1
|
Narvaez ZE, Egizi AM, Yabsley MJ, Thompson AT, Moustafa M, Alt E, Bickerton M, Bjorgo K, Butler RA, Cumbie A, Eastwood G, Falco RC, Fonseca DM, Hang J, Harper VL, Lewis N, Lovy J, Maestas LP, Mather TN, Nakao R, Occi JL, Rainey T, Sal M, Stoops CA, Trout‐Fryxell RT, Watson W, Wagner NE, Zheng A, Saelao P, Price DC. Multiple Introductions of the Asian Longhorned Tick ( Haemaphysalis longicornis) to the United States Revealed Using Mitogenomics. Ecol Evol 2025; 15:e71312. [PMID: 40276246 PMCID: PMC12018891 DOI: 10.1002/ece3.71312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The Asian longhorned tick (ALT), Haemaphysalis longicornis, is a three-host hard tick native to East Asia. Its opportunistic feeding habits make it an acute agricultural and medical threat, capable of spreading various zoonotic pathogens. An affinity for livestock and companion animals has allowed parthenogenetic populations of ALT to travel to and establish in overseas locations including the United States. To better understand the population dynamics of this rapidly expanding species, we sequenced the complete mitogenome of specimens collected from native and invasive ranges and performed phylogeographic analyses. As well as illustrating the diversity of Australasian and US ALT haplotypes, these methods have allowed us to estimate the source and frequency of successful introductions to the US. We highlight four potential introductions of parthenogenetic ALT, with likely origin populations identified in the Republic of Korea and Japan. These findings provide insight into potential routes of entry for ALT and other invasive tick species.
Collapse
Affiliation(s)
- Zoe E. Narvaez
- Center for Vector Biology, Rutgers UniversityNew BrunswickNew JerseyUSA
| | - Andrea M. Egizi
- Tick‐Borne Diseases LaboratoryMonmouth County Mosquito Control DivisionTinton FallsNew JerseyUSA
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Alec T. Thompson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
- United States Department of Agriculture National Bio & Agro‐Defense FacilityManhattanKansasUSA
| | - Mohamed Moustafa
- Center for Vector Biology, Rutgers UniversityNew BrunswickNew JerseyUSA
| | - Erika Alt
- Animal Health DivisionWest Virginia Department of AgricultureCharlestonWest VirginiaUSA
| | - Matthew Bickerton
- Center for Vector Biology, Rutgers UniversityNew BrunswickNew JerseyUSA
- Bergen County Department of Health ServicesParamusNew JerseyUSA
| | - Kim Bjorgo
- Department of Biology & Environmental ScienceWest Virginia Wesleyan CollegeBuckhannonWest VirginiaUSA
| | - Rebecca A. Butler
- Department of Entomology & Plant PathologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Alexandra Cumbie
- Department of EntomologyVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Gillian Eastwood
- Department of EntomologyVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Richard C. Falco
- New York State Department of Health, Vector Ecology LaboratoryFordham UniversityArmonkNew YorkUSA
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers UniversityNew BrunswickNew JerseyUSA
| | - Jun Hang
- Viral Diseases ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | | | - Nicole Lewis
- Division of Animal HealthNew Jersey Department of AgricultureEwingNew JerseyUSA
| | - Jan Lovy
- Office of Fish and Wildlife Health and ForensicsNew Jersey Fish and WildlifeOxfordNew JerseyUSA
| | - Lauren P. Maestas
- Cattle Fever Tick Research UnitUnited States Department of Agriculture Agricultural Research ServiceEdinburgTexasUSA
| | - Thomas N. Mather
- TickEncounter Resource Center, University of Rhode IslandKingstonRhode IslandUSA
| | - Ryo Nakao
- Laboratory of Parasitology, Faculty of Veterinary MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - James L. Occi
- Center for Vector Biology, Rutgers UniversityNew BrunswickNew JerseyUSA
| | - Tadhgh Rainey
- Hunterdon County Department of HealthFlemingtonNew JerseyUSA
| | - Melanie Sal
- Department of Biology & Environmental ScienceWest Virginia Wesleyan CollegeBuckhannonWest VirginiaUSA
| | - Craig A. Stoops
- Entomology, Environmental Health SectionDefense Health Agency Brian D. Allgood Army Community HospitalCamp HumphreysRepublic of Korea
| | | | - Wes Watson
- Department of Entomology & Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nicole E. Wagner
- Center for Vector Biology, Rutgers UniversityNew BrunswickNew JerseyUSA
| | - Aihua Zheng
- Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Perot Saelao
- Veterinary Pest Genetics Research UnitUnited States Department of Agriculture Agricultural Research ServiceKerrvilleTexasUSA
| | - Dana C. Price
- Center for Vector Biology, Rutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
2
|
Wu X, Zhan L, Storey KB, Zhang J, Yu D. Differential Mitochondrial Genome Expression of Four Skink Species Under High-Temperature Stress and Selection Pressure Analyses in Scincidae. Animals (Basel) 2025; 15:999. [PMID: 40218392 PMCID: PMC11988152 DOI: 10.3390/ani15070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
As ectotherms highly sensitive to environmental temperature fluctuations, skinks (a small lizard) are increasingly vulnerable to population instability due to global heatwaves. A clade model analysis of four Chinese skink species (Plestiodon capito, Plestiodon chinensis, Sphenomorphus indicus, and Scincella modesta) revealed positive selection acting on the ND6 gene in Sp. indicus. This species exhibits codon alterations in ND6, shifts its expression pathway and potentially decouples ND6 from high-temperature stress response mechanisms. To validate these findings, transcriptomic profiling was conducted to assess mitochondrial protein-coding gene (PCG) expression patterns under thermal stress. Using RT-qPCR, liver mitochondrial PCG transcript levels were compared between high-temperature (34 °C) and control (25 °C) groups in skink populations from distinct latitudes. Low-latitude species (P. chinensis and Sc. modesta) exhibited metabolic downregulation, characterized by a significant suppression of mitochondrial gene expression. Specifically, P. chinensis showed the downregulation of six mitochondrial genes (COII, COIII, ATP6, ND2, ND4, ND6) while upregulating one (ND1). By contrast, Sc. modesta showed the downregulation of nine genes (COI, COII, COIII, ATP8, ND1, ND3, ND4, ND4L, CYTB) and upregulated two (ND5, ND6). By contrast, high-latitude species exhibited divergent patterns: P. capito downregulated four genes (COI, COII, COIII, ND4L) and upregulated four others (ND1, ND2, ND3, ND4), whereas Sp. indicus downregulated six genes (COI, COII, ND2, ND3, ND4, ND4L) and upregulated one (ND5). These regulatory disparities suggest that low-latitude skinks have a greater capacity for metabolic depression to cope with chronic stress, whereas their high-latitude counterparts exhibit different adaptations. The findings provide valuable insights into assessing the adaptive potential of species in warming environments, particularly for ectotherms with limited thermoregulatory capacities.
Collapse
Affiliation(s)
- Xuxiang Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Schmidt E, Milles H, Kennedy L, Donelson J. Interspecies differences in lactate dehydrogenase and citrate synthase activity among damselfish and cardinalfish. J Therm Biol 2025; 129:104089. [PMID: 40117912 DOI: 10.1016/j.jtherbio.2025.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/15/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
Species with different thermal distributions, life-history traits, and behaviours have evolved physiological processes to suit energetic demands. Previous research has argued that these interspecies differences are often reflected in muscle enzyme activity that serve as proxies for aerobic and anaerobic respiration. Here, we measured the maximal enzyme activity of two enzymes, citrate synthase and lactate dehydrogenase, between two damselfish (Pomacentrus) and cardinalfish (Ostorhinchus) species. Citrate synthase was measured as a proxy for mitochondrial volume density, a marker of aerobic metabolism; lactate dehydrogenase was measured as a proxy for anaerobic energy production, a marker for anaerobic metabolism. Thermal performance curves of maximal enzyme activity were measured from 10 to 50 °C, at 10 °C intervals. Citrate synthase and lactate dehydrogenase both showed a positive correlation with temperature, that was absent of a plateau. Damselfish displayed higher levels of citate synthase maximal enzyme activity, while cardinalfish displayed a higher lactate dehydrogenase to citrate synthase ratio. Ostorhinchus doederleini, a sedentary cardinalfish, displayed higher level of lactate dehydrogenase maximal enzyme activity. Temperature coefficients (Q10) for lactate dehydrogenase showed a curved relationship, peaking at differences between 30 and 40 °C. No differences in Q10 values were observed between species, suggesting no difference in the thermal sensitivity of enzymes. Interspecies differences in maximal enzyme activity identified in this study compliments previous research, whereby more active species require higher levels of citrate synthase to fuel sustained swimming, as well as energetically demanding locomotion behaviours. Alternatively, more sedentary species possessed higher levels of lactate dehydrogenase and reliance on anaerobic metabolism, possibly due to an increased reliance on infrequent burst swimming behaviours.
Collapse
Affiliation(s)
- Elliott Schmidt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Hunter Milles
- Biology Department, Oberlin College, Oberlin, OH, United States of America.
| | - Lauren Kennedy
- College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Jennifer Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia.
| |
Collapse
|
4
|
de Araujo Barbosa V, Graham SE, Hogg ID, Smith BJ, McGaughran A. A Landscape Genetics Approach Reveals Species-Specific Connectivity Patterns for Stream Insects in Fragmented Habitats. Ecol Evol 2025; 15:e71084. [PMID: 40060721 PMCID: PMC11890307 DOI: 10.1002/ece3.71084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/26/2025] Open
Abstract
Dispersal is a critical process in ecology and evolution, shaping global biodiversity patterns. In stream habitats, which often exist within diverse and fragmented landscapes, dispersal ensures population connectivity and survival. For aquatic insects in particular, landscape features may significantly influence the degree of genetic connectivity among populations. Thus, understanding connectivity drivers in such populations is essential for the conservation and management of streams. We conducted a landscape genetic study using mitochondrial DNA (mtDNA) and genome-wide single nucleotide polymorphism (SNP) markers to assess the functional connectivity of stream insects in a fragmented pasture-dominated landscape. We focused on three species with terrestrial winged adults: the mayfly Coloburiscus humeralis, the stonefly Zelandobius confusus, and the caddisfly Hydropsyche fimbriata. We observed significant spatial genetic structure at larger geographical distances (populations separated by ~30 and 170 km). However, the effects of landscape factors, which were assessed at fine spatial scales, varied among species: for C. humeralis SNP data, genetic differentiation was weakly correlated with land cover, suggesting greater population connectivity within stream channels protected by forested riparian zones compared to fragmented streams; for Z. confusus, widespread gene flow indicated high dispersal potential across forested and pasture land; while overland dispersal was reduced for H. fimbriata (potentially due to local habitat features), this did not seem to hinder broader population connectivity. Our results emphasise the importance of assessing landscape features when evaluating population connectivity in stream riparian zones, which can greatly benefit stream management efforts through an enhanced understanding of connectivity dynamics.
Collapse
Affiliation(s)
| | - S. Elizabeth Graham
- National Institute of Water and Atmospheric Research—NIWAHamiltonNew Zealand
| | - Ian D. Hogg
- School of ScienceUniversity of WaikatoHamiltonNew Zealand
- Polar Knowledge CanadaCanadian High Arctic Research StationCambridge BayNunavutCanada
| | - Brian J. Smith
- National Institute of Water and Atmospheric Research—NIWAHamiltonNew Zealand
| | | |
Collapse
|
5
|
Bettinazzi S, Liang J, Rodriguez E, Bonneau M, Holt R, Whitehead B, Dowling DK, Lane N, Camus MF. Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations. Evol Lett 2024; 8:916-926. [PMID: 39677574 PMCID: PMC11637609 DOI: 10.1093/evlett/qrae043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial function depends on the effective interactions between proteins and RNA encoded by the mitochondrial and nuclear genomes. Evidence suggests that both genomes respond to thermal selection and promote adaptation. However, the contribution of their epistatic interactions to life history phenotypes in the wild remains elusive. We investigated the evolutionary implications of mitonuclear interactions in a real-world scenario that sees populations adapted to different environments, altering their geographical distribution while experiencing flow and admixture. We created a Drosophila melanogaster panel with replicate native populations from the ends of the Australian east-coast cline, into which we substituted the mtDNA haplotypes that were either predominant or rare at each cline-end, thus creating putatively mitonuclear matched and mismatched populations. Our results suggest that mismatching may impact phenotype, with populations harboring the rarer mtDNA haplotype suffering a trade-off between aerobic capacity and key fitness aspects such as reproduction, growth, and survival. We discuss the significance of mitonuclear interactions as modulators of life history phenotypes in the context of future adaptation and population persistence.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jane Liang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enrique Rodriguez
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marion Bonneau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ruben Holt
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ben Whitehead
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
6
|
Sales K, Gage MJG, Vasudeva R. Experimental evolution reveals that males evolving within warmer thermal regimes improve reproductive performance under heatwave conditions in a model insect. J Evol Biol 2024; 37:1329-1344. [PMID: 39283813 DOI: 10.1093/jeb/voae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 11/04/2024]
Abstract
Climate change is increasing mean temperatures, and intensifying heatwaves. Natural populations may respond to stress through shorter-term acclimation via plasticity and/or longer-term inter-generational evolution. However, if the pace and/or extent of thermal change is too great, local extinctions occur; one potential cause in ectotherms is identified to be the heat-liability of male reproductive biology. Recent data from several species, including the beetle Tribolium castaneum, confirmed that male reproductive biology is vulnerable to heatwaves, which may constrain populations. However, such reproductive-damage may be overestimated, if there is potential to adapt to elevated mean temperatures associated with climate change via evolution and/or acclimation. Here, we tested this to evaluate whether pre-exposures could improve heatwave tolerance (adaptation or acclimation), by experimentally evolving Tribolium castaneum populations to divergent thermal regimes (30 °C vs. 38 °C). Findings across assays revealed that relative to 30 °C-regime males, males from the 38 °C regime, maintained constantly at 8 °C warmer for 25 generations, displayed an increase; (i) in post heatwave (42 °C) reproductive fitness by 55%, (ii) survival by 33%, and (iii) 32% larger testes volumes. Unexpectedly, in the acclimation assay, warm-adapted males' post-heatwave survival and reproduction were best if they experienced cool developmental acclimation beforehand, suggesting a cost to adapting to 38 °C. These results help progress knowledge of the potential for survival and reproduction to adapt to climate change; trait specific adaptation to divergent thermal regimes can occur over relatively few generations, but this capacity depended on the interaction of evolutionary and thermal acclimatory processes.
Collapse
Affiliation(s)
- Kris Sales
- Inventory, Forecasting and Operational Support, Forest Research, Farnham, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - M J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - R Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- School of Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Kryukov AP, Kryukov KA, Collier K, Fang B, Edwards SV. Mitogenomics clarifies the position of the Nearctic magpies ( Pica hudsonia and Pica nuttalli) within the Holarctic magpie radiation. Curr Zool 2024; 70:618-630. [PMID: 39463698 PMCID: PMC11502158 DOI: 10.1093/cz/zoad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2024] Open
Abstract
Partial separation of a peripheral population may lead to its divergence and, potentially, speciation due to genetic drift followed by selection and geographic isolation. This process may cause taxonomic uncertainty because reproductive isolation in allopatry cannot be verified directly. The two Nearctic allopatric species of magpies (Aves, Corvidae: Pica) serve as a good example of these problems. The Black-billed magpie Pica hudsonia is widely distributed in North America, whereas the Yellow-billed Magpie Pica nuttalli is endemic to a restricted range in California. Their relationships with Palearctic species have been little studied. We obtained complete mitochondrial genomes of both Nearctic magpie species, along with the Eurasian Magpie (Pica pica) and the Oriental Magpie (Pica serica), 20 mitogenomes in total. Phylogenetic analysis reveals a basal position of P. serica, and P. pica as a sister clade to the two Nearctic species. P. hudsonia and P. nuttalli form reciprocal monophyletic subclades, showing recent divergence between and within them. Our data show that the Nearctic magpie lineage diverged from the common ancestor with P. pica, with a single migration wave via the Beringia. Within the Nearctic, we hypothesize a peripatric mode of speciation among Pica taxa due to the divergence and separation of the small marginal population in California below the Sierra-Nevada mountains. Diversifying amino acid substitutions in ND4-ND5-ND6 genes along the branch leading to the New World clade may indicate selection for heat-tolerance. Considering the clear phenotypic differences between P. hudsonia and P. nuttalli, our data, showing their reciprocal monophylies and genetic distinctness, is consistent with the two-species taxonomy.
Collapse
Affiliation(s)
- Alexey P Kryukov
- Laboratory of Evolutionary Zoology and Genetics, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Kirill A Kryukov
- Center for Genome Informatics, Bioinformation and DDBJ Center, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
| | - Kathleen Collier
- University of Alaska Museum of the North, University of Alaska, Fairbanks, AK 99775, USA
| | - Bohao Fang
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Guerin MN, Ellis TS, Ware MJ, Manning A, Coley AA, Amini A, Igboanugo AG, Rothrock AP, Chung G, Gunsalus KC, Bracht JR. Evolution of a biological thermocouple by adaptation of cytochrome c oxidase in a subterrestrial metazoan, Halicephalobus mephisto. Commun Biol 2024; 7:1214. [PMID: 39342021 PMCID: PMC11439043 DOI: 10.1038/s42003-024-06886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
In this study, we report a biological temperature-sensing electrical regulator in the cytochrome c oxidase of the Devil Worm, Halicephalobus mephisto. This extremophile metazoan was isolated 1.3 km underground in a South African goldmine, where it adapted to heat and potentially to hypoxia, making its mitochondrial sequence a likely target of adaptational change. We obtained the complete mitochondrial genome sequence of this organism and show through dN/dS analysis evidence of positive selection in H. mephisto cytochrome c oxidase subunits. Seventeen of these positively selected amino acid substitutions were located in proximity to the H- and K-pathway proton channels of the complex. Surprisingly, the H. mephisto cytochrome c oxidase completely shuts down at low temperatures (20 °C), leading to a 4.8-fold reduction in the transmembrane proton gradient (ΔΨm) compared to optimal temperature (37 °C). Direct measurement of oxygen consumption found a corresponding 4.6-fold drop at 20 °C compared to 37 °C. Correspondingly, the lifecycle of H. mephisto takes four times longer at low temperature than at higher. This elegant evolutionary adaptation creates a finely-tuned mitochondrial temperature sensor, allowing this ectothermic organism to maximize its reproductive success across varying environmental temperatures.
Collapse
Affiliation(s)
- Megan N Guerin
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - TreVaughn S Ellis
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Mark J Ware
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Alexandra Manning
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Ariana A Coley
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Ali Amini
- Mathematics and Statistics Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Adaeze G Igboanugo
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Amaya P Rothrock
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - George Chung
- Center for Genomics and Systems Biology and Department of Biology, New York University, New York, NY, 10003, USA
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology and Department of Biology, New York University, New York, NY, 10003, USA
| | - John R Bracht
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA.
| |
Collapse
|
9
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
10
|
Li H, Liang X, Peng Y, Liu Z, Zhang L, Wang P, Jin M, Wilson K, Garvin MR, Wu K, Xiao Y. Novel Mito-Nuclear Combinations Facilitate the Global Invasion of a Major Agricultural Crop Pest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305353. [PMID: 38965806 PMCID: PMC11425838 DOI: 10.1002/advs.202305353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/24/2024] [Indexed: 07/06/2024]
Abstract
A fundamental understanding of the underlying mechanisms involved in biological invasions is crucial to developing effective risk assessment and control measures against invasive species. The fall armyworm (FAW), Spodoptera frugiperda, is a highly invasive pest that has rapidly spread from its native Americas into much of the Eastern Hemisphere, with a highly homogeneous nuclear genetic background. However, the exact mechanism behind its rapid introduction and propagation remains unclear. Here, a systematic investigation is conducted into the population dynamics of FAW in China from 2019 to 2021 and found that FAW individuals carrying "rice" mitochondria (FAW-mR) are more prevalent (>98%) than that with "corn" mitochondria (FAW-mC) at the initial stage of the invasion and in newly-occupied non-overwintering areas. Further fitness experiments show that the two hybrid-strains of FAW exhibit different adaptions in the new environment in China, and this may have been facilitated by amino acid changes in mitochondrial-encoded proteins. FAW-mR used increases energy metabolism, faster wing-beat frequencies, and lower wing loadings to drive greater flight performance and subsequent rapid colonization of new habitats. In contrast, FAW-mC individuals adapt with more relaxed mitochondria and shuttle energetics into maternal investment, observed as faster development rate and higher fecundity. The presence of two different mitochondria types within FAW has the potential to significantly expand the range of damage and enhance competitive advantage. Overall, the study describes a novel invasion mechanism displayed by the FAW population that facilitates its expansion and establishment in new environments.
Collapse
Affiliation(s)
- Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xinyue Liang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Ping Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michael R Garvin
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, 37830, USA
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
11
|
Zhao C, Liu G, Yang X, Wang X, Zhou S, Liu Z, Liu K, Zhang H. Mutation pressure mediates a pattern of substitution rates with latitude and climate in carnivores. Ecol Evol 2024; 14:e70159. [PMID: 39193169 PMCID: PMC11347990 DOI: 10.1002/ece3.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The evolutionary patterns of the mitochondrial genome are influenced by both adaptive and nonadaptive forces, with their contributions varying among taxa. There appears to be a correlation linking mutagenesis and latitude, which could be due to differences in metabolic rates. These discrepancies in metabolic rates exhibit a positive connection with mutation pressure. On this basis, we hypothesise that nonadaptive forces play a role in the differences in mutation rates observed along latitudinal gradients. In this study, we selected widely distributed carnivores as representatives of mammals to test our hypothesis. We examined the correlations between the dN/dS ratio (ω), as well as the substitution rates (dS and dN), of 13 PCGs in the mtDNA of 122 carnivores, and the latitude and climatic factors. We found that taxa distributed in higher latitudes tend to have higher substitution rates, but not ω values indicating selective pressure. Notably, dN shows a strong positive correlation with dS, although dS is primarily influenced by mutation pressure, while dN is also influenced by effective population size (N e ). Phylogenetic generalised least squares (PGLS) regression analyses showed that both substitution rates were correlated with climatic factors representing the temperature, precipitation and variability of climate. Based on our findings, we propose that the mutations are primarily influenced by nonadaptive forces (mutation pressure). This forms the fundamental premise for natural selection and speciation. Moreover, the correlation between substitution rates and latitudinal distribution and climate, which are outcomes of nonadaptive factors, can aid in comprehending the global distribution of species diversity.
Collapse
Affiliation(s)
- Chao Zhao
- College of Life ScienceQufu Normal UniversityQufuChina
| | | | - Xiufeng Yang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Xibao Wang
- College of Life ScienceQufu Normal UniversityQufuChina
| | | | - Zhao Liu
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Kangning Liu
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Honghai Zhang
- College of Life ScienceQufu Normal UniversityQufuChina
| |
Collapse
|
12
|
Zhan L, He J, Meng S, Guo Z, Chen Y, Storey KB, Zhang J, Yu D. Mitochondrial Protein-Coding Gene Expression in the Lizard Sphenomorphus incognitus (Squamata:Scincidae) Responding to Different Temperature Stresses. Animals (Basel) 2024; 14:1671. [PMID: 38891717 PMCID: PMC11170996 DOI: 10.3390/ani14111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In the context of global warming, the frequency of severe weather occurrences, such as unexpected cold spells and heat waves, will grow, as well as the intensity of these natural disasters. Lizards, as a large group of reptiles, are ectothermic. Their body temperatures are predominantly regulated by their environment and temperature variations directly impact their behavior and physiological activities. Frequent cold periods and heat waves can affect their biochemistry and physiology, and often their ability to maintain their body temperature. Mitochondria, as the center of energy metabolism, are crucial for maintaining body temperature, regulating metabolic rate, and preventing cellular oxidative damage. Here, we used RT-qPCR technology to investigate the expression patterns and their differences for the 13 mitochondrial PCGs in Sphenomorphus incognitus (Squamata:Scincidae), also known as the brown forest skink, under extreme temperature stress at 4 °C, 8 °C, 34 °C, and 38 °C for 24 h, compared to the control group at 25 °C. In southern China, for lizards, 4 °C is close to lethal, and 8 °C induces hibernation, while 34/38 °C is considered hot and environmentally realistic. Results showed that at a low temperature of 4 °C for 24 h, transcript levels of ATP8, ND1, ND4, COI, and ND4L significantly decreased, to values of 0.52 ± 0.08, 0.65 ± 0.04, 0.68 ± 0.10, 0.28 ± 0.02, and 0.35 ± 0.02, respectively, compared with controls. By contrast, transcript levels of COIII exhibited a significant increase, with a mean value of 1.86 ± 0.21. However, exposure to 8 °C for 24 h did not lead to an increase in transcript levels. Indeed, transcript levels of ATP6, ATP8, ND1, ND3, and ND4 were significantly downregulated, to 0.48 ± 0.11, 0.68 ± 0.07, 0.41 ± 0.08, 0.54 ± 0.10, and 0.52 ± 0.07, respectively, as compared with controls. Exposure to a hot environment of 34 °C for 24 h led to an increase in transcript levels of COI, COII, COIII, ND3, ND5, CYTB, and ATP6, with values that were 3.3 ± 0.24, 2.0 ± 0.2, 2.70 ± 1.06, 1.57 ± 0,08, 1.47 ± 0.13, 1.39 ± 0.56, and 1.86 ± 0.12, respectively, over controls. By contrast, ND4L exhibited a significant decrease (to 0.31 ± 0.01) compared with controls. When exposed to 38 °C, the transcript levels of the 13 PCGs significantly increased, ranging from a 2.04 ± 0.23 increase in ND1 to a 6.30 ± 0.96 rise in ND6. Under two different levels of cold and heat stress, the expression patterns of mitochondrial genes in S. incognitus vary, possibly associated with different strategies employed by this species in response to low and high temperatures, allowing for rapid compensatory adjustments in mitochondrial electron transport chain proteins in response to temperature changes. Furthermore, this underscores once again the significant role of mitochondrial function in determining thermal plasticity in reptiles.
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Siqi Meng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Zhiqiang Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Yuxin Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
13
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
14
|
Štětina T, Koštál V. Extracellular freezing induces a permeability transition in the inner membrane of muscle mitochondria of freeze-sensitive but not freeze-tolerant Chymomyza costata larvae. Front Physiol 2024; 15:1358190. [PMID: 38384799 PMCID: PMC10880108 DOI: 10.3389/fphys.2024.1358190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background: Many insect species have evolved the ability to survive extracellular freezing. The search for the underlying principles of their natural freeze tolerance remains hampered by our poor understanding of the mechanistic nature of freezing damage itself. Objectives: Here, in search of potential primary cellular targets of freezing damage, we compared mitochondrial responses (changes in morphology and physical integrity, respiratory chain protein functionality, and mitochondrial inner membrane (IMM) permeability) in freeze-sensitive vs. freeze-tolerant phenotypes of the larvae of the drosophilid fly, Chymomyza costata. Methods: Larvae were exposed to freezing stress at -30°C for 1 h, which is invariably lethal for the freeze-sensitive phenotype but readily survived by the freeze-tolerant phenotype. Immediately after melting, the metabolic activity of muscle cells was assessed by the Alamar Blue assay, the morphology of muscle mitochondria was examined by transmission electron microscopy, and the functionality of the oxidative phosphorylation system was measured by Oxygraph-2K microrespirometry. Results: The muscle mitochondria of freeze-tolerant phenotype larvae remained morphologically and functionally intact after freezing stress. In contrast, most mitochondria of the freeze-sensitive phenotype were swollen, their matrix was diluted and enlarged in volume, and the structure of the IMM cristae was lost. Despite this morphological damage, the electron transfer chain proteins remained partially functional in lethally frozen larvae, still exhibiting strong responses to specific respiratory substrates and transferring electrons to oxygen. However, the coupling of electron transfer to ATP synthesis was severely impaired. Based on these results, we formulated a hypothesis linking the observed mitochondrial swelling to a sudden loss of barrier function of the IMM.
Collapse
Affiliation(s)
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
15
|
Brand JA, Garcia-Gonzalez F, Dowling DK, Wong BBM. Mitochondrial genetic variation as a potential mediator of intraspecific behavioural diversity. Trends Ecol Evol 2024; 39:199-212. [PMID: 37839905 DOI: 10.1016/j.tree.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Mitochondrial genes play an essential role in energy metabolism. Variation in the mitochondrial DNA (mtDNA) sequence often exists within species, and this variation can have consequences for energy production and organismal life history. Yet, despite potential links between energy metabolism and the expression of animal behaviour, mtDNA variation has been largely neglected to date in studies investigating intraspecific behavioural diversity. We outline how mtDNA variation and interactions between mitochondrial and nuclear genotypes may contribute to the expression of individual-to-individual behavioural differences within populations, and why such effects may lead to sex differences in behaviour. We contend that integration of the mitochondrial genome into behavioural ecology research may be key to fully understanding the evolutionary genetics of animal behaviour.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station-CSIC, Seville, Spain; Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Kayhani K, Barreto FS. Disproportionate role of nuclear-encoded proteins in organismal and mitochondrial thermal performance in a copepod. J Exp Biol 2023; 226:jeb246085. [PMID: 37947077 DOI: 10.1242/jeb.246085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Determining the mechanisms by which organisms evolve thermal tolerance is crucial to predicting how populations may respond to changes in local temperature regimes. Although evidence of relationships between mitochondrial background and thermal adaptation have been found, the presence of both nuclear-encoded and mitochondrial DNA (mtDNA)-encoded proteins warrants experiments aimed at parsing out the relative role of each genome in thermal adaptation. We investigated the relative role of mtDNA-encoded products in thermal tolerance between two divergent populations of Tigriopus californicus using first-generation (F1) hybrids that vary in maternally inherited mtDNA but are heterozygous for population-specific alleles across nuclear loci. We tested two measures of thermal tolerance, (1) survivorship to acute thermal stress and (2) thermal stability of mitochondrial performance in Complex I-fueled ATP synthesis, both across a range of increasing temperatures. We found that the southern population (San Diego, CA, USA) outperformed the northern population (Strawberry Hill, OR, USA) in survivorship, and that both reciprocal F1 hybrid crosses had intermediate survival. Mitochondria from the San Diego population displayed greater stability in ATP synthesis with increasing temperatures compared with those from Strawberry Hill. Interestingly, hybrids from both cross directions had synthesis profiles that were very similar to that of Strawberry Hill. Taken together, these results suggest that the relative role of the mtDNA in these phenotypes is negligible compared with that of elements encoded by nuclear DNA in this system.
Collapse
Affiliation(s)
- Kamron Kayhani
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
17
|
Sun KK, Ding Y, Chen L, Sun JT. A Comparative Analysis of Selection Pressures Suffered by Mitochondrial Genomes in Two Planthopper Species with Divergent Climate Distributions. Int J Mol Sci 2023; 24:16847. [PMID: 38069176 PMCID: PMC10706623 DOI: 10.3390/ijms242316847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has been widely used as a valuable tool in studies related to evolution and population genetics, under the implicit assumption of neutral evolution. However, recent studies suggest that natural selection also plays a significant role in shaping mitochondrial genome evolution, although the specific driving forces remain elusive. In this study, we aimed to investigate whether and how climate influences mitochondrial genome evolution by comparing the selection pressures acting on mitochondrial genomes between two rice planthoppers, Sogatella furcifera (Horváth) and Laodelphax striatellus (Fallén), which have different climate distributions. We employed the dN/dS method, MK test and Tajima's D tests for our analysis. Our results showed that the mitochondrial genomes of the two species appear to undergo predominantly purifying selection, consistent with the nearly neutral evolution model. However, we observed varied degrees of purifying selection among the 13 protein-coding genes. Notably, ND1, ND2, ND6, COIII, and ATP8 exhibited significantly stronger purifying selection and greater divergence between the two species compared to the other genes. Additionally, we observed relatively stronger purifying selection in the mitochondrial genomes of S. furcifera compared to L. striatellus. This difference could be attributed to varying metabolic requirements arising from distinct habitats or other factors that are unclear here. Furthermore, we speculate that mito-nuclear epistatic interactions may play a role in maintaining nonsynonymous polymorphisms, particularly for COI and COII. Overall, our results shed some light on the influence of climate on mitochondrial genome evolution.
Collapse
Affiliation(s)
| | | | | | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (K.-K.S.); (Y.D.)
| |
Collapse
|
18
|
Zwonitzer KD, Iverson ENK, Sterling JE, Weaver RJ, Maclaine BA, Havird JC. Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes. Am Nat 2023; 202:E121-E129. [PMID: 37792916 PMCID: PMC10955554 DOI: 10.1086/725805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractDisentangling different types of selection is a common goal in molecular evolution. Elevated dN/dS ratios (the ratio of nonsynonymous to synonymous substitution rates) in focal lineages are often interpreted as signs of positive selection. Paradoxically, relaxed purifying selection can also result in elevated dN/dS ratios, but tests to distinguish these two causes are seldomly implemented. Here, we reevaluated seven case studies describing elevated dN/dS ratios in animal mitochondrial DNA (mtDNA) and their accompanying hypotheses regarding selection. They included flightless lineages versus flighted lineages in birds, bats, and insects and physiological adaptations in snakes, two groups of electric fishes, and primates. We found that elevated dN/dS ratios were often not caused by the predicted mechanism, and we sometimes found strong support for the opposite mechanism. We discuss reasons why energetic hypotheses may be confounded by other selective forces acting on mtDNA and caution against overinterpreting singular molecular signals, including elevated dN/dS ratios.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Erik N. K. Iverson
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jess E. Sterling
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Ryan J. Weaver
- Department of Ecology, Evolution, and Organismal Biology and Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa 50011
| | - Bradley A. Maclaine
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Justin C. Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
19
|
Wang JY, Zhang LH, Hong YH, Cai LN, Storey KB, Zhang JY, Zhang SS, Yu DN. How Does Mitochondrial Protein-Coding Gene Expression in Fejervarya kawamurai (Anura: Dicroglossidae) Respond to Extreme Temperatures? Animals (Basel) 2023; 13:3015. [PMID: 37835622 PMCID: PMC10571990 DOI: 10.3390/ani13193015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Unusual climates can lead to extreme temperatures. Fejervarya kawamurai, one of the most prevalent anurans in the paddy fields of tropical and subtropical regions in Asia, is sensitive to climate change. The present study focuses primarily on a single question: how do the 13 mitochondrial protein-coding genes (PCGs) respond to extreme temperature change compared with 25 °C controls? Thirty-eight genes including an extra tRNA-Met gene were identified and sequenced from the mitochondrial genome of F. kawamurai. Evolutionary relationships were assessed within the Dicroglossidae and showed that Dicroglossinae is monophyletic and F. kawamurai is a sister group to the clade of (F. multistriata + F. limnocharis). Transcript levels of mitochondrial genes in liver were also evaluated to assess responses to 24 h exposure to low (2 °C and 4 °C) or high (40 °C) temperatures. Under 2 °C, seven genes showed significant changes in liver transcript levels, among which transcript levels of ATP8, ND1, ND2, ND3, ND4, and Cytb increased, respectively, and ND5 decreased. However, exposure to 4 °C for 24 h was very different in that the expressions of ten mitochondrial protein-coding genes, except ND1, ND3, and Cytb, were significantly downregulated. Among them, the transcript level of ND5 was most significantly downregulated, decreasing by 0.28-fold. Exposure to a hot environment at 40 °C for 24 h resulted in a marked difference in transcript responses with strong upregulation of eight genes, ranging from a 1.52-fold increase in ND4L to a 2.18-fold rise in Cytb transcript levels, although COI and ND5 were reduced to 0.56 and 0.67, respectively, compared with the controls. Overall, these results suggest that at 4 °C, F. kawamurai appears to have entered a hypometabolic state of hibernation, whereas its mitochondrial oxidative phosphorylation was affected at both 2 °C and 40 °C. The majority of mitochondrial PCGs exhibited substantial changes at all three temperatures, indicating that frogs such as F. kawamurai that inhabit tropical or subtropical regions are susceptible to ambient temperature changes and can quickly employ compensating adjustments to proteins involved in the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Jing-Yan Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Hua Zhang
- Taishun County Forestry Bureau, Wenzhou 325000, China
| | - Yue-Huan Hong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Na Cai
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jia-Yong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Shu-Sheng Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Wuyanling National Nature Reserve, Wenzhou 325500, China
| | - Dan-Na Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
20
|
Lubawy J, Chowański SP, Colinet H, Słocińska M. Mitochondrial metabolism and oxidative stress in the tropical cockroach under fluctuating thermal regimes. J Exp Biol 2023; 226:jeb246287. [PMID: 37589559 DOI: 10.1242/jeb.246287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The cockroach Gromphadorhina coquereliana can survive at low temperatures under extensive periods of cold stress. To assess energy management and insect adaptation in response to cold, we measured mitochondrial activity and oxidative stress in muscle and fat body tissues from G. coquereliana under a fluctuating thermal regime (FTR; stressed at 4°C for 3 h on 3 consecutive days, with or without 24 h recovery). Compared with our earlier work showing that a single exposure to cold significantly affects mitochondrial parameters, here, repeated exposure to cold triggered an acclimatory response, resulting in unchanged mitochondrial bioenergetics. Immediately after cold exposure, we observed an increase in the overall pool of ATP and a decrease in typical antioxidant enzyme activity. We also observed decreased activity of uncoupling protein 4 in muscle mitochondria. After 24 h of recovery, we observed an increase in expression of antioxidant enzymes in muscles and the fat body and a significant increase in the expression of UCP4 and HSP70 in the latter. This indicates that processes related to energy conversion and disturbance under cold stress may trigger different protective mechanisms in these tissues, and that these mechanisms must be activated to restore insect homeostasis. The mitochondrial parameters and enzymatic assays suggest that mitochondria are not affected during FTR but oxidative stress markers are decreased, and a 24 h recovery period allows for the restoration of redox and energy homeostasis, especially in the fat body. This confirms the crucial role of the fat body in intermediary metabolism and energy management in insects and in the response to repeated thermal stress.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Szymon P Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Hervé Colinet
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes 35042, France
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
21
|
Dobson AJ, Voigt S, Kumpitsch L, Langer L, Voigt E, Ibrahim R, Dowling DK, Reinhardt K. Mitonuclear interactions shape both direct and parental effects of diet on fitness and involve a SNP in mitoribosomal 16s rRNA. PLoS Biol 2023; 21:e3002218. [PMID: 37603597 PMCID: PMC10441796 DOI: 10.1371/journal.pbio.3002218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/28/2023] [Indexed: 08/23/2023] Open
Abstract
Nutrition is a primary determinant of health, but responses to nutrition vary with genotype. Epistasis between mitochondrial and nuclear genomes may cause some of this variation, but which mitochondrial loci and nutrients participate in complex gene-by-gene-by-diet interactions? Furthermore, it remains unknown whether mitonuclear epistasis is involved only in the immediate responses to changes in diet, or whether mitonuclear genotype might modulate sensitivity to variation in parental nutrition, to shape intergenerational fitness responses. Here, in Drosophila melanogaster, we show that mitonuclear epistasis shapes fitness responses to variation in dietary lipids and amino acids. We also show that mitonuclear genotype modulates the parental effect of dietary lipid and amino acid variation on offspring fitness. Effect sizes for the interactions between diet, mitogenotype, and nucleogenotype were equal to or greater than the main effect of diet for some traits, suggesting that dietary impacts cannot be understood without first accounting for these interactions. Associating phenotype to mtDNA variation in a subset of populations implicated a C/T polymorphism in mt:lrRNA, which encodes the 16S rRNA of the mitochondrial ribosome. This association suggests that directionally different responses to dietary changes can result from variants on mtDNA that do not change protein coding sequence, dependent on epistatic interactions with variation in the nuclear genome.
Collapse
Affiliation(s)
- Adam J. Dobson
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Susanne Voigt
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Luisa Kumpitsch
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Lucas Langer
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Emmely Voigt
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Rita Ibrahim
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Klaus Reinhardt
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
23
|
Françoso E, Zuntini AR, Ricardo PC, Santos PKF, de Souza Araujo N, Silva JPN, Gonçalves LT, Brito R, Gloag R, Taylor BA, Harpur B, Oldroyd BP, Brown MJF, Arias MC. Rapid evolution, rearrangements and whole mitogenome duplication in the Australian stingless bees Tetragonula (Hymenoptera: Apidae): A steppingstone towards understanding mitochondrial function and evolution. Int J Biol Macromol 2023; 242:124568. [PMID: 37100315 DOI: 10.1016/j.ijbiomac.2023.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The extreme conservation of mitochondrial genomes in metazoans poses a significant challenge to understanding mitogenome evolution. However, the presence of variation in gene order or genome structure, found in a small number of taxa, can provide unique insights into this evolution. Previous work on two stingless bees in the genus Tetragonula (T. carbonaria and T. hockingsi) revealed highly divergent CO1 regions between them and when compared to the bees from the same tribe (Meliponini), indicating rapid evolution. Using mtDNA isolation and Illumina sequencing, we elucidated the mitogenomes of both species. In both species, there has been a duplication of the whole mitogenome to give a total genome size of 30,666 bp in T. carbonaria; and 30,662 bp in T. hockingsi. These duplicated genomes present a circular structure with two identical and mirrored copies of all 13 protein coding genes and 22 tRNAs, with the exception of a few tRNAs that are present as single copies. In addition, the mitogenomes are characterized by rearrangements of two block of genes. We believe that rapid evolution is present in the whole Indo-Malay/Australasian group of Meliponini but is extraordinarily elevated in T. carbonaria and T. hockingsi, probably due to founder effect, low effective population size and the mitogenome duplication. All these features - rapid evolution, rearrangements, and duplication - deviate significantly from the vast majority of the mitogenomes described so far, making the mitogenomes of Tetragonula unique opportunities to address fundamental questions of mitogenome function and evolution.
Collapse
Affiliation(s)
- Elaine Françoso
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil.
| | | | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | - Natalia de Souza Araujo
- Unit of Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - João Paulo Naldi Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | | | - Rosalyn Gloag
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Benjamin A Taylor
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Brock Harpur
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Benjamin P Oldroyd
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
24
|
Sokolova IM. Ectotherm mitochondrial economy and responses to global warming. Acta Physiol (Oxf) 2023; 237:e13950. [PMID: 36790303 DOI: 10.1111/apha.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Temperature is a key abiotic factor affecting ecology, biogeography, and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism affects cellular bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion, or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species(ROS), and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Owing to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of ROS and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.
Collapse
Affiliation(s)
- Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
25
|
Layh S, Nagarajan-Radha V, Lemos B, Dowling DK. Y chromosome-linked variation affects locomotor activity in male Drosophila melanogaster and is robust to differences in thermal environment. Heredity (Edinb) 2023; 130:312-319. [PMID: 36914794 PMCID: PMC10163223 DOI: 10.1038/s41437-023-00604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
Although containing genes important for sex determination, genetic variation within the Y chromosome was traditionally predicted to contribute little to the expression of sexually dimorphic traits. This prediction was shaped by the assumption that the chromosome harbours few protein-coding genes, and that capacity for Y-linked variation to shape adaptation would be hindered by the chromosome's lack of recombination and holandric inheritance. Consequently, most studies exploring the genotypic contributions to sexually dimorphic traits have focused on the autosomes and X chromosome. Yet, several studies have now demonstrated that the Y chromosome harbours variation affecting male fitness, moderating the expression of hundreds of genes across the nuclear genome. Furthermore, emerging results have shown that expression of this Y-linked variation may be sensitive to environmental heterogeneity, leading to the prediction that Y-mediated gene-by-environment interactions will shape the expression of sexually dimorphic phenotypes. We tested this prediction, investigating whether genetic variation across six distinct Y chromosome haplotypes affects the expression of locomotor activity, at each of two temperatures (20 and 28 °C) in male fruit flies (Drosophila melanogaster). Locomotor activity is a sexually dimorphic trait in this species, previously demonstrated to be under intralocus sexual conflict. We demonstrate Y haplotype effects on male locomotor activity, but the rank order and magnitude of these effects were unaltered by differences in temperature. Our study contributes to a growing number of studies demonstrating Y-linked effects moderating expression of traits evolving under sexually antagonistic selection, suggesting a role for the Y chromosome in shaping outcomes of sexual conflict.
Collapse
Affiliation(s)
- Sean Layh
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Venkatesh Nagarajan-Radha
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.,Behaviour Ecology and Evolution Lab, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Bernardo Lemos
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Healy TM, Burton RS. Loss of mitochondrial performance at high temperatures is correlated with upper thermal tolerance among populations of an intertidal copepod. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110836. [PMID: 36801253 DOI: 10.1016/j.cbpb.2023.110836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Environmental temperatures have pervasive effects on the performance and tolerance of ectothermic organisms, and thermal tolerance limits likely play key roles underlying biogeographic ranges and responses to environmental change. Mitochondria are central to metabolic processes in eukaryotic cells, and these metabolic functions are thermally sensitive; however, potential relationships between mitochondrial function, thermal tolerance limits and local thermal adaptation in general remain unresolved. Loss of ATP synthesis capacity at high temperatures has recently been suggested as a mechanistic link between mitochondrial function and upper thermal tolerance limits. Here we use a common-garden experiment with seven locally adapted populations of intertidal copepods (Tigriopus californicus), spanning approximately 21.5° latitude, to assess genetically based variation in the thermal performance curves of maximal ATP synthesis rates in isolated mitochondria. These thermal performance curves displayed substantial variation among populations with higher ATP synthesis rates at lower temperatures (20-25 °C) in northern populations than in southern populations. In contrast, mitochondria from southern populations maintained ATP synthesis rates at higher temperatures than the temperatures that caused loss of ATP synthesis capacity in mitochondria from northern populations. Additionally, there was a tight correlation between the thermal limits of ATP synthesis and previously determined variation in upper thermal tolerance limits among populations. This suggests that mitochondria may play an important role in latitudinal thermal adaptation in T. californicus, and supports the hypothesis that loss of mitochondrial performance at high temperatures is linked to whole-organism thermal tolerance limits in this ectotherm.
Collapse
Affiliation(s)
- Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA, USA.
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA, USA
| |
Collapse
|
27
|
Nagarajan-Radha V, Beekman M. G × G × E effect on phenotype expression in a non-conventional model organism, the unicellular slime mould Physarum polycephalum. Biol Lett 2023; 19:20220494. [PMID: 36789533 PMCID: PMC9929494 DOI: 10.1098/rsbl.2022.0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
In metazoans, the expression of key phenotypic traits is sensitive to two- and three-way interactions between variation in mitochondrial DNA, nuclear DNA and the external environment. Whether gene-by-environment interactions affect phenotypes in single-celled eukaryotes is poorly studied, except in a few species of yeast and fungi. We developed a genetic panel of the unicellular slime mould, Physarum polycephalum containing strains differing in mitochondrial and nuclear DNA haplotypes. The panel also included two strains harbouring a selfishly replicating mitochondrial-fusion (mF) plasmid that could affect phenotype expression. We assayed movement and growth rate differences among the strains across two temperature regimes: 24° and 28°C. We found that the slime mould's growth rate, but not movement, is affected by G × G × E interactions. Predictably, mtDNA × nDNA interactions significantly affected both traits. The inter-trait correlation across the strains in each temperature regime was positive. Surprisingly, the mF plasmid had no negative effects on our chosen traits. Our study is the first to demonstrate genetic regulation of phenotype expression in a unicellular slime mould. The genetic effect on phenotypes manifests via epistatic interactions with the thermal environment, thus shedding new light on the role of G × G × E interactions in trait evolution in protists.
Collapse
Affiliation(s)
- Venkatesh Nagarajan-Radha
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney NSW, 2006, Australia
| | - Madeleine Beekman
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney NSW, 2006, Australia
| |
Collapse
|
28
|
Visinoni F, Delneri D. Mitonuclear interplay in yeast: from speciation to phenotypic adaptation. Curr Opin Genet Dev 2022; 76:101957. [PMID: 35870233 DOI: 10.1016/j.gde.2022.101957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Saccharomyces yeasts have evolved into an important model system to study mitonuclear incompatibilities, thanks to recent advances in the field of sequencing, yeast hybridisation and multigenerational breeding. Yeast hybrids contain two homologous proteomes but retain only one type of mitochondria allowing studies on the effect of mitochondria on phenotype and gene expression. Here, we discuss the recent developments in the growing field of yeast mitogenomics spanning from the impact that this organelle has in shaping yeast fitness and genome evolution to the dissection of molecular determinants of mitonuclear incompatibilities. Applying the state-of-the-art genetic tools to a broader range of natural yeast species from different environments will help progress the field and untap the mitochondrial potential in strain development.
Collapse
Affiliation(s)
- Federico Visinoni
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
29
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
30
|
Crossley MS, Latimer CE, Kennedy CM, Snyder WE. Past and recent farming degrades aquatic insect genetic diversity. Mol Ecol 2022. [PMID: 35771845 DOI: 10.1111/mec.16590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Recent declines in once-common species are triggering concern that an environmental crisis point has been reached. Yet, the lack of long abundance time series data for most species can make it difficult to attribute these changes to anthropogenic causes, and to separate them from normal cycles. Genetic diversity, on the other hand, is sensitive to past and recent environmental changes, and reflects a measure of a populations' potential to adapt to future stressors. Here, we consider whether patterns of genetic diversity among aquatic insects can be linked to historical and recent patterns of land use change. We collated mitochondrial cytochrome c oxidase subunit I (COI) variation for >700 aquatic insect species across the United States, where patterns of agricultural expansion and intensification have been documented since the 1800s. We found that genetic diversity was lowest in regions where cropland was historically (pre-1950) most extensive, suggesting a legacy of past environmental harm. Genetic diversity further declined where cropland has since expanded, even after accounting for climate and sampling effects. Notably though, genetic diversity also appeared to rebound where cropland has diminished. Our study suggests that genetic diversity at the community level can be a powerful tool to infer potential population declines and rebounds over longer time spans than is typically possible with ecological data. For the aquatic insects that we considered, patterns of land use many decades ago appear to have left long-lasting damage to genetic diversity that could threaten evolutionary responses to rapid global change.
Collapse
Affiliation(s)
- Michael S Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | | | - Christina M Kennedy
- Global Protect Oceans, Lands and Waters Program, The Nature Conservancy, Fort Collins, CO, USA
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Mitochondrial Genome Contributes to the Thermal Adaptation of the Oomycete Phytophthora infestans. Front Microbiol 2022; 13:928464. [PMID: 35836411 PMCID: PMC9273971 DOI: 10.3389/fmicb.2022.928464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital element of climate change, elevated temperatures resulting from global warming present new challenges to natural and agricultural sustainability, such as ecological disease management. Mitochondria regulate the energy production of cells in responding to environmental fluctuation, but studying their contribution to the thermal adaptation of species is limited. This knowledge is needed to predict future disease epidemiology for ecology conservation and food security. Spatial distributions of the mitochondrial genome (mtDNA) in 405 Phytophthora infestans isolates originating from 15 locations were characterized. The contribution of MtDNA to thermal adaptation was evaluated by comparative analysis of mtDNA frequency and intrinsic growth rate, relative population differentiation in nuclear and mtDNA, and associations of mtDNA distribution with local geography climate conditions. Significant variation in frequency, intrinsic growth rate, and spatial distribution was detected in mtDNA. Population differentiation in mtDNA was significantly higher than that in the nuclear genome, and spatial distribution of mtDNA was strongly associated with local climatic conditions and geographic parameters, particularly air temperature, suggesting natural selection caused by a local temperature is the main driver of the adaptation. Dominant mtDNA grew faster than the less frequent mtDNA. Our results provide useful insights into the evolution of pathogens under global warming. Given its important role in biological functions and adaptation to local air temperature, mtDNA intervention has become an increasing necessity for future disease management. To secure ecological integrity and food production under global warming, a synergistic study on the interactive effect of changing temperature on various components of biological and ecological functions of mitochondria in an evolutionary frame is urgently needed.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Abdul Waheed
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
32
|
Anderson L, Camus MF, Monteith KM, Salminen TS, Vale PF. Variation in mitochondrial DNA affects locomotor activity and sleep in Drosophila melanogaster. Heredity (Edinb) 2022; 129:225-232. [PMID: 35764697 PMCID: PMC9519576 DOI: 10.1038/s41437-022-00554-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/20/2023] Open
Abstract
Mitochondria are organelles that produce cellular energy in the form of ATP through oxidative phosphorylation, and this primary function is conserved among many taxa. Locomotion is a trait that is highly reliant on metabolic function and expected to be greatly affected by disruptions to mitochondrial performance. To this end, we aimed to examine how activity and sleep vary between Drosophila melanogaster strains with different geographic origins, how these patterns are affected by mitochondrial DNA (mtDNA) variation, and how breaking up co-evolved mito-nuclear gene combinations affect the studied activity traits. Our results demonstrate that Drosophila strains from different locations differ in sleep and activity, and that females are generally more active than males. By comparing activity and sleep of mtDNA variants introgressed onto a common nuclear background in cytoplasmic hybrid (cybrid) strains, we were able to quantify the among-line variance attributable to mitochondrial DNA, and we establish that mtDNA variation affects both activity and sleep, in a sex-specific manner. Altogether our study highlights the important role that mitochondrial genome variation plays on organismal physiology and behaviour.
Collapse
Affiliation(s)
- Lucy Anderson
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Katy M Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Jin WT, Guan JY, Dai XY, Wu GJ, Zhang LP, Storey KB, Zhang JY, Zheng RQ, Yu DN. Mitochondrial gene expression in different organs of Hoplobatrachus rugulosus from China and Thailand under low-temperature stress. BMC ZOOL 2022; 7:24. [PMID: 37170336 PMCID: PMC10127437 DOI: 10.1186/s40850-022-00128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hoplobatrachus rugulosus (Anura: Dicroglossidae) is distributed in China and Thailand and the former can survive substantially lower temperatures than the latter. The mitochondrial genomes of the two subspecies also differ: Chinese tiger frogs (CT frogs) display two identical ND5 genes whereas Thai tiger frogs (TT frogs) have two different ND5 genes. Metabolism of ectotherms is very sensitive to temperature change and different organs have different demands on energy metabolism at low temperatures. Therefore, we conducted studies to understand: (1) the differences in mitochondrial gene expression of tiger frogs from China (CT frogs) versus Thailand (TT frogs); (2) the differences in mitochondrial gene expression of tiger frogs (CT and TT frogs) under short term 24 h hypothermia exposure at 25 °C and 8 °C; (3) the differences in mitochondrial gene expression in three organs (brain, liver and kidney) of CT and TT frogs.
Results
Utilizing RT-qPCR and comparing control groups at 25 °C with low temperature groups at 8 °C, we came to the following results. (1) At the same temperature, mitochondrial gene expression was significantly different in two subspecies. The transcript levels of two identical ND5 of CT frogs were observed to decrease significantly at low temperatures (P < 0.05) whereas the two different copies of ND5 in TT frogs were not. (2) Under low temperature stress, most of the genes in the brain, liver and kidney were down-regulated (except for COI and ATP6 measured in brain and COI measured in liver of CT frogs). (3) For both CT and TT frogs, the changes in overall pattern of mitochondrial gene expression in different organs under low temperature and normal temperature was brain > liver > kidney.
Conclusions
We mainly drew the following conclusions: (1) The differences in the structure and expression of the ND5 gene between CT and TT frogs could result in the different tolerances to low temperature stress. (2) At low temperatures, the transcript levels of most of mitochondrial protein-encoding genes were down-regulated, which could have a significant effect in reducing metabolic rate and supporting long term survival at low temperatures. (3) The expression pattern of mitochondrial genes in different organs was related to mitochondrial activity and mtDNA replication in different organs.
Collapse
|
34
|
Rodriguez AK, Krug PJ. Ecological speciation by sympatric host shifts in a clade of herbivorous sea slugs, with introgression and localized mitochondrial capture between species. Mol Phylogenet Evol 2022; 174:107523. [PMID: 35589054 DOI: 10.1016/j.ympev.2022.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Host shifting in insect-plant systems was historically important to the development of ecological speciation theory, yet surprisingly few studies have examined whether host shifting drives diversification of marine herbivores. When small-bodied consumers feed and also mate on a preferred host, disruptive selection can split a population into host races despite gene flow. Support for host shifts is notably lacking for invertebrates associated with macroalgae, where the scale of dispersal by planktonic larvae often far exceeds the grain of host patchiness, and adults are typically less specialized than terrestrial herbivores. Here, we present a candidate example of ecological speciation in a clade of sea slugs that primarily consume green algae in the genus Caulerpa, including highly invasive species. Ancestral character state reconstructions supported 'sea grapes' (C. racemosa, C. lentillifera) as the ancestral host for a tropical radiation of 12 Elysia spp., with one shift onto alternative Caulerpa spp. in the Indo-Pacific. A Caribbean radiation of three species included symaptric host shifts to Rhipocephalus brevicaulis in the ancestor of E. pratensis Ortea & Espinosa, 1996, and to C. prolifera in E. hamanni Krug, Vendetti & Valdes 2016, plus a niche expansion to a range of Caulerpa spp. in E. subornata Verrill, 1901. All three species are broadly sympatric across the Caribbean but are host-partitioned at a fine grain, and distinct by morphology and at nuclear loci. However, non-recombining mtDNA revealed a history of gene flow between E. pratensis and E. subornata: COI haplotypes from E. subornata were 10.4% divergent from E. pratensis haplotypes from four sites, but closely related to all E. pratensis haplotypes sampled from six Bahamian islands, indicating historical introgression and localized "mitochondrial capture." Disruptive selective likely fueled divergence and adaptation to distinct host environments, indicating ecological speciation may be an under-appreciated driver of diversification for marine herbivores as well as epibionts and other resource specialists.
Collapse
Affiliation(s)
- Albert K Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A.
| |
Collapse
|
35
|
Phylogeographic structure suggests environmental gradient speciation in a montane frog from the northern Andes of Colombia. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Sebastian W, Sukumaran S, Gopalakrishnan A. Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats. Heredity (Edinb) 2022; 128:236-249. [PMID: 35256764 PMCID: PMC8986858 DOI: 10.1038/s41437-022-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Clupeoid fish can be considered excellent candidates to understand the role of mitochondrial DNA in adaptive evolution, as they have colonized different habitats (marine, brackish, freshwater, tropical and temperate regions) over millions of years. Here, we investigate patterns of tRNA location, codon usage bias, and lineage-specific diversifying selection signals to provide novel insights into how evolutionary improvements of mitochondrial metabolic efficiency have allowed clupeids to adapt to different habitats. Based on whole mitogenome data of 70 Clupeoids with a global distribution we find that purifying selection was the dominant force acting and that the mutational deamination pressure in mtDNA was stronger than the codon/amino acid constraints. The codon usage pattern appears evolved to achieve high translational efficiency (codon/amino acid-related constraints), as indicated by the complementarity of most codons to the GT-saturated tRNA anticodon sites (retained by deamination-induced pressure) and usage of the codons of the tRNA genes situated near to the control region (fixed by deamination pressure) where transcription efficiency was high. The observed shift in codon preference patterns between marine and euryhaline/freshwater Clupeoids indicates possible selection for improved translational efficiency in mitochondrial genes while adapting to low-salinity habitats. This mitogenomic plasticity and enhanced efficiency of the metabolic machinery may have contributed to the evolutionary success and abundance of Clupeoid fish.
Collapse
Affiliation(s)
- Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
37
|
Pozzi A, Dowling DK. New Insights into Mitochondrial-Nuclear Interactions Revealed through Analysis of Small RNAs. Genome Biol Evol 2022; 14:evac023. [PMID: 35143645 PMCID: PMC8883506 DOI: 10.1093/gbe/evac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial sequence variants affect phenotypic function, often through interaction with the nuclear genome. These "mitonuclear" interactions have been linked both to evolutionary processes and human health. The study of these interactions has focused on mechanisms regulating communication between mitochondrial and nuclear proteins; the role of mitochondrial (mt) RNAs has received little attention. Here, we show that small mt-RNAs bind to the nuclear protein Argonaute 2, and that nuclear miRNAs bind to mt-mRNAs. We identify one small mt-RNA that binds to Argonaute 2 in human tissues whose expression and sequence remain unchanged across vertebrates. Although analyses of CLEAR-CLIP sequencing data sets of human and mouse did not reveal consistent interactions between small mt-RNAs and nuclear mRNAs, we found that MT-ND4 and MT-ATP6 mRNAs are bound by different nuclear miRNAs in humans and mice. Our work homes in on previously unknown interactions between nuclear and small mt-RNAs, which may play key roles in intergenomic communication.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Burton RS. The role of mitonuclear incompatibilities in allopatric speciation. Cell Mol Life Sci 2022; 79:103. [PMID: 35091831 PMCID: PMC11072163 DOI: 10.1007/s00018-021-04059-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/03/2022]
Abstract
Aerobic metabolism in eukaryotic cells requires extensive interactions between products of the nuclear and mitochondrial genomes. Rapid evolution of the mitochondrial genome, including fixation of both adaptive and deleterious mutations, creates intrinsic selection pressures favoring nuclear gene mutations that maintain mitochondrial function. As this process occurs independently in allopatry, the resulting divergence between conspecific populations can subsequently be manifest in mitonuclear incompatibilities in inter-population hybrids. Such incompatibilities, mitonuclear versions of Bateson-Dobzhansky-Muller incompatibilities that form the standard model for allopatric speciation, can potentially restrict gene flow between populations, ultimately resulting in varying degrees of reproductive isolation. The potential role of mitonuclear incompatibilities in speciation is further enhanced where mtDNA substitution rates are elevated compared to the nuclear genome and where population structure maintains allopatry for adequate time to evolve multiple mitonuclear incompatibilities. However, the fact that mitochondrial introgression occurs across species boundaries has raised questions regarding the efficacy of mitonuclear incompatibilities in reducing gene flow. Several scenarios now appear to satisfactorily explain this phenomenon, including cases where differences in mtDNA genetic load may drive introgression or where co-introgression of coadapted nuclear genes may support the function of introgressed mtDNA. Although asymmetries in reproductive isolation between taxa are consistent with mitonuclear incompatibilities, interactions between autosomes and sex chromosomes yield similar predictions that are difficult to disentangle. With regard to establishing reproductive isolation while in allopatry, existing studies clearly suggest that mitonuclear incompatibilities can contribute to the evolution of barriers to gene flow. However, there is to date relatively little definitive evidence supporting a primary role for mitonuclear incompatibilities in the speciation process.
Collapse
Affiliation(s)
- Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
39
|
Erić P, Patenković A, Erić K, Tanasković M, Davidović S, Rakić M, Savić Veselinović M, Stamenković-Radak M, Jelić M. Temperature-Specific and Sex-Specific Fitness Effects of Sympatric Mitochondrial and Mito-Nuclear Variation in Drosophila obscura. INSECTS 2022; 13:insects13020139. [PMID: 35206713 PMCID: PMC8880146 DOI: 10.3390/insects13020139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Does variation in the mitochondrial DNA sequence influence the survival and reproduction of an individual? What is the purpose of genetic variation of the mitochondrial DNA between individuals from the same population? As a simple laboratory model, Drosophila species can give us the answer to this question. Creating experimental lines with different combinations of mitochondrial and nuclear genomic DNA and testing how successful these lines were in surviving in different experimental set-ups enables us to deduce the effect that both genomes have on fitness. This study on D. obscura experimentally validates theoretical models that explain the persistence of mitochondrial DNA variation within populations. Our results shed light on the various mechanisms that maintain this type of variation. Finally, by conducting the experiments on two experimental temperatures, we have shown that environmental variations can support mitochondrial DNA variation within populations. Abstract The adaptive significance of sympatric mitochondrial (mtDNA) variation and the role of selective mechanisms that maintain it are debated to this day. Isofemale lines of Drosophila obscura collected from four populations were backcrossed within populations to construct experimental lines, with all combinations of mtDNA Cyt b haplotypes and nuclear genetic backgrounds (nuDNA). Individuals of both sexes from these lines were then subjected to four fitness assays (desiccation resistance, developmental time, egg-to-adult viability and sex ratio) on two experimental temperatures to examine the role of temperature fluctuations and sex-specific selection, as well as the part that interactions between the two genomes play in shaping mtDNA variation. The results varied across populations and fitness components. In the majority of comparisons, they show that sympatric mitochondrial variants affect fitness. However, their effect should be examined in light of interactions with nuDNA, as mito-nuclear genotype was even more influential on fitness across all components. We found both sex-specific and temperature-specific differences in mitochondrial and mito-nuclear genotype ranks in all fitness components. The effect of temperature-specific selection was found to be more prominent, especially in desiccation resistance. From the results of different components tested, we can also infer that temperature-specific mito-nuclear interactions rather than sex-specific selection on mito-nuclear genotypes have a more substantial role in preserving mtDNA variation in this model species.
Collapse
Affiliation(s)
- Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Correspondence: ; Tel.: +381-112-078-334
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Mina Rakić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marija Savić Veselinović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| |
Collapse
|
40
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
41
|
Davies OK, Dorey JB, Stevens MI, Gardner MG, Bradford TM, Schwarz MP. Unparalleled mitochondrial heteroplasmy and Wolbachia co-infection in the non-model bee, Amphylaeus morosus. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100036. [PMID: 36003268 PMCID: PMC9387454 DOI: 10.1016/j.cris.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
Mitochondrial heteroplasmy is the occurrence of more than one type of mitochondrial DNA within a single individual. Although generally reported to occur in a small subset of individuals within a species, there are some instances of widespread heteroplasmy across entire populations. Amphylaeus morosus is an Australian native bee species in the diverse and cosmopolitan bee family Colletidae. This species has an extensive geographical range along the eastern Australian coast, from southern Queensland to western Victoria, covering approximately 2,000 km. Seventy individuals were collected from five localities across this geographical range and sequenced using Sanger sequencing for the mitochondrial cytochrome c oxidase subunit I (COI) gene. These data indicate that every individual had the same consistent heteroplasmic sites but no other nucleotide variation, suggesting two conserved and widespread heteroplasmic mitogenomes. Ion Torrent shotgun sequencing revealed that heteroplasmy occurred across multiple mitochondrial protein-coding genes and is unlikely explained by transposition of mitochondrial genes into the nuclear genome (NUMTs). DNA sequence data also demonstrated a consistent co-infection of Wolbachia across the A. morosus distribution with every individual infected with both bacterial strains. Our data are consistent with the presence of two mitogenomes within all individuals examined in this species and suggest a major divergence from standard patterns of mitochondrial inheritance. Because the host's mitogenome and the Wolbachia genome are genetically linked through maternal inheritance, we propose three possible hypotheses that could explain maintenance of the widespread and conserved co-occurring bacterial and mitochondrial genomes in this species.
Collapse
|
42
|
Allison TM, Radzvilavicius AL, Dowling DK. Selection for biparental inheritance of mitochondria under hybridization and mitonuclear fitness interactions. Proc Biol Sci 2021; 288:20211600. [PMID: 34875196 PMCID: PMC8651416 DOI: 10.1098/rspb.2021.1600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Uniparental inheritance (UPI) of mitochondria predominates over biparental inheritance (BPI) in most eukaryotes. However, examples of BPI of mitochondria, or paternal leakage, are becoming increasingly prevalent. Most reported cases of BPI occur in hybrids of distantly related sub-populations. It is thought that BPI in these cases is maladaptive; caused by a failure of female or zygotic autophagy machinery to recognize divergent male-mitochondrial DNA ‘tags’. Yet recent theory has put forward examples in which BPI can evolve under adaptive selection, and empirical studies across numerous metazoan taxa have demonstrated outbreeding depression in hybrids attributable to disruption of population-specific mitochondrial and nuclear genotypes (mitonuclear mismatch). Based on these developments, we hypothesize that BPI may be favoured by selection in hybridizing populations when fitness is shaped by mitonuclear interactions. We test this idea using a deterministic, simulation-based population genetic model and demonstrate that BPI is favoured over strict UPI under moderate levels of gene flow typical of hybridizing populations. Our model suggests that BPI may be stable, rather than a transient phenomenon, in hybridizing populations.
Collapse
Affiliation(s)
- Tom M Allison
- School of Biological Sciences, Monash University, Victoria, Australia
| | | | - Damian K Dowling
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
43
|
Liu H, Yu J, Yu X, Zhang D, Chang H, Li W, Song H, Cui Z, Wang P, Luo Y, Wang F, Wang D, Li Z, Huang Z, Fu A, Xu M. Structural variation of mitochondrial genomes sheds light on evolutionary history of soybeans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1456-1472. [PMID: 34587339 DOI: 10.1111/tpj.15522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The architecture and genetic diversity of mitogenome (mtDNA) are largely unknown in cultivated soybean (Glycine max), which is domesticated from the wild progenitor, Glycine soja, 5000 years ago. Here, we de novo assembled the mitogenome of the cultivar 'Williams 82' (Wm82_mtDNA) with Illumina PE300 deep sequencing data, and verified it with polymerase chain reaction (PCR) and Southern blot analyses. Wm82_mtDNA maps as two autonomous circular chromosomes (370 871-bp Chr-m1 and 62 661-bp Chr-m2). Its structure is extensively divergent from that of the mono-chromosomal mitogenome reported in the landrace 'Aiganhuang' (AGH_mtDNA). Synteny analysis showed that the structural variations (SVs) between two genomes are mainly attributed to ectopic and illegitimate recombination. Moreover, Wm82_mtDNA and AGH_mtDNA each possess six and four specific regions, which are absent in their counterparts and likely result from differential sequence-loss events. Mitogenome SV was further studied in 39 wild and 182 cultivated soybean accessions distributed world-widely with PCR/Southern analyses or a comparable in silico analysis. The results classified both wild and cultivated soybeans into five cytoplasmic groups, named as GSa-GSe and G1-G5; 'Williams 82' and 'Aiganhuang' belong to G1 and G5, respectively. Notably, except for members in GSe and G5, all accessions carry a bi-chromosomal mitogenome with a common Chr-m2. Phylogenetic analyses based on mtDNA structures and chloroplast gene sequences both inferred that G1-G3, representing >90% of cultigens, likely inherited cytoplasm from the ancestor of domestic soybean, while G4 and G5 likely inherited cytoplasm from wild soybeans carrying GSa- and GSe-like cytoplasm through interspecific hybridization, offering new insights into soybean cultivation history.
Collapse
Affiliation(s)
- Hao Liu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Junping Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiaoxia Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dan Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Han Chang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Haifeng Song
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Peng Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yixin Luo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dagang Wang
- Key Laboratory of Crop Quality Improvement of Anhui Province, Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, Anhui, 230031, China
| | - Zhi Li
- Fuyang Academy of Agricultural Sciences, Fuyang, Anhui, 236000, China
| | - Zhiping Huang
- Key Laboratory of Crop Quality Improvement of Anhui Province, Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, Anhui, 230031, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
44
|
Fenton A, Camus MF, Hurst GDD. Positive selection on mitochondria may eliminate heritable microbes from arthropod populations. Proc Biol Sci 2021; 288:20211735. [PMID: 34583583 PMCID: PMC8488761 DOI: 10.1098/rspb.2021.1735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diverse eukaryotic taxa carry facultative heritable symbionts, microbes that are passed from mother to offspring. These symbionts are coinherited with mitochondria, and selection favouring either new symbionts, or new symbiont variants, is known to drive loss of mitochondrial diversity as a correlated response. More recently, evidence has accumulated of episodic directional selection on mitochondria, but with currently unknown consequences for symbiont evolution. We therefore employed a population genetic mean field framework to model the impact of selection on mitochondrial DNA (mtDNA) upon symbiont frequency for three generic scenarios of host–symbiont interaction. Our models predict that direct selection on mtDNA can drive symbionts out of the population where a positively selected mtDNA mutation occurs initially in an individual that is uninfected with the symbiont, and the symbiont is initially at low frequency. When, by contrast, the positively selected mtDNA mutation occurs in a symbiont-infected individual, the mutation becomes fixed and in doing so removes symbiont variation from the population. We conclude that the molecular evolution of symbionts and mitochondria, which has previously been viewed from a perspective of selection on symbionts driving the evolution of a neutral mtDNA marker, should be reappraised in the light of positive selection on mtDNA.
Collapse
Affiliation(s)
- Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
45
|
Fan P, Fjeldså J, Liu X, Dong Y, Chang Y, Qu Y, Song G, Lei F. An approach for estimating haplotype diversity from sequences with unequal lengths. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ping Fan
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Denmark
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Yafei Dong
- College of Life Sciences Shaanxi Normal University Xi’an China
| | - Yongbin Chang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
46
|
Friedrich VK, Rubel MA, Schurr TG. Mitochondrial genetic variation in human bioenergetics, adaptation, and adult disease. Am J Hum Biol 2021; 34:e23629. [PMID: 34146380 DOI: 10.1002/ajhb.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Mitochondria are critical for the survival of eukaryotic organisms due to their ability to produce cellular energy, which drives virtually all aspects of host biology. However, the effects of mitochondrial DNA (mtDNA) variation in relation to disease etiology and adaptation within contemporary global human populations remains incompletely understood. METHODS To develop a more holistic understanding of the role of mtDNA diversity in human adaptation, health, and disease, we investigated mitochondrial biology and bioenergetics. More specifically, we synthesized details from studies of mitochondrial function and variation in the context of haplogroup background, climatic adaptation, and oxidative disease. RESULTS The majority of studies show that mtDNA variation arose during modern human dispersal around the world. Some of these variants appear to have been positively selected for their adaptiveness in colder climates, with these sequence changes having implications for tissue-specific function and thermogenic capacity. In addition, many variants modulating energy production are also associated with damaging metabolic byproducts and mitochondrial dysfunction, which, in turn, are implicated in the onset and severity of several different adult mitochondrial diseases. Thus, mtDNA variation that governs bioenergetics, metabolism, and thermoregulation may potentially have adverse consequences for human health, depending on the genetic background and context in which it occurs. CONCLUSIONS Our review suggests that the mitochondrial research field would benefit from independently replicating mtDNA haplogroup-phenotype associations across global populations, incorporating potentially confounding environmental, demographic, and disease covariates into studies of mtDNA variation, and extending association-based studies to include analyses of complete mitogenomes and assays of mitochondrial function.
Collapse
Affiliation(s)
- Volney K Friedrich
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meagan A Rubel
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Translational Imaging and Precision Medicine, University of California - San Diego, La Jolla, California, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Iverson ENK, Nix R, Abebe A, Havird JC. Thermal Responses Differ across Levels of Biological Organization. Integr Comp Biol 2021; 60:361-374. [PMID: 32483618 DOI: 10.1093/icb/icaa052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Temperature is one of the most important environmental factors driving the genome-to-phenome relationship. Metabolic rates and related biological processes are predicted to increase with temperature due to the biophysical laws of chemical reactions. However, selection can also act on these processes across scales of biological organization, from individual enzymes to whole organisms. Although some studies have examined thermal responses across multiple scales, there is no general consensus on how these responses vary depending on the level of organization, or whether rates actually follow predicted theoretical patterns such as Arrhenius-like exponential responses or thermal performance curves (TPCs) that show peak responses. Here, we performed a meta-analysis on studies of ectotherms where biological rates were measured across the same set of temperatures, but at multiple levels of biological organization: enzyme activities, mitochondrial respiration, and/or whole-animal metabolic rates. Our final dataset consisted of 235 pairwise comparisons between levels of organization from 13 publications. Thermal responses differed drastically across levels of biological organization, sometimes showing completely opposite patterns. We developed a new effect size metric, "organizational disagreement" (OD) to quantify the difference in responses among levels of biological organization. Overall, rates at higher levels of biological organization (e.g., whole animal metabolic rates) increased more quickly with temperature than rates at lower levels, contrary to our predictions. Responses may differ across levels due to differing consequences of biochemical laws with increasing organization or due to selection for different responses. However, taxa and tissues examined generally did not affect OD. Theoretical TPCs, where rates increase to a peak value and then drop, were only rarely observed (12%), possibly because a broad range of test temperatures was rarely investigated. Exponential increases following Arrhenius predictions were more common (29%). This result suggests a classic assumption about thermal responses in biological rates is rarely observed in empirical datasets, although our results should be interpreted cautiously due to the lack of complete thermal profiles. We advocate for authors to explicitly address OD in their interpretations and to measure thermal responses across a wider, more incremental range of temperatures. These results further emphasize the complexity of connecting the genome to the phenome when environmental plasticity is incorporated: the impact of the environment on the phenotype can depend on the scale of organization considered.
Collapse
Affiliation(s)
- Erik N K Iverson
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rachel Nix
- Hankamer School of Business, Baylor University, Waco, TX 76798, USA
| | - Ash Abebe
- Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, USA
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
48
|
Jeedigunta SP, Minenkova AV, Palozzi JM, Hurd TR. Avoiding Extinction: Recent Advances in Understanding Mechanisms of Mitochondrial DNA Purifying Selection in the Germline. Annu Rev Genomics Hum Genet 2021; 22:55-80. [PMID: 34038145 DOI: 10.1146/annurev-genom-121420-081805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are unusual organelles in that they contain their own genomes, which are kept apart from the rest of the DNA in the cell. While mitochondrial DNA (mtDNA) is essential for respiration and most multicellular life, maintaining a genome outside the nucleus brings with it a number of challenges. Chief among these is preserving mtDNA genomic integrity from one generation to the next. In this review, we discuss what is known about negative (purifying) selection mechanisms that prevent deleterious mutations from accumulating in mtDNA in the germline. Throughout, we focus on the female germline, as it is the tissue through which mtDNA is inherited in most organisms and, therefore, the tissue that most profoundly shapes the genome. We discuss recent progress in uncovering the mechanisms of germline mtDNA selection, from humans to invertebrates.
Collapse
Affiliation(s)
- Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Anastasia V Minenkova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Jonathan M Palozzi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| |
Collapse
|
49
|
Awadi A, Ben Slimen H, Schaschl H, Knauer F, Suchentrunk F. Positive selection on two mitochondrial coding genes and adaptation signals in hares (genus Lepus) from China. BMC Ecol Evol 2021; 21:100. [PMID: 34039261 PMCID: PMC8157742 DOI: 10.1186/s12862-021-01832-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Animal mitochondria play a central role in energy production in the cells through the oxidative phosphorylation (OXPHOS) pathway. Recent studies of selection on different mitochondrial OXPHOS genes have revealed the adaptive implications of amino acid changes in these subunits. In hares, climatic variation and/or introgression were suggested to be at the origin of such adaptation. Here we looked for evidence of positive selection in three mitochondrial OXPHOS genes, using tests of selection, protein structure modelling and effects of amino acid substitutions on the protein function and stability. We also used statistical models to test for climate and introgression effects on sites under positive selection. RESULTS Our results revealed seven sites under positive selection in ND4 and three sites in Cytb. However, no sites under positive selection were observed in the COX1 gene. All three subunits presented a high number of codons under negative selection. Sites under positive selection were mapped on the tridimensional structure of the predicted models for the respective mitochondrial subunit. Of the ten amino acid replacements inferred to have evolved under positive selection for both subunits, six were located in the transmembrane domain. On the other hand, three codons were identified as sites lining proton translocation channels. Furthermore, four codons were identified as destabilizing with a significant variation of Δ vibrational entropy energy between wild and mutant type. Moreover, our PROVEAN analysis suggested that among all positively selected sites two fixed amino acid replacements altered the protein functioning. Our statistical models indicated significant effects of climate on the presence of ND4 and Cytb protein variants, but no effect by trans-specific mitochondrial DNA introgression, which is not uncommon in a number of hare species. CONCLUSIONS Positive selection was observed in several codons in two OXPHOS genes. We found that substitutions in the positively selected codons have structural and functional impacts on the encoded proteins. Our results are concordantly suggesting that adaptations have strongly affected the evolution of mtDNA of hare species with potential effects on the protein function. Environmental/climatic changes appear to be a major trigger of this adaptation, whereas trans-specific introgressive hybridization seems to play no major role for the occurrence of protein variants.
Collapse
Affiliation(s)
- Asma Awadi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
| | - Hichem Ben Slimen
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
| | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
50
|
Breton S, Ghiselli F, Milani L. Mitochondrial Short-Term Plastic Responses and Long-Term Evolutionary Dynamics in Animal Species. Genome Biol Evol 2021; 13:6248094. [PMID: 33892508 PMCID: PMC8290114 DOI: 10.1093/gbe/evab084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how mitochondrial epigenetics and genetics mechanisms, such as mtDNA methylation, mtDNA-derived noncoding RNAs, micropeptides, mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in assessing mtDNA adaptive evolution. In sum, this review covers new advances in the field of mitochondrial genomics, many of which are still controversial, and discusses processes still somewhat obscure, and some of which are still quite speculative and require further robust experimentation.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|