigment and exopolysaccharide gene clusters in the emergence of Xanthomonas and Xylella clades. Pan-genome analysis identified a set of unique genes associated with sub-lineages representing plant-associated Xanthomonas clade and nosocomial origin Stenotrophomonas clade. Overall, our study reveals the importance of reconciling classical phenotypic data and genomic findings in reconstituting the taxonomic status of these four genera. SIGNIFICANCE STATEMENT: Xylella fastidiosa is a devastating pathogen of perennial dicots such as grapes, citrus, coffee, and olives. An insect vector transmits the pathogen to its specific host wherein the infection leads to complete wilting of the plants. The genome of X. fastidiosa is significantly reduced both in terms of size (2 Mb) and GC content (50%) when compared with its relatives such as Xanthomonas, Stenotrophomonas, and Pseudoxanthomonas that have higher GC content (65%) and larger genomes (5 Mb). In this study, using systematic and in-depth genome-based taxonomic and phylogenetic criteria and comparative studies, we assert the need to unify Xanthomonas with its relatives (Xylella, Stenotrophomonas and Pseudoxanthomonas). Interestingly, Xylella revealed itself as a minor variant lineage embedded within two major Xanthomonas lineages comprising member species of different hosts.
Collapse
Affiliation(s)
- Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anu Singh
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
45
|
Kalizang'oma A, Chaguza C, Gori A, Davison C, Beleza S, Antonio M, Beall B, Goldblatt D, Kwambana-Adams B, Bentley SD, Heyderman RS. Streptococcus pneumoniae serotypes that frequently colonise the human nasopharynx are common recipients of penicillin-binding protein gene fragments from Streptococcus mitis. Microb Genom 2021; 7. [PMID: 34550067 PMCID: PMC8715442 DOI: 10.1099/mgen.0.000622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is an important global pathogen that causes bacterial pneumonia, sepsis and meningitis. Beta-lactam antibiotics are the first-line treatment for pneumococcal disease, however, their effectiveness is hampered by beta-lactam resistance facilitated by horizontal genetic transfer (HGT) with closely related species. Although interspecies HGT is known to occur among the species of the genus Streptococcus, the rates and effects of HGT between Streptococcus pneumoniae and its close relatives involving the penicillin binding protein (pbp) genes remain poorly understood. Here we applied the fastGEAR tool to investigate interspecies HGT in pbp genes using a global collection of whole-genome sequences of Streptococcus mitis, Streptococcus oralis and S. pneumoniae. With these data, we established that pneumococcal serotypes 6A, 13, 14, 16F, 19A, 19F, 23F and 35B were the highest-ranking serotypes with acquired pbp fragments. S. mitis was a more frequent pneumococcal donor of pbp fragments and a source of higher pbp nucleotide diversity when compared with S. oralis. Pneumococci that acquired pbp fragments were associated with a higher minimum inhibitory concentration (MIC) for penicillin compared with pneumococci without acquired fragments. Together these data indicate that S. mitis contributes to reduced β-lactam susceptibility among commonly carried pneumococcal serotypes that are associated with long carriage duration and high recombination frequencies. As pneumococcal vaccine programmes mature, placing increasing pressure on the pneumococcal population structure, it will be important to monitor the influence of antimicrobial resistance HGT from commensal streptococci such as S. mitis.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | - Chrispin Chaguza
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK.,Darwin College, University of Cambridge, Silver Street, Cambridge, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrea Gori
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | - Charlotte Davison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Martin Antonio
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, World Health Organization, Collaborating Centre for New Vaccines Surveillance, Banjul, Gambia
| | - Bernard Beall
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Atlanta, GA, USA
| | - David Goldblatt
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | | | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
46
|
Daron J, Bravo IG. Variability in Codon Usage in Coronaviruses Is Mainly Driven by Mutational Bias and Selective Constraints on CpG Dinucleotide. Viruses 2021; 13:v13091800. [PMID: 34578381 PMCID: PMC8473333 DOI: 10.3390/v13091800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human-emerged virus of the 21st century from the Coronaviridae family, causing the ongoing coronavirus disease 2019 (COVID-19) pandemic. Due to the high zoonotic potential of coronaviruses, it is critical to unravel their evolutionary history of host species breadth, host-switch potential, adaptation and emergence, to identify viruses posing a pandemic risk in humans. We present here a comprehensive analysis of the composition and codon usage bias of the 82 Orthocoronavirinae members, infecting 47 different avian and mammalian hosts. Our results clearly establish that synonymous codon usage varies widely among viruses, is only weakly dependent on their primary host, and is dominated by mutational bias towards AU-enrichment and by CpG avoidance. Indeed, variation in GC3 explains around 34%, while variation in CpG frequency explains around 14% of total variation in codon usage bias. Further insight on the mutational equilibrium within Orthocoronavirinae revealed that most coronavirus genomes are close to their neutral equilibrium, the exception being the three recently infecting human coronaviruses, which lie further away from the mutational equilibrium than their endemic human coronavirus counterparts. Finally, our results suggest that, while replicating in humans, SARS-CoV-2 is slowly becoming AU-richer, likely until attaining a new mutational equilibrium.
Collapse
Affiliation(s)
- Josquin Daron
- Laboratoire MIVEGEC (CNRS, IRD, Université de Montpellier), 34394 Montpellier, France;
- Correspondence:
| | - Ignacio G. Bravo
- Laboratoire MIVEGEC (CNRS, IRD, Université de Montpellier), 34394 Montpellier, France;
- Center for Research on the Ecology and Evolution of Diseases (CREES), 34394 Montpellier, France
| |
Collapse
|
47
|
Smith JT, Andam CP. Extensive Horizontal Gene Transfer within and between Species of Coagulase-Negative Staphylococcus. Genome Biol Evol 2021; 13:evab206. [PMID: 34498042 PMCID: PMC8462280 DOI: 10.1093/gbe/evab206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
Members of the gram-positive bacterial genus Staphylococcus have historically been classified into coagulase-positive Staphylococcus (CoPS) and coagulase-negative Staphylococcus (CoNS) based on the diagnostic presentation of the coagulase protein. Previous studies have noted the importance of horizontal gene transfer (HGT) and recombination in the more well-known CoPS species Staphylococcus aureus, yet little is known of the contributions of these processes in CoNS evolution. In this study, we aimed to elucidate the phylogenetic relationships, genomic characteristics, and frequencies of HGT in CoNS, which are now being recognized as major opportunistic pathogens of humans. We compiled a data set of 1,876 publicly available named CoNS genomes. These can be delineated into 55 species based on allele differences in 462 core genes and variation in accessory gene content. CoNS species are a reservoir of transferrable genes associated with resistance to diverse classes of antimicrobials. We also identified nine types of the mobile genetic element SCCmec, which carries the methicillin resistance determinant mecA. Other frequently transferred genes included those associated with resistance to heavy metals, surface-associated proteins related to virulence and biofilm formation, type VII secretion system, iron capture, recombination, and metabolic enzymes. The highest frequencies of receipt and donation of recombined DNA fragments were observed in Staphylococcus capitis, Staphylococcus caprae, Staphylococcus hominis, Staphylococcus haemolyticus, and members of the Saprophyticus species group. The variable rates of recombination and biases in transfer partners imply that certain CoNS species function as hubs of gene flow and major reservoir of genetic diversity for the entire genus.
Collapse
Affiliation(s)
- Joshua T Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| |
Collapse
|
48
|
Pickering AC, Yebra G, Gong X, Goncheva MI, Wee BA, MacFadyen AC, Muehlbauer LF, Alves J, Cartwright RA, Paterson GK, Fitzgerald JR. Evolutionary and Functional Analysis of Coagulase Positivity among the Staphylococci. mSphere 2021; 6:e0038121. [PMID: 34346700 PMCID: PMC8386474 DOI: 10.1128/msphere.00381-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
The bacterial genus Staphylococcus comprises a large group of pathogenic and nonpathogenic species associated with an array of host species. Staphylococci are differentiated into coagulase-positive or coagulase-negative groups based on the capacity to promote clotting of plasma, a phenotype historically associated with the ability to cause disease. However, the genetic basis of this important diagnostic and pathogenic trait across the genus has not been examined to date. Here, we selected 54 representative staphylococcal species and subspecies to examine coagulation of plasma derived from six representative host species. In total, 13 staphylococcal species mediated coagulation of plasma from at least one host species including one previously identified as coagulase negative (Staphylococcus condimenti). Comparative genomic analysis revealed that coagulase activity correlated with the presence of a gene (vwb) encoding the von Willebrand binding protein (vWbp) whereas only the Staphylococcus aureus complex contained a gene encoding staphylocoagulase (Coa), the classical mediator of coagulation. Importantly, S. aureus retained vwb-dependent coagulase activity in an S. aureus strain deleted for coa whereas deletion of vwb in Staphylococcus pseudintermedius resulted in loss of coagulase activity. Whole-genome-based phylogenetic reconstruction of the Staphylococcus genus revealed that the vwb gene has been acquired on at least four different occasions during the evolution of the Staphylococcus genus followed by allelic diversification via mutation and recombination. Allelic variants of vWbp from selected coagulase-positive staphylococci mediated coagulation in a host-dependent manner indicative of host-adaptive evolution. Taken together, we have determined the genetic and evolutionary basis of staphylococcal coagulation, revealing vWbp to be its archetypal determinant. IMPORTANCE The ability of some species of staphylococci to promote coagulation of plasma is a key pathogenic and diagnostic trait. Here, we provide a comprehensive analysis of the coagulase positivity of the staphylococci and its evolutionary genetic basis. We demonstrate that the von Willebrand binding protein rather than staphylocoagulase is the archetypal coagulation factor of the staphylococci and that the vwb gene has been acquired several times independently during the evolution of the staphylococci. Subsequently, vwb has undergone adaptive diversification to facilitate host-specific functionality. Our findings provide important insights into the evolution of pathogenicity among the staphylococci and the genetic basis for a defining diagnostic phenotype.
Collapse
Affiliation(s)
- Amy C. Pickering
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Gonzalo Yebra
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Xiangyu Gong
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Mariya I. Goncheva
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Bryan A. Wee
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Alison C. MacFadyen
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Lukas F. Muehlbauer
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Joana Alves
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Robyn A. Cartwright
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Gavin K. Paterson
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| |
Collapse
|
49
|
Accounting for the Biological Complexity of Pathogenic Fungi in Phylogenetic Dating. J Fungi (Basel) 2021; 7:jof7080661. [PMID: 34436200 PMCID: PMC8400180 DOI: 10.3390/jof7080661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
In the study of pathogen evolution, temporal dating of phylogenies provides information on when species and lineages may have diverged in the past. When combined with spatial and epidemiological data in phylodynamic models, these dated phylogenies can also help infer where and when outbreaks occurred, how pathogens may have spread to new geographic locations and/or niches, and how virulence or drug resistance has developed over time. Although widely applied to viruses and, increasingly, to bacterial pathogen outbreaks, phylogenetic dating is yet to be widely used in the study of pathogenic fungi. Fungi are complex organisms with several biological processes that could present issues with appropriate inference of phylogenies, clock rates, and divergence times, including high levels of recombination and slower mutation rates although with potentially high levels of mutation rate variation. Here, we discuss some of the key methodological challenges in accurate phylogeny reconstruction for fungi in the context of the temporal analyses conducted to date and make recommendations for future dating studies to aid development of a best practices roadmap in light of the increasing threat of fungal outbreaks and antifungal drug resistance worldwide.
Collapse
|
50
|
D'Aeth JC, van der Linden MPG, McGee L, de Lencastre H, Turner P, Song JH, Lo SW, Gladstone RA, Sá-Leão R, Ko KS, Hanage WP, Breiman RF, Beall B, Bentley SD, Croucher NJ. The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci. eLife 2021; 10:e67113. [PMID: 34259624 PMCID: PMC8321556 DOI: 10.7554/elife.67113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
Collapse
Affiliation(s)
- Joshua C D'Aeth
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Mark PG van der Linden
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital RWTH AachenAachenGermany
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Herminia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller UniversityNew YorkUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Jae-Hoon Song
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - Stephanie W Lo
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rebecca A Gladstone
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Robert F Breiman
- Department of Global Health, Rollins School of Public Health, Emory UniversityAtlantaUnited States
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|