1
|
Terpis KX, Salomaki ED, Barcytė D, Pánek T, Verbruggen H, Kolisko M, Bailey JC, Eliáš M, Lane CE. Multiple plastid losses within photosynthetic stramenopiles revealed by comprehensive phylogenomics. Curr Biol 2025; 35:483-499.e8. [PMID: 39793566 DOI: 10.1016/j.cub.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
Ochrophyta is a vast and morphologically diverse group of algae with complex plastids, including familiar taxa with fundamental ecological importance (diatoms or kelp) and a wealth of lesser-known and obscure organisms. The sheer diversity of ochrophytes poses a challenge for reconstructing their phylogeny, with major gaps in sampling and an unsettled placement of particular taxa yet to be tackled. We sequenced transcriptomes from 25 strategically selected representatives and used these data to build the most taxonomically comprehensive ochrophyte-centered phylogenomic supermatrix to date. We employed a combination of approaches to reconstruct and critically evaluate the relationships among ochrophytes. While generally congruent with previous analyses, the updated ochrophyte phylogenomic tree resolved the position of several taxa with previously uncertain placement and supported a redefinition of the classes Picophagea and Synchromophyceae. Our results indicated that the heterotrophic, plastid-lacking heliozoan Actinophrys sol is not a sister lineage of ochrophytes, as proposed recently, but rather phylogenetically nested among them, implying that it lacks a plastid due to loss. In addition, we found the heterotrophic ochrophyte Picophagus flagellatus to lack all hallmark plastid genes yet to exhibit mitochondrial proteins that seem to be genetic footprints of a lost plastid organelle. We thus document, for the first time, plastid loss in two separate ochrophyte lineages. Furthermore, by exploring eDNA data, we enrich the ochrophyte phylogenetic tree by identifying five novel uncultured class-level lineages. Altogether, our study provides a new framework for reconstructing trait evolution in ochrophytes and demonstrates that plastid loss is more common than previously thought.
Collapse
Affiliation(s)
- Kristina X Terpis
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Eric D Salomaki
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; Department of Zoology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin Kolisko
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - J Craig Bailey
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
2
|
Barcytė D, Jaške K, Pánek T, Yurchenko T, Ševčíková T, Eliášová A, Eliáš M. A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology. Open Biol 2024; 14:240022. [PMID: 39474867 PMCID: PMC11528492 DOI: 10.1098/rsob.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024] Open
Abstract
Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2,128 43, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Anežka Eliášová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| |
Collapse
|
3
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
4
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Methods Mol Biol 2024; 2776:21-41. [PMID: 38502496 DOI: 10.1007/978-1-0716-3726-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Collapse
Affiliation(s)
- Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Yamada N, Lepetit B, Mann DG, Sprecher BN, Buck JM, Bergmann P, Kroth PG, Bolton JJ, Dąbek P, Witkowski A, Kim SY, Trobajo R. Prey preference in a kleptoplastic dinoflagellate is linked to photosynthetic performance. THE ISME JOURNAL 2023; 17:1578-1588. [PMID: 37391621 PMCID: PMC10504301 DOI: 10.1038/s41396-023-01464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Dinoflagellates of the family Kryptoperidiniaceae, known as "dinotoms", possess diatom-derived endosymbionts and contain individuals at three successive evolutionary stages: a transiently maintained kleptoplastic stage; a stage containing multiple permanently maintained diatom endosymbionts; and a further permanent stage containing a single diatom endosymbiont. Kleptoplastic dinotoms were discovered only recently, in Durinskia capensis; until now it has not been investigated kleptoplastic behavior and the metabolic and genetic integration of host and prey. Here, we show D. capensis is able to use various diatom species as kleptoplastids and exhibits different photosynthetic capacities depending on the diatom species. This is in contrast with the prey diatoms in their free-living stage, as there are no differences in their photosynthetic capacities. Complete photosynthesis including both the light reactions and the Calvin cycle remain active only when D. capensis feeds on its habitual associate, the "essential" diatom Nitzschia captiva. The organelles of another edible diatom, N. inconspicua, are preserved intact after ingestion by D. capensis and expresses the psbC gene of the photosynthetic light reaction, while RuBisCO gene expression is lost. Our results indicate that edible but non-essential, "supplemental" diatoms are used by D. capensis for producing ATP and NADPH, but not for carbon fixation. D. capensis has established a species-specifically designed metabolic system allowing carbon fixation to be performed only by its essential diatoms. The ability of D. capensis to ingest supplemental diatoms as kleptoplastids may be a flexible ecological strategy, to use these diatoms as "emergency supplies" while no essential diatoms are available.
Collapse
Affiliation(s)
- Norico Yamada
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Bernard Lepetit
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David G Mann
- Marine and Continental Waters Program, Institute for Food and Agricultural Research and Technology, La Ràpita, Spain
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Jochen M Buck
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paavo Bergmann
- Electron Microscopy Centre, University of Konstanz, Konstanz, Germany
| | - Peter G Kroth
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - John J Bolton
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - So-Yeon Kim
- Department of Oceanography, Kunsan National University, Gunsan, Republic of Korea
| | - Rosa Trobajo
- Marine and Continental Waters Program, Institute for Food and Agricultural Research and Technology, La Ràpita, Spain
| |
Collapse
|
6
|
Kato K, Yahata K, Nakayama T. Taxonomy of a New Parasitic Euglenid, Euglenaformis parasitica sp. nov. (Euglenales, Euglenaceae) in Ostracods and Rhabdocoels. Protist 2023; 174:125967. [PMID: 37437401 DOI: 10.1016/j.protis.2023.125967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 07/14/2023]
Abstract
Parasitic euglenids have rarely been studied. We found parasitic euglenids in two species of ostracods (Cyprinotus cassidula, Dolerocypris sinensis) and two species of rhabdocoels (Mesostoma lingua, Microdalyellia armigera) in a rice field. These parasites grew and proliferated inside the host body. These parasites had pellicle strips, one emergent flagellum, and a red stigma, but no chloroplasts, and showed euglenoid movement. Inside the living host, they did not have emergent flagella and moved only by euglenoid movement, but when the host died or the parasites were isolated from the host, they extended their flagella and switched to swimming movement. We conclude that the parasites found in the four hosts that we examined are of the same species, considering the morphological characteristics and identities in the nSSU and nLSU rDNA sequences of those parasites. Molecular phylogenetic analysis showed that the parasite formed a clade with the free-living photoautotrophic species of Euglenaformis, with moderate statistical support. Therefore, the parasite is a secondary osmotroph derived from a photoautotrophic ancestor. Based on the results of morphological observation and molecular phylogenetic analysis, we propose a new species of parasitic euglenid, Euglenaformis parasitica sp. nov.
Collapse
Affiliation(s)
- Koichiro Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan; Aoyama Gakuin Junior High School, 4-4-25 Shibuya, Shibuya, Tokyo 150-8366, Japan
| | - Kensuke Yahata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takeshi Nakayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
7
|
Kamikawa R, Mochizuki T, Sakamoto M, Tanizawa Y, Nakayama T, Onuma R, Cenci U, Moog D, Speak S, Sarkozi K, Toseland A, van Oosterhout C, Oyama K, Kato M, Kume K, Kayama M, Azuma T, Ishii KI, Miyashita H, Henrissat B, Lombard V, Win J, Kamoun S, Kashiyama Y, Mayama S, Miyagishima SY, Tanifuji G, Mock T, Nakamura Y. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida. SCIENCE ADVANCES 2022; 8:eabi5075. [PMID: 35486731 PMCID: PMC9054022 DOI: 10.1126/sciadv.abi5075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Secondary loss of photosynthesis is observed across almost all plastid-bearing branches of the eukaryotic tree of life. However, genome-based insights into the transition from a phototroph into a secondary heterotroph have so far only been revealed for parasitic species. Free-living organisms can yield unique insights into the evolutionary consequence of the loss of photosynthesis, as the parasitic lifestyle requires specific adaptations to host environments. Here, we report on the diploid genome of the free-living diatom Nitzschia putrida (35 Mbp), a nonphotosynthetic osmotroph whose photosynthetic relatives contribute ca. 40% of net oceanic primary production. Comparative analyses with photosynthetic diatoms and heterotrophic algae with parasitic lifestyle revealed that a combination of gene loss, the accumulation of genes involved in organic carbon degradation, a unique secretome, and the rapid divergence of conserved gene families involved in cell wall and extracellular metabolism appear to have facilitated the lifestyle of a free-living secondary heterotroph.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takako Mochizuki
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Takuro Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Onuma
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Ugo Cenci
- Université de Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Samuel Speak
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Krisztina Sarkozi
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kaori Oyama
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Misako Kato
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Keitaro Kume
- Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ken-ichiro Ishii
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yuichiro Kashiyama
- Graduate School of Engineering, Fukui University of Technology, Fukui, Japan
| | - Shigeki Mayama
- Advanced Support Center for Science Teachers, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| |
Collapse
|
8
|
Azuma T, Pánek T, Tice AK, Kayama M, Kobayashi M, Miyashita H, Suzaki T, Yabuki A, Brown MW, Kamikawa R. An enigmatic stramenopile sheds light on early evolution in Ochrophyta plastid organellogenesis. Mol Biol Evol 2022; 39:6555011. [PMID: 35348760 PMCID: PMC9004409 DOI: 10.1093/molbev/msac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions.
Collapse
Affiliation(s)
- Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Japan
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake cho, Sakyo ku, Kyoto, Kyoto, Japan
| |
Collapse
|
9
|
Hammond M, Dorrell RG, Speijer D, Lukeš J. Eukaryotic cellular intricacies shape mitochondrial proteomic complexity. Bioessays 2022; 44:e2100258. [PMID: 35318703 DOI: 10.1002/bies.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
Mitochondria have been fundamental to the eco-physiological success of eukaryotes since the last eukaryotic common ancestor (LECA). They contribute essential functions to eukaryotic cells, above and beyond classical respiration. Mitochondria interact with, and complement, metabolic pathways occurring in other organelles, notably diversifying the chloroplast metabolism of photosynthetic organisms. Here, we integrate existing literature to investigate how mitochondrial metabolism varies across the landscape of eukaryotic evolution. We illustrate the mitochondrial remodelling and proteomic changes undergone in conjunction with major evolutionary transitions. We explore how the mitochondrial complexity of the LECA has been remodelled in specific groups to support subsequent evolutionary transitions, such as the acquisition of chloroplasts in photosynthetic species and the emergence of multicellularity. We highlight the versatile and crucial roles played by mitochondria during eukaryotic evolution, extending from its huge contribution to the development of the LECA itself to the dynamic evolution of individual eukaryote groups, reflecting both their current ecologies and evolutionary histories.
Collapse
Affiliation(s)
- Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Richard G Dorrell
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Dave Speijer
- Medical Biochemistry, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
10
|
Pánek T, Barcytė D, Treitli SC, Záhonová K, Sokol M, Ševčíková T, Zadrobílková E, Jaške K, Yubuki N, Čepička I, Eliáš M. A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biol 2022; 20:66. [PMID: 35296310 PMCID: PMC8928634 DOI: 10.1186/s12915-022-01263-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Background The plastid genomes of the green algal order Chlamydomonadales tend to expand their non-coding regions, but this phenomenon is poorly understood. Here we shed new light on organellar genome evolution in Chlamydomonadales by studying a previously unknown non-photosynthetic lineage. We established cultures of two new Polytoma-like flagellates, defined their basic characteristics and phylogenetic position, and obtained complete organellar genome sequences and a transcriptome assembly for one of them. Results We discovered a novel deeply diverged chlamydomonadalean lineage that has no close photosynthetic relatives and represents an independent case of photosynthesis loss. To accommodate these organisms, we establish the new genus Leontynka, with two species (L. pallida and L. elongata) distinguishable through both their morphological and molecular characteristics. Notable features of the colourless plastid of L. pallida deduced from the plastid genome (plastome) sequence and transcriptome assembly include the retention of ATP synthase, thylakoid-associated proteins, the carotenoid biosynthesis pathway, and a plastoquinone-based electron transport chain, the latter two modules having an obvious functional link to the eyespot present in Leontynka. Most strikingly, the ~362 kbp plastome of L. pallida is by far the largest among the non-photosynthetic eukaryotes investigated to date due to an extreme proliferation of sequence repeats. These repeats are also present in coding sequences, with one repeat type found in the exons of 11 out of 34 protein-coding genes, with up to 36 copies per gene, thus affecting the encoded proteins. The mitochondrial genome of L. pallida is likewise exceptionally large, with its >104 kbp surpassed only by the mitogenome of Haematococcus lacustris among all members of Chlamydomonadales hitherto studied. It is also bloated with repeats, though entirely different from those in the L. pallida plastome, which contrasts with the situation in H. lacustris where both the organellar genomes have accumulated related repeats. Furthermore, the L. pallida mitogenome exhibits an extremely high GC content in both coding and non-coding regions and, strikingly, a high number of predicted G-quadruplexes. Conclusions With its unprecedented combination of plastid and mitochondrial genome characteristics, Leontynka pushes the frontiers of organellar genome diversity and is an interesting model for studying organellar genome evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01263-w.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic
| | - Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 42, Vestec, Czech Republic
| | - Kristína Záhonová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Martin Sokol
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic
| | - Naoji Yubuki
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic.,Bioimaging Facility, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 00, Ostrava, Czech Republic.
| |
Collapse
|
11
|
Chen Z, Chen Z, Zhu J, He J, Liu Q, Zhu H, Lei A, Wang J. Proteomic Responses of Dark-Adapted Euglena gracilis and Bleached Mutant Against Light Stimuli. Front Bioeng Biotechnol 2022; 10:843414. [PMID: 35309998 PMCID: PMC8927018 DOI: 10.3389/fbioe.2022.843414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Euglena gracilis (E. gracilis) has secondary endosymbiotic chloroplasts derived from ancient green algae. Its chloroplasts are easily lost under numerous conditions to become permanently bleached mutants. Green cells adapted in the dark contain undeveloped proplastids and they will develop into mature chloroplasts after 3 days of light exposure. Thus, E. gracilis is an ideal model species for a chloroplast development study. Previous studies about chloroplast development in E. gracilis focused on morphology and physiology, whereas few studies have addressed the regulatory processes induced by light in the proteome. In this study, the whole-genome proteome of dark-adapted E. gracilis (WT) and permanently ofloxacin-bleached mutant (B2) was compared under the light exposure after 0, 12, and 72 h. The results showed that the photosynthesis-related proteins were up-regulated over time in both WT and B2. The B2 strain, with losing functional chloroplasts, seemed to possess a complete photosynthetic function system. Both WT and B2 exhibited significant light responses with similar alternation patterns, suggesting the sensitive responses to light in proteomic levels. The main metabolic activities for the utilization of carbon and energy in WT were up-regulated, while the proteins with calcium ion binding, cell cycle, and non-photosynthetic carbon fixation were down-regulated in B2. This study confirmed light-induced chloroplast development in WT from dark, and also for the first time investigates the light responses of a bleached mutant B2, providing more information about the unknown functions of residual plastids in Euglena bleached mutants.
Collapse
Affiliation(s)
- Zhenfan Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi Zhu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Hui Zhu
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Jiangxin Wang,
| |
Collapse
|
12
|
Onyshchenko A, Roberts WR, Ruck EC, Lewis JA, Alverson AJ. The genome of a nonphotosynthetic diatom provides insights into the metabolic shift to heterotrophy and constraints on the loss of photosynthesis. THE NEW PHYTOLOGIST 2021; 232:1750-1764. [PMID: 34379807 PMCID: PMC9292941 DOI: 10.1111/nph.17673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
Although most of the tens of thousands of diatom species are photoautotrophs, a small number of heterotrophic species no longer photosynthesize. We sequenced the genome of a nonphotosynthetic diatom, Nitzschia Nitz4, to determine how carbon metabolism was altered in the wake of this trophic shift. Nitzschia Nitz4 has retained its plastid and plastid genome, but changes associated with the transition to heterotrophy were cellular-wide and included losses of photosynthesis-related genes from the nuclear and plastid genomes, elimination of isoprenoid biosynthesis in the plastid, and remodeling of mitochondrial glycolysis to maximize adenosine triphosphte (ATP) yield. The genome contains a β-ketoadipate pathway that may allow Nitzschia Nitz4 to metabolize lignin-derived compounds. Diatom plastids lack an oxidative pentose phosphate pathway (oPPP), leaving photosynthesis as the primary source of NADPH to support essential biosynthetic pathways in the plastid and, by extension, limiting available sources of NADPH in nonphotosynthetic plastids. The genome revealed similarities between nonphotosynthetic diatoms and apicomplexan parasites for provisioning NADPH in their plastids and highlighted the ancestral absence of a plastid oPPP as a potentially important constraint on loss of photosynthesis, a hypothesis supported by the higher frequency of transitions to parasitism or heterotrophy in lineages that have a plastid oPPP.
Collapse
Affiliation(s)
- Anastasiia Onyshchenko
- Department of Biological SciencesUniversity of Arkansas1 University of ArkansasFayettevilleAR72701USA
| | - Wade R. Roberts
- Department of Biological SciencesUniversity of Arkansas1 University of ArkansasFayettevilleAR72701USA
| | - Elizabeth C. Ruck
- Department of Biological SciencesUniversity of Arkansas1 University of ArkansasFayettevilleAR72701USA
| | - Jeffrey A. Lewis
- Department of Biological SciencesUniversity of Arkansas1 University of ArkansasFayettevilleAR72701USA
| | - Andrew J. Alverson
- Department of Biological SciencesUniversity of Arkansas1 University of ArkansasFayettevilleAR72701USA
| |
Collapse
|
13
|
Stephens TG, Gabr A, Calatrava V, Grossman AR, Bhattacharya D. Why is primary endosymbiosis so rare? THE NEW PHYTOLOGIST 2021; 231:1693-1699. [PMID: 34018613 PMCID: PMC8711089 DOI: 10.1111/nph.17478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 05/05/2023]
Abstract
Endosymbiosis is a relationship between two organisms wherein one cell resides inside the other. This affiliation, when stable and beneficial for the 'host' cell, can result in massive genetic innovation with the foremost examples being the evolution of eukaryotic organelles, the mitochondria and plastids. Despite its critical evolutionary role, there is limited knowledge about how endosymbiosis is initially established and how host-endosymbiont biology is integrated. Here, we explore this issue, using as our model the rhizarian amoeba Paulinella, which represents an independent case of primary plastid origin that occurred c. 120 million yr ago. We propose the 'chassis and engine' model that provides a theoretical framework for understanding primary plastid endosymbiosis, potentially explaining why it is so rare.
Collapse
Affiliation(s)
- Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Arwa Gabr
- Graduate Program in Molecular Bioscience and Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Victoria Calatrava
- Department of Plant Biology, The Carnegie Institution, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA 94305, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
14
|
Abstract
The origin of plastids (chloroplasts) by endosymbiosis stands as one of the most important events in the history of eukaryotic life. The genetic, biochemical, and cell biological integration of a cyanobacterial endosymbiont into a heterotrophic host eukaryote approximately a billion years ago paved the way for the evolution of diverse algal groups in a wide range of aquatic and, eventually, terrestrial environments. Plastids have on multiple occasions also moved horizontally from eukaryote to eukaryote by secondary and tertiary endosymbiotic events. The overall picture of extant photosynthetic diversity can best be described as “patchy”: Plastid-bearing lineages are spread far and wide across the eukaryotic tree of life, nested within heterotrophic groups. The algae do not constitute a monophyletic entity, and understanding how, and how often, plastids have moved from branch to branch on the eukaryotic tree remains one of the most fundamental unsolved problems in the field of cell evolution. In this review, we provide an overview of recent advances in our understanding of the origin and spread of plastids from the perspective of comparative genomics. Recent years have seen significant improvements in genomic sampling from photosynthetic and nonphotosynthetic lineages, both of which have added important pieces to the puzzle of plastid evolution. Comparative genomics has also allowed us to better understand how endosymbionts become organelles.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Solon AJ, Mastrangelo C, Vimercati L, Sommers P, Darcy JL, Gendron EMS, Porazinska DL, Schmidt SK. Gullies and Moraines Are Islands of Biodiversity in an Arid, Mountain Landscape, Asgard Range, Antarctica. Front Microbiol 2021; 12:654135. [PMID: 34177836 PMCID: PMC8222675 DOI: 10.3389/fmicb.2021.654135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Cold, dry, and nutrient-poor, the McMurdo Dry Valleys of Antarctica are among the most extreme terrestrial environments on Earth. Numerous studies have described microbial communities of low elevation soils and streams below glaciers, while less is known about microbial communities in higher elevation soils above glaciers. We characterized microbial life in four landscape features (habitats) of a mountain in Taylor Valley. These habitats varied significantly in soil moisture and include moist soils of a (1) lateral glacial moraine, (2) gully that terminates at the moraine, and very dry soils on (3) a southeastern slope and (4) dry sites near the gully. Using rRNA gene PCR amplicon sequencing of Bacteria and Archaea (16S SSU) and eukaryotes (18S SSU), we found that all habitat types harbored significantly different bacterial and eukaryotic communities and that these differences were most apparent when comparing habitats that had macroscopically visible soil crusts (gully and moraine) to habitats with no visible crusts (near gully and slope). These differences were driven by a relative predominance of Actinobacteria and a Colpodella sp. in non-crust habitats, and by phototrophic bacteria and eukaryotes (e.g., a moss) and predators (e.g., tardigrades) in habitats with biological soil crusts (gully and moraine). The gully and moraine also had significantly higher 16S and 18S ESV richness than the other two habitat types. We further found that many of the phototrophic bacteria and eukaryotes of the gully and moraine share high sequence identity with phototrophs from moist and wet areas elsewhere in the Dry Valleys and other cold desert ecosystems. These include a Moss (Bryum sp.), several algae (e.g., a Chlorococcum sp.) and cyanobacteria (e.g., Nostoc and Phormidium spp.). Overall, the results reported here broaden the diversity of habitat types that have been studied in the Dry Valleys of Antarctica and suggest future avenues of research to more definitively understand the biogeography and factors controlling microbial diversity in this unique ecosystem.
Collapse
Affiliation(s)
- Adam J Solon
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - Claire Mastrangelo
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - John L Darcy
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado-Anschutz Medical Campus, Denver, CO, United States
| | - Eli M S Gendron
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - S K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
16
|
Tanifuji G, Kamikawa R, Moore CE, Mills T, Onodera NT, Kashiyama Y, Archibald JM, Inagaki Y, Hashimoto T. Comparative Plastid Genomics of Cryptomonas Species Reveals Fine-Scale Genomic Responses to Loss of Photosynthesis. Genome Biol Evol 2020; 12:3926-3937. [PMID: 31922581 PMCID: PMC7058160 DOI: 10.1093/gbe/evaa001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2020] [Indexed: 01/20/2023] Open
Abstract
Loss of photosynthesis is a recurring theme in eukaryotic evolution. In organisms that have lost the ability to photosynthesize, nonphotosynthetic plastids are retained because they play essential roles in processes other than photosynthesis. The unicellular algal genus Cryptomonas contains both photosynthetic and nonphotosynthetic members, the latter having lost the ability to photosynthesize on at least three separate occasions. To elucidate the evolutionary processes underlying the loss of photosynthesis, we sequenced the plastid genomes of two nonphotosynthetic strains, Cryptomonas sp. CCAC1634B and SAG977-2f, as well as the genome of the phototroph Cryptomonas curvata CCAP979/52. These three genome sequences were compared with the previously sequenced plastid genome of the nonphotosynthetic species Cryptomonas paramecium CCAP977/2a as well as photosynthetic members of the Cryptomonadales, including C. curvata FBCC300012D. Intraspecies comparison between the two C. curvata strains showed that although their genome structures are stable, the substitution rates of their genes are relatively high. Although most photosynthesis-related genes, such as the psa and psb gene families, were found to have disappeared from the nonphotosynthetic strains, at least ten pseudogenes are retained in SAG977-2f. Although gene order is roughly shared among the plastid genomes of photosynthetic Cryptomonadales, genome rearrangements are seen more frequently in the smaller genomes of the nonphotosynthetic strains. Intriguingly, the light-independent protochlorophyllide reductase comprising chlB, L, and N is retained in nonphotosynthetic SAG977-2f and CCAC1634B. On the other hand, whereas CCAP977/2a retains ribulose-1,5-bisphosphate carboxylase/oxygenase-related genes, including rbcL, rbcS, and cbbX, the plastid genomes of the other two nonphotosynthetic strains have lost the ribulose-1,5-bisphosphate carboxylase/oxygenase protein-coding genes.
Collapse
Affiliation(s)
- Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Christa E Moore
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tyler Mills
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Naoko T Onodera
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuichiro Kashiyama
- Department of Applied Chemistry and Food Science, Fukui University of Technology, Fukui, Japan
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Abstract
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Collapse
|
18
|
Kayama M, Chen JF, Nakada T, Nishimura Y, Shikanai T, Azuma T, Miyashita H, Takaichi S, Kashiyama Y, Kamikawa R. A non-photosynthetic green alga illuminates the reductive evolution of plastid electron transport systems. BMC Biol 2020; 18:126. [PMID: 32938439 PMCID: PMC7495860 DOI: 10.1186/s12915-020-00853-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/21/2020] [Indexed: 11/12/2022] Open
Abstract
Background Plastid electron transport systems are essential not only for photosynthesis but also for dissipating excess reducing power and sinking excess electrons generated by various redox reactions. Although numerous organisms with plastids have lost their photoautotrophic lifestyles, there is a spectrum of known functions of remnant plastids in non-photosynthetic algal/plant lineages; some of non-photosynthetic plastids still retain diverse metabolic pathways involving redox reactions while others, such as apicoplasts of apicomplexan parasites, possess highly reduced sets of functions. However, little is known about underlying mechanisms for redox homeostasis in functionally versatile non-photosynthetic plastids and thus about the reductive evolution of plastid electron transport systems. Results Here we demonstrated that the central component for plastid electron transport systems, plastoquinone/plastoquinol pool, is still retained in a novel strain of an obligate heterotrophic green alga lacking the photosynthesis-related thylakoid membrane complexes. Microscopic and genome analyses revealed that the Volvocales green alga, chlamydomonad sp. strain NrCl902, has non-photosynthetic plastids and a plastid DNA that carries no genes for the photosynthetic electron transport system. Transcriptome-based in silico prediction of the metabolic map followed by liquid chromatography analyses demonstrated carotenoid and plastoquinol synthesis, but no trace of chlorophyll pigments in the non-photosynthetic green alga. Transient RNA interference knockdown leads to suppression of plastoquinone/plastoquinol synthesis. The alga appears to possess genes for an electron sink system mediated by plastid terminal oxidase, plastoquinone/plastoquinol, and type II NADH dehydrogenase. Other non-photosynthetic algae/land plants also possess key genes for this system, suggesting a broad distribution of an electron sink system in non-photosynthetic plastids. Conclusion The plastoquinone/plastoquinol pool and thus the involved electron transport systems reported herein might be retained for redox homeostasis and might represent an intermediate step towards a more reduced set of the electron transport system in many non-photosynthetic plastids. Our findings illuminate a broadly distributed but previously hidden step of reductive evolution of plastid electron transport systems after the loss of photosynthesis.
Collapse
Affiliation(s)
- Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Jun-Feng Chen
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Takashi Nakada
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | | - Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuichiro Kashiyama
- Graduate School of Engineering, Fukui University of Technology, Fukui, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan. .,Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake cho, Sakyo ku, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
19
|
Bakuła Z, Gromadka R, Gawor J, Siedlecki P, Pomorski JJ, Maciszewski K, Gromadka A, Karnkowska A, Jagielski T. Sequencing and Analysis of the Complete Organellar Genomes of Prototheca wickerhamii. FRONTIERS IN PLANT SCIENCE 2020; 11:1296. [PMID: 32983192 PMCID: PMC7492744 DOI: 10.3389/fpls.2020.01296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Of the Prototheca genus, Prototheca wickerhamii has the highest clinical significance in humans. However, neither nuclear nor organellar genomes of this species were sequenced until now. The hitherto determined and analyzed mitochondrial and plastid genomes of the alleged P. wickerhamii species belong in fact to another species, recently named Prototheca xanthoriae. This study provides a first insight into the organellar genomes of a true P. wickerhamii (type strain ATCC 16529). The P. wickerhamii mitochondrion had a 53.8-kb genome, which was considerably larger than that of Prototheca ciferrii (formerly Prototheca zopfii gen. 1) and Prototheca bovis (formerly Prototheca zopfii gen. 2), yet similarly functional, with the differences in size attributable to a higher number of introns and the presence of extra unique putative genes. The 48-kb plastid genome of P. wickerhamii, compared to autotrophic Trebouxiophyceae, was highly reduced due to the elimination of the photosynthesis-related genes. The gene content of the plastid genome of P. wickerhamii was, however, very similar to other colorless Prototheca species. Plastid genome-based phylogeny reinforced the polyphyly of the genus Prototheca, with Helicosporidium and Auxenochlorella branching within clades of Prototheca species. Phylogenetic reconstruction also confirmed the close relationship of P. wickerhamii and P. xanthoriae, which is reflected in the synteny of their organellar genomes. Interestingly, the entire set of atp genes was lost in P. wickerhamii plastid genome while being preserved in P. xanthoriae.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Oligonucleotides Synthesis Laboratory at the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Oligonucleotides Synthesis Laboratory at the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Siedlecki
- Department of Systems Biology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Jan J. Pomorski
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Agnieszka Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Marter P, Schmidt S, Kiontke S, Moog D. Optimized mRuby3 is a Suitable Fluorescent Protein for in vivo Co-localization Studies with GFP in the Diatom Phaeodactylum tricornutum. Protist 2020; 171:125715. [PMID: 32062589 DOI: 10.1016/j.protis.2020.125715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 11/19/2022]
Abstract
Phaeodactylum tricornutum is an ecologically and evolutionarily relevant microalga that has developed into an important model for molecular biological studies on organisms with complex plastids. The diatom is particularly suitable for in vivo protein localization analyses via fluorescence microscopy in which the green fluorescent protein (GFP) and its derivatives are dominantly used. Whereas GFP fluorescence emission is usually measured between 500 and 520nm in confocal microscopy, the autofluorescence of the P. tricornutum plastid is detected above 625nm. Here we established the fluorescent protein mRuby3 as tag for efficient in vivo protein localization studies by expressing a codon-optimized gene in P. tricornutum. mRuby3 was directed to seven different subcellular localizations by means of full-length marker protein or N-/C-terminal targeting signal fusions; its emission was detected efficiently between 580 and 605nm, being unequivocally distinguishable from the plastid autofluorescence in vivo. Moreover, mRuby3 proved to be highly suitable for co-localization experiments using confocal laser scanning microscopy in which mRuby3 fusion proteins were expressed in parallel with GFP-tagged proteins. Our results show the potential of mRuby3 for its application in studying protein targeting and localization in P. tricornutum, particularly underlining its compatibility with GFP and the plastid autofluorescence in signal detection.
Collapse
Affiliation(s)
- Pia Marter
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Sebastian Schmidt
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Stephan Kiontke
- Molecular Plant Physiology and Photobiology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany; SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35032 Marburg, Germany.
| |
Collapse
|
21
|
Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. Sci Rep 2020; 10:1167. [PMID: 31980711 PMCID: PMC6981301 DOI: 10.1038/s41598-020-58082-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
The triose phosphate transporter (TPT) is one of the prerequisites to exchange metabolites between the cytosol and plastids. In this study, we demonstrated that the four plastid TPT homologues in the non-photosynthetic diatom Nitzschia sp. NIES-3581 were highly likely integrated into plastid envelope membranes similar to counterparts in the model photosynthetic diatom Phaeodactylum tricornutum, in terms of target membranes and C-terminal orientations. Three of the four Nitzschia TPT homologues are capable of transporting various metabolites into proteo-liposomes including triose phosphates (TPs) and phosphoenolpyruvate (PEP), the transport substrates sufficient to support the metabolic pathways retained in the non-photosynthetic diatom plastid. Phylogenetic analysis of TPTs and closely related transporter proteins indicated that diatoms and other algae with red alga-derived complex plastids possess only TPT homologues but lack homologues of the glucose 6-phosphate transporter (GPT), xylulose 5-phosphate transporter (XPT), and phosphoenolpyruvate transporter (PPT). Comparative sequence analysis suggests that many TPT homologues of red alga-derived complex plastids potentially have the ability to transport mainly TPs and PEP. TPTs transporting both TPs and PEP highly likely mediate a metabolic crosstalk between a red alga-derived complex plastid and the cytosol in photosynthetic and non-photosynthetic species, which explains the lack of PPTs in all the lineages with red alga-derived complex plastids. The PEP-transporting TPTs might have emerged in an early phase of endosymbiosis between a red alga and a eukaryote host, given the broad distribution of that type of transporters in all branches of red alga-derived complex plastid-bearing lineages, and have probably played a key role in the establishment and retention of a controllable, intracellular metabolic connection in those organisms.
Collapse
|
22
|
Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. Highly Reduced Plastid Genomes of the Non-photosynthetic Dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) Are Retained for tRNA-Glu-Based Organellar Heme Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:602455. [PMID: 33329672 PMCID: PMC7728698 DOI: 10.3389/fpls.2020.602455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Organisms that have lost their photosynthetic capabilities are present in a variety of eukaryotic lineages, such as plants and disparate algal groups. Most of such non-photosynthetic eukaryotes still carry plastids, as these organelles retain essential biological functions. Most non-photosynthetic plastids possess genomes with varied protein-coding contents. Such remnant plastids are known to be present in the non-photosynthetic, bacteriovorous alga Pteridomonas danica (Dictyochophyceae, Ochrophyta), which, regardless of its obligatory heterotrophic lifestyle, has been reported to retain the typically plastid-encoded gene for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit (rbcL). The presence of rbcL without photosynthetic activity suggests that investigating the function of plastids in Pteridomonas spp. would likely bring unique insights into understanding the reductive evolution of plastids, their genomes, and plastid functions retained after the loss of photosynthesis. In this study, we demonstrate that two newly established strains of the non-photosynthetic genus Pteridomonas possess highly reduced plastid genomes lacking rbcL gene, in contrast to the previous report. Interestingly, we discovered that all plastid-encoded proteins in Pteridomonas spp. are involved only in housekeeping processes (e.g., transcription, translation and protein degradation), indicating that all metabolite synthesis pathways in their plastids are supported fully by nuclear genome-encoded proteins. Moreover, through an in-depth survey of the available transcriptomic data of another strain of the genus, we detected no candidate sequences for nuclear-encoded, plastid-directed Fe-S cluster assembly pathway proteins, suggesting complete loss of this pathway in the organelle, despite its widespread conservation in non-photosynthetic plastids. Instead, the transcriptome contains plastid-targeted components of heme biosynthesis, glycolysis, and pentose phosphate pathways. The retention of the plastid genomes in Pteridomonas spp. is not explained by the Suf-mediated constraint against loss of plastid genomes, previously proposed for Alveolates, as they lack Suf genes. Bearing all these findings in mind, we propose the hypothesis that plastid DNA is retained in Pteridomonas spp. for the purpose of providing glutamyl-tRNA, encoded by trnE gene, as a substrate for the heme biosynthesis pathway.
Collapse
Affiliation(s)
- Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- *Correspondence: Anna Karnkowska,
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Ryoma Kamikawa,
| |
Collapse
|
23
|
Muñoz-Gómez SA, Durnin K, Eme L, Paight C, Lane CE, Saffo MB, Slamovits CH. Nephromyces Represents a Diverse and Novel Lineage of the Apicomplexa That Has Retained Apicoplasts. Genome Biol Evol 2019; 11:2727-2740. [PMID: 31328784 PMCID: PMC6777426 DOI: 10.1093/gbe/evz155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to 1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, 2) search for the apicoplast genome of Nephromyces, and 3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the nonphotosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Keira Durnin
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura Eme
- Unité d'Ecologie, Sistématique et Evolution, CNRS, Université Paris-Sud, France
| | | | | | - Mary B Saffo
- Smithsonian National Museum of Natural History, Washington, District of Columbia
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
24
|
Dunn CD, Paavilainen VO. Wherever I may roam: organellar protein targeting and evolvability. Curr Opin Genet Dev 2019; 58-59:9-16. [DOI: 10.1016/j.gde.2019.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/20/2019] [Indexed: 02/08/2023]
|
25
|
Should I stay or should I go? Retention and loss of components in vestigial endosymbiotic organelles. Curr Opin Genet Dev 2019; 58-59:33-39. [PMID: 31466038 DOI: 10.1016/j.gde.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Abstract
Our knowledge on the variability of the reduced forms of endosymbiotic organelles - mitochondria and plastids - is expanding rapidly, thanks to growing interest in peculiar microbial eukaryotes, along with the availability of the methods used in modern genomics and transcriptomics. The aim of this work is to highlight the most recent advances in understanding these organelles' diversity, physiology and evolution. We also outline the known mechanisms behind the convergence of traits between organelles which have undergone reduction independently, the importance of the earliest evolutionary events in determining the vestigial organelles' eventual fate, and a proposed classification of nonphotosynthetic plastids.
Collapse
|
26
|
Jirsová D, Füssy Z, Richtová J, Gruber A, Oborník M. Morphology, Ultrastructure, and Mitochondrial Genome of the Marine Non-Photosynthetic Bicosoecid Cafileria marina Gen. et sp. nov. Microorganisms 2019; 7:microorganisms7080240. [PMID: 31387253 PMCID: PMC6723347 DOI: 10.3390/microorganisms7080240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
In this paper, we describe a novel bacteriophagous biflagellate, Cafileria marina with two smooth flagellae, isolated from material collected from a rock surface in the Kvernesfjorden (Norway). This flagellate was characterized by scanning and transmission electron microscopy, fluorescence, and light microscopy. The sequence of the small subunit ribosomal RNA gene (18S) was used as a molecular marker for determining the phylogenetic position of this organism. Apart from the nuclear ribosomal gene, the whole mitochondrial genome was sequenced, assembled, and annotated. Morphological observations show that the newly described flagellate shares key ultrastructural characters with representatives of the family Bicosoecida (Heterokonta). Intriguingly, mitochondria of C. marina frequently associate with its nucleus through an electron-dense disc at the boundary of the two compartments. The function of this association remains unclear. Phylogenetic analyses corroborate the morphological data and place C. marina with other sequence data of representatives from the family Bicosoecida. We describe C. marina as a new species from a new genus in this family.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
27
|
Onyshchenko A, Ruck EC, Nakov T, Alverson AJ. A single loss of photosynthesis in the diatom order Bacillariales (Bacillariophyta). AMERICAN JOURNAL OF BOTANY 2019; 106:560-572. [PMID: 30958893 DOI: 10.1002/ajb2.1267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY Loss of photosynthesis is a common and often repeated trajectory in nearly all major groups of photosynthetic eukaryotes. One small subset of "apochloritic" diatoms in the genus Nitzschia have lost their ability to photosynthesize and require extracellular carbon for growth. Similar to other secondarily nonphotosynthetic taxa, apochloritic diatoms maintain colorless plastids with highly reduced plastid genomes. Although the narrow taxonomic breadth of apochloritic Nitzschia suggests a single loss of photosynthesis in their common ancestor, previous phylogenetic analyses suggested that photosynthesis was lost multiple times. METHODS We analyzed genes from the nuclear, plastid, and mitochondrial genomes for a broad set of taxa to test whether photosynthesis was lost one or multiple times in Bacillariales. We also sequenced and characterized the plastid genome of a nonphotosynthetic Nitzschia species. KEY RESULTS Phylogenetic analyses showed that genes from all three genetic compartments either supported or failed to reject monophyly of apochloritic Nitzschia species, consistent with a single loss of photosynthesis in this group. The plastid genomes of two apochloritic Nitzschia are highly similar in all respects, indicating streamlining of the plastid genome before the split of these two species. CONCLUSIONS A better understanding of the phylogeny and ecology of apochloritic Nitzschia, together with emerging genomic resources, will help identify the factors that have driven and maintained the loss of photosynthesis in this group of diatoms. Finally, some habitats host diverse communities of co-occurring nonphotosynthetic diatoms, reflecting resource abundance or resource partitioning in ecologically favorable habitats.
Collapse
Affiliation(s)
- Anastasiia Onyshchenko
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Teofil Nakov
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| |
Collapse
|
28
|
Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 2019; 116:6914-6923. [PMID: 30872488 DOI: 10.1073/pnas.1819976116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The division of life into producers and consumers is blurred by evolution. For example, eukaryotic phototrophs can lose the capacity to photosynthesize, although they may retain vestigial plastids that perform other essential cellular functions. Chrysophyte algae have undergone a particularly large number of photosynthesis losses. Here, we present a plastid genome sequence from a nonphotosynthetic chrysophyte, "Spumella" sp. NIES-1846, and show that it has retained a nearly identical set of plastid-encoded functions as apicomplexan parasites. Our transcriptomic analysis of 12 different photosynthetic and nonphotosynthetic chrysophyte lineages reveals remarkable convergence in the functions of these nonphotosynthetic plastids, along with informative lineage-specific retentions and losses. At one extreme, Cornospumella fuschlensis retains many photosynthesis-associated proteins, although it appears to have lost the reductive pentose phosphate pathway and most plastid amino acid metabolism pathways. At the other extreme, Paraphysomonas lacks plastid-targeted proteins associated with gene expression and all metabolic pathways that require plastid-encoded partners, indicating a complete loss of plastid DNA in this genus. Intriguingly, some of the nucleus-encoded proteins that once functioned in the expression of the Paraphysomonas plastid genome have been retained. These proteins were likely to have been dual targeted to the plastid and mitochondria of the chrysophyte ancestor, and are uniquely targeted to the mitochondria in Paraphysomonas Our comparative analyses provide insights into the process of functional reduction in nonphotosynthetic plastids.
Collapse
|
29
|
Graupner N, Jensen M, Bock C, Marks S, Rahmann S, Beisser D, Boenigk J. Evolution of heterotrophy in chrysophytes as reflected by comparative transcriptomics. FEMS Microbiol Ecol 2019. [PMID: 29518196 PMCID: PMC6019013 DOI: 10.1093/femsec/fiy039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Shifts in the nutritional mode between phototrophy, mixotrophy and heterotrophy are a widespread phenomenon in the evolution of eukaryotic diversity. The transition between nutritional modes is particularly pronounced in chrysophytes and occurred independently several times through parallel evolution. Thus, chrysophytes provide a unique opportunity for studying the molecular basis of nutritional diversification and of the accompanying pathway reduction and degradation of plastid structures. In order to analyze the succession in switching the nutritional mode from mixotrophy to heterotrophy, we compared the transcriptome of the mixotrophic Poterioochromonas malhamensis with the transcriptomes of three obligate heterotrophic species of Ochromonadales. We used the transcriptome of P. malhamensis as a reference for plastid reduction in the heterotrophic taxa. The analyzed heterotrophic taxa were in different stages of plastid reduction. We investigated the reduction of several photosynthesis related pathways e.g. the xanthophyll cycle, the mevalonate pathway, the shikimate pathway and the tryptophan biosynthesis as well as the reduction of plastid structures and postulate a presumable succession of pathway reduction and degradation of accompanying structures.
Collapse
Affiliation(s)
- Nadine Graupner
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Manfred Jensen
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Christina Bock
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Sabina Marks
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany
| | - Daniela Beisser
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - Jens Boenigk
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany.,Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, D-45141 Essen, Germany
| |
Collapse
|
30
|
Matsuo E, Inagaki Y. Patterns in evolutionary origins of heme, chlorophyll a and isopentenyl diphosphate biosynthetic pathways suggest non-photosynthetic periods prior to plastid replacements in dinoflagellates. PeerJ 2018; 6:e5345. [PMID: 30083465 PMCID: PMC6078071 DOI: 10.7717/peerj.5345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Background The ancestral dinoflagellate most likely established a peridinin-containing plastid, which have been inherited in the extant photosynthetic descendants. However, kareniacean dinoflagellates and Lepidodinium species were known to bear “non-canonical” plastids lacking peridinin, which were established through haptophyte and green algal endosymbioses, respectively. For plastid function and maintenance, the aforementioned dinoflagellates were known to use nucleus-encoded proteins vertically inherited from the ancestral dinoflagellates (vertically inherited- or VI-type), and those acquired from non-dinoflagellate organisms (including the endosymbiont). These observations indicated that the proteomes of the non-canonical plastids derived from a haptophyte and a green alga were modified by “exogenous” genes acquired from non-dinoflagellate organisms. However, there was no systematic evaluation addressing how “exogenous” genes reshaped individual metabolic pathways localized in a non-canonical plastid. Results In this study, we surveyed transcriptomic data from two kareniacean species (Karenia brevis and Karlodinium veneficum) and Lepidodinium chlorophorum, and identified proteins involved in three plastid metabolic pathways synthesizing chlorophyll a (Chl a), heme and isoprene. The origins of the individual proteins of our interest were investigated, and we assessed how the three pathways were modified before and after the algal endosymbioses, which gave rise to the current non-canonical plastids. We observed a clear difference in the contribution of VI-type proteins across the three pathways. In both Karenia/Karlodinium and Lepidodinium, we observed a substantial contribution of VI-type proteins to the isoprene and heme biosynthesises. In sharp contrast, VI-type protein was barely detected in the Chl a biosynthesis in the three dinoflagellates. Discussion Pioneering works hypothesized that the ancestral kareniacean species had lost the photosynthetic activity prior to haptophyte endosymbiosis. The absence of VI-type proteins in the Chl a biosynthetic pathway in Karenia or Karlodinium is in good agreement with the putative non-photosynthetic nature proposed for their ancestor. The dominance of proteins with haptophyte origin in the Karenia/Karlodinium pathway suggests that their ancestor rebuilt the particular pathway by genes acquired from the endosymbiont. Likewise, we here propose that the ancestral Lepidodinium likely experienced a non-photosynthetic period and discarded the entire Chl a biosynthetic pathway prior to the green algal endosymbiosis. Nevertheless, Lepidodinium rebuilt the pathway by genes transferred from phylogenetically diverse organisms, rather than the green algal endosymbiont. We explore the reasons why green algal genes were barely utilized to reconstruct the Lepidodinium pathway.
Collapse
Affiliation(s)
- Eriko Matsuo
- Graduate School of Biological and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Inagaki
- Graduate School of Biological and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
31
|
Frankovich TA, Ashworth MP, Sullivan MJ, Theriot EC, Stacy NI. Epizoic and Apochlorotic Tursiocola species (Bacillariophyta) from the Skin of Florida Manatees (Trichechus manatus latirostris). Protist 2018; 169:539-568. [DOI: 10.1016/j.protis.2018.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022]
|
32
|
Kamikawa R, Azuma T, Ishii KI, Matsuno Y, Miyashita H. Diversity of Organellar Genomes in Non-photosynthetic Diatoms. Protist 2018; 169:351-361. [PMID: 29803116 DOI: 10.1016/j.protis.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
We determined the complete sequences of the plastid and mitochondrial genomes of three non-photosynthetic Nitzschia spp., as well as those of a photosynthetic close relative, Nitzschia palea. All the plastid genomes and the three mitochondrial genomes determined were found to be circularly mapping, and the other mitochondrial genomes were predicted to be of a linear form with telomere-like structures at both ends. We found that all the non-photosynthetic plastid genomes are streamlined and lack a common gene set: two RNA genes, and 60 protein-coding genes, most of which are related to photosynthetic functions. Nevertheless, the non-photosynthetic plastid genomes commonly retain ATP synthase complex genes, although atpE is missing in Nitzschia sp. NIES-3581 and three other non-photosynthetic species lack atpF instead of atpE. This observation suggests an evolutionary constraint against the loss of ATP synthase complex genes. All the non-photosynthetic diatom plastid genomes lacked two genes, thiS and thiG, involved in thiamin biosynthesis. Consistent with this gene loss, non-photosynthetic Nitzschia spp. were incapable of thriving in vitamin B1-lacking media. This study clearly demonstrated not only the evolutionary trends of plastid genome reduction but also the linkage between plastid genome reduction and a biological change of nutrient requirements in Nitzschia.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan.
| | - Tomonori Azuma
- Faculty of Integrated Human Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan
| | - Ken-Ichiro Ishii
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan
| | - Yusei Matsuno
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|