1
|
Iarovaia OV, Ulianov SV, Ioudinkova ES, Razin SV. Segregation of α- and β-Globin Gene Cluster in Vertebrate Evolution: Chance or Necessity? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1035-1049. [PMID: 36180994 DOI: 10.1134/s0006297922090140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The review is devoted to the patterns of evolution of α- and β-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/β-globin genes in Amniota occurred due to the performance by α-globins and β-globins of non-canonical functions not related to oxygen transport.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Elena S Ioudinkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
2
|
Metikala S, Casie Chetty S, Sumanas S. Single-cell transcriptome analysis of the zebrafish embryonic trunk. PLoS One 2021; 16:e0254024. [PMID: 34234366 PMCID: PMC8263256 DOI: 10.1371/journal.pone.0254024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/17/2021] [Indexed: 11/27/2022] Open
Abstract
During embryonic development, cells differentiate into a variety of distinct cell types and subtypes with diverse transcriptional profiles. To date, transcriptomic signatures of different cell lineages that arise during development have been only partially characterized. Here we used single-cell RNA-seq to perform transcriptomic analysis of over 20,000 cells disaggregated from the trunk region of zebrafish embryos at the 30 hpf stage. Transcriptional signatures of 27 different cell types and subtypes were identified and annotated during this analysis. This dataset will be a useful resource for many researchers in the fields of developmental and cellular biology and facilitate the understanding of molecular mechanisms that regulate cell lineage choices during development.
Collapse
Affiliation(s)
- Sanjeeva Metikala
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL, United States of America
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
3
|
Razin SV, Ioudinkova ES, Kantidze OL, Iarovaia OV. Co-Regulated Genes and Gene Clusters. Genes (Basel) 2021; 12:907. [PMID: 34208174 PMCID: PMC8230824 DOI: 10.3390/genes12060907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
There are many co-regulated genes in eukaryotic cells. The coordinated activation or repression of such genes occurs at specific stages of differentiation, or under the influence of external stimuli. As a rule, co-regulated genes are dispersed in the genome. However, there are also gene clusters, which contain paralogous genes that encode proteins with similar functions. In this aspect, they differ significantly from bacterial operons containing functionally linked genes that are not paralogs. In this review, we discuss the reasons for the existence of gene clusters in vertebrate cells and propose that clustering is necessary to ensure the possibility of selective activation of one of several similar genes.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena S. Ioudinkova
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| | - Omar L. Kantidze
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| | - Olga V. Iarovaia
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| |
Collapse
|
4
|
Petrova NV, Klimenko NS, Kovina AP, Ioudinkova ES, Gavrilov AA, Iarovaia OV, Razin SV. Mechanisms mediating suppression of globin gene transcription in Danio rerio nonerythroid cells. Biochimie 2020; 181:96-99. [PMID: 33321129 DOI: 10.1016/j.biochi.2020.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022]
Abstract
We studied the repression of adult and embryo-larval genes of the major globin gene locus in D. rerio fibroblasts. The results obtained suggest that at least some of the globin genes are repressed by Polycomb, similarly to human α-globin genes. Furthermore, within two α/β globin gene pairs, repression of α-type and β-type genes appears to be mediated by different mechanisms, as increasing the level of histone acetylation can activate transcription of only β-type genes.
Collapse
Affiliation(s)
- Natalia V Petrova
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova, Moscow, 119334, Russia
| | - Natalia S Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova, Moscow, 119334, Russia
| | - Anastasia P Kovina
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova, Moscow, 119334, Russia
| | - Elena S Ioudinkova
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova, Moscow, 119334, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova, Moscow, 119334, Russia
| | - Olga V Iarovaia
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova, Moscow, 119334, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova, Moscow, 119334, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Building 12, 119234, Moscow, Russia.
| |
Collapse
|
5
|
Golov AK, Ulianov SV, Luzhin AV, Kalabusheva EP, Kantidze OL, Flyamer IM, Razin SV, Gavrilov AA. C-TALE, a new cost-effective method for targeted enrichment of Hi-C/3C-seq libraries. Methods 2019; 170:48-60. [PMID: 31252062 DOI: 10.1016/j.ymeth.2019.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/22/2019] [Indexed: 11/17/2022] Open
Abstract
Studies performed using Hi-C and other high-throughput whole-genome C-methods have demonstrated that 3D organization of eukaryotic genomes is functionally relevant. Unfortunately, ultra-deep sequencing of Hi-C libraries necessary to detect loop structures in large vertebrate genomes remains rather expensive. However, many studies are in fact aimed at determining the fine-scale 3D structure of comparatively small genomic regions up to several Mb in length. Such studies typically focus on the spatial structure of domains of coregulated genes, molecular mechanisms of loop formation, and interrogation of functional significance of GWAS-revealed polymorphisms. Therefore, a handful of molecular techniques based on Hi-C have been developed to address such issues. These techniques commonly rely on in-solution hybridization of Hi-C/3C-seq libraries with pools of biotinylated baits covering the region of interest, followed by deep sequencing of the enriched library. Here, we describe a new protocol of this kind, C-TALE (Chromatin TArget Ligation Enrichment). Preparation of hybridization probes from bacterial artificial chromosomes and an additional round of enrichment make C-TALE a cost-effective alternative to existing many-versus-all C-methods.
Collapse
Affiliation(s)
- Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Mental Health Research Center, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Artem V Luzhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina P Kalabusheva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Research Institute of Translational Medicine, Department of Regenerative Medicine, Moscow, Russia
| | - Omar L Kantidze
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Wang X, Zhou T, Wunderlich Z, Maurano MT, DePace AH, Nuzhdin SV, Rohs R. Analysis of Genetic Variation Indicates DNA Shape Involvement in Purifying Selection. Mol Biol Evol 2019; 35:1958-1967. [PMID: 29850830 PMCID: PMC6063282 DOI: 10.1093/molbev/msy099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Noncoding DNA sequences, which play various roles in gene expression and regulation, are under evolutionary pressure. Gene regulation requires specific protein–DNA binding events, and our previous studies showed that both DNA sequence and shape readout are employed by transcription factors (TFs) to achieve DNA binding specificity. By investigating the shape-disrupting properties of single nucleotide polymorphisms (SNPs) in human regulatory regions, we established a link between disruptive local DNA shape changes and loss of specific TF binding. Furthermore, we described cases where disease-associated SNPs may alter TF binding through DNA shape changes. This link led us to hypothesize that local DNA shape within and around TF binding sites is under selection pressure. To verify this hypothesis, we analyzed SNP data derived from 216 natural strains of Drosophila melanogaster. Comparing SNPs located in functional and nonfunctional regions within experimentally validated cis-regulatory modules (CRMs) from D. melanogaster that are active in the blastoderm stage of development, we found that SNPs within functional regions tended to cause smaller DNA shape variations. Furthermore, SNPs with higher minor allele frequency were more likely to result in smaller DNA shape variations. The same analysis based on a large number of SNPs in putative CRMs of the D. melanogaster genome derived from DNase I accessibility data confirmed these observations. Taken together, our results indicate that common SNPs in functional regions tend to maintain DNA shape, whereas shape-disrupting SNPs are more likely to be eliminated through purifying selection.
Collapse
Affiliation(s)
- Xiaofei Wang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Tianyin Zhou
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA
| | - Matthew T Maurano
- Institute for Systems Genetics, New York University Medical Center, New York, NY
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Sergey V Nuzhdin
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA.,Departments of Chemistry, Physics and Astronomy, and Computer Science, University of Southern California, Los Angeles, CA
| |
Collapse
|
7
|
Scherrer K. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Exp Cell Res 2018; 373:1-33. [PMID: 30266658 DOI: 10.1016/j.yexcr.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
The main purpose of this review is to recall for investigators - and in particular students -, some of the early data and concepts in molecular genetics and biology that are rarely cited in the current literature and are thus invariably overlooked. There is a growing tendency among editors and reviewers to consider that only data produced in the last 10-20 years or so are pertinent. However this is not the case. In exact science, sound data and lucid interpretation never become obsolete, and even if forgotten, will resurface sooner or later. In the field of gene expression, covered in the present review, recent post-genomic data have indeed confirmed many of the earlier results and concepts developed in the mid-seventies, well before the start of the recombinant DNA revolution. Human brains and even the most powerful computers, have difficulty in handling and making sense of the overwhelming flow of data generated by recent high-throughput technologies. This was easier when low throughput, more integrative methods based on biochemistry and microscopy dominated biological research. Nowadays, the need for organising concepts is ever more important, otherwise the mass of available data can generate only "building ruins" - the bricks without an architect. Concepts such as pervasive transcription of genomes, large genomic domains, full domain transcripts (FDTs) up to 100 kb long, the prevalence of post-transcriptional events in regulating eukaryotic gene expression, and the 3D-genome architecture, were all developed and discussed before 1990, and are only now coming back into vogue. Thus, to review the impact of earlier concepts on later developments in the field, I will confront former and current data and ideas, including a discussion of old and new methods. Whenever useful, I shall first briefly report post-genomic developments before addressing former results and interpretations. Equally important, some of the terms often used sloppily in scientific discussions will be clearly defined. As a basis for the ensuing discussion, some of the issues and facts related to eukaryotic gene expression will first be introduced. In chapter 2 the evolution in perception of biology over the last 60 years and the impact of the recombinant DNA revolution will be considered. Then, in chapter 3 data and theory concerning the genome, gene expression and genetics will be reviewed. The experimental and theoretical definition of the gene will be discussed before considering the 3 different types of genetic information - the "Triad" - and the importance of post-transcriptional regulation of gene expression in the light of the recent finding that 90% of genomic DNA seems to be transcribed. Some previous attempts to provide a conceptual framework for these observations will be recalled, in particular the "Cascade Regulation Hypothesis" (CRH) developed in 1967-85, and the "Gene and Genon" concept proposed in 2007. A knowledge of the size of primary transcripts is of prime importance, both for experimental and theoretical reasons, since these molecules represent the primary units of the "RNA genome" on which most of the post-transcriptional regulation of gene expression occurs. In chapter 4, I will first discuss some current post-genomic topics before summarising the discovery of the high Mr-RNA transcripts, and the investigation of their processing spanning the last 50 years. Since even today, a consensus concerning the real form of primary transcripts in eukaryotic cells has not yet been reached, I will refer to the viral and specialized cellular models which helped early on to understand the mechanisms of RNA processing and differential splicing which operate in cells and tissues. As a well-studied example of expression and regulation of a specific cellular gene in relation to differentiation and pathology, I will discuss the early and recent work on expression of the globin genes in nucleated avian erythroblasts. An important concept is that the primary transcript not only embodies protein-coding information and regulation of its expression, but also the 3D-structure of the genomic DNA from which it was derived. The wealth of recent post-genomic data published in this field emphasises the importance of a fundamental principle of genome organisation and expression that has been overlooked for years even though it was already discussed in the 1970-80ties. These issues are addressed in chapter 5 which focuses on the involvement of the nuclear matrix and nuclear architecture in DNA and RNA biology. This section will make reference to the Unified Matrix Hypothesis (UMH), which was the first molecular model of the 3D organisation of DNA and RNA. The chapter on the "RNA-genome and peripheral memories" discusses experimental data on the ribonucleoprotein complexes containing pre-mRNA (pre-mRNPs) and mRNA (mRNPs) which are organised in nuclear and cytoplasmic spaces respectively. Finally, "Outlook " will enumerate currently unresolved questions in the field, and will propose some ideas that may encourage further investigation, and comprehension of available experimental data still in need of interpretation. In chapter 8, some propositions and paradigms basic to the authors own analysis are discussed. "In conclusion" the raison d'être of this review is recalled and positioned within the overall framework of scientific endeavour.
Collapse
Affiliation(s)
- Klaus Scherrer
- Institute Jacques Monod, CNRS, University Paris Diderot, Paris, France.
| |
Collapse
|
8
|
Caspermeyer J. Principles of 3D Genome Folding and Gene Expression Studied across Species. Mol Biol Evol 2017; 34:1548. [DOI: 10.1093/molbev/msx130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|