1
|
Saxena AS, Baer CF. High rate of mutation and efficient removal by selection of structural variants from natural populations of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644739. [PMID: 40196536 PMCID: PMC11974759 DOI: 10.1101/2025.03.22.644739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The importance of genomic structural variants (SVs) is well-appreciated, but much less is known about their mutational properties than of single nucleotide variants (SNVs) and short indels. The reason is simple: the longer the mutation, the less likely it will be covered by a single sequencing read, thus the harder it is to map unambiguously to a unique genomic location. Here we report SV mutation rate estimates from six mutation accumulation (MA) lines from two strains of C. elegans (N2 and PB306) using long-read (PacBio) sequencing. The inferred SV mutation rate ~1/10 the SNV rate and ~1/4 the short indel rate. We identified 40 mutations, and removed 52 false positives (FP) by manual inspection of each SV call. Excluding one atypical line (5 mutations, 35 FPs), the signal (inferred mutant) to noise (FP) ratio is approximately 2:1. False negative rates were determined by simulating variants in the reference genome, and observing 'recall'. Recall rate ranges from >90% for short indels and declines as SV length increases. Small deletions have nearly the same recall rate as small insertions (~100bp), but deletions have higher recall rates than insertions as size increases. The reported SV mutation rate is likely an underestimate. A quarter of identified SV mutations occur in SV hotspots that harbor pre-existing low complexity repeat variation. By comparison of the spectrum of spontaneous SVs to wild isolates, we infer that natural selection is not only efficient at removing SVs in exons, but also removes roughly half of SVs in intergenic regions.
Collapse
Affiliation(s)
- Ayush Shekhar Saxena
- Department of Biology, University of Florida, Gainesville, FL, USA
- Present address – Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Charles F. Baer
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute, Gainesville, FL, USA
| |
Collapse
|
2
|
Oman M, Ness RW. Comparing the predictors of mutability among healthy human tissues inferred from mutations in single-cell genome data. Genetics 2025; 229:iyae215. [PMID: 39950507 DOI: 10.1093/genetics/iyae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025] Open
Abstract
Studying mutation in healthy somatic tissues is the key for understanding the genesis of cancer and other genetic diseases. Mutation rate varies from site to site in the human genome by up to 100-fold and is influenced by numerous epigenetic and genetic factors including GC content, trinucleotide sequence context, and DNAse accessibility. These factors influence mutation at both local and regional scales and are often interrelated with one another, meaning that predicting mutability or uncovering its drivers requires modelling multiple factors and scales simultaneously. Historically, most investigations have focused either on analyzing the local sequence scale through triplet signatures or on examining the impact of epigenetic processes at larger scales, but not both concurrently. Additionally, sequencing technology limitations have restricted analyses of healthy mutations to coding regions (RNA-seq) or to those that have been influenced by selection (e.g. bulk samples from cancer tissue). Here, we leverage single-cell mutations and present a comprehensive analysis of epigenetic and genetic factors at multiple scales in the germline and 3 healthy somatic tissues. We create models that predict mutability with on average 2% error and find up to 63-fold variation among sites within the same tissue. We observe varying degrees of similarity between tissues: the mutability of genomic positions was 93.4% similar between liver and germline tissues, but sites in germline and skin were only 85.9% similar. We observe both universal and tissue-specific mutagenic processes in healthy tissues, with implications for understanding the maintenance of germline vs soma and the mechanisms underlying early tumorigenesis.
Collapse
Affiliation(s)
- Madeleine Oman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, L5L1C6, Canada
| | - Rob W Ness
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, L5L1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 1A1, Canada
| |
Collapse
|
3
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive Conservation of Intron Number and Other Genetic Elements Revealed by a Chromosome-level Genome Assembly of the Hyper-polymorphic Nematode Caenorhabditis brenneri. Genome Biol Evol 2025; 17:evaf037. [PMID: 40037811 PMCID: PMC11925023 DOI: 10.1093/gbe/evaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
With within-species genetic diversity estimates that span the gamut of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and, notably, across Metazoa. Here, we present a high-quality, gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat-rich arms. A comparison of C. brenneri with other nematodes from the "Elegans" group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation of orthogroup size, indicative of high rates of gene turnover, consistent with previous studies. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. A comparison of gene structures revealed a strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
4
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. Evolution 2025; 79:342-363. [PMID: 39565285 PMCID: PMC11879154 DOI: 10.1093/evolut/qpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Cao Z, Dai L, Li J, Zhang J, Wang X, Xu A, Du H. Reproductive and germ-cell mutagenic effects of poly-and perfluoroalkyl substances (PFAS) to Caenorhabditis elegans after multigenerational exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176224. [PMID: 39270858 DOI: 10.1016/j.scitotenv.2024.176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of globally ubiquitous persistent organic pollutants (POPs). The developmental and reproductive toxicity of PFAS have attracted considerable attention. However, the influence of PFAS exposure on genomic stability of germ cells remains unexplored. In this study, we evaluated long-term reproductive toxicity of environmentally relevant levels of four long-chain PFAS compounds: perfluorooctanoic acid (PFOA, C8), perfluorononanoic acid (PFNA, C9), perfluorodecanoic acid (PFDA, C10), and perfluorooctanesulfonic acid (PFOS, C8), and examined their germ-cell mutagenicity in Caenorhabditis elegans. Our findings reveal that multigenerational exposure to PFAS exhibited minor impacts on development and reproduction of worms. Among all tested PFAS, PFNA significantly increased mutation frequencies of progeny by preferentially inducing T:A → C:G substitutions and small indels within repetitive regions. Further analysis of mutation spectra uncovered elevated frequencies of microhomology-mediated deletions and large deletions in PFOA-treated worms, indicating its potential activity in eliciting DNA double-strand breaks. This study provides the first comparative analysis of the genome-wide mutational profile of PFAS compounds, underscoring the importance of assessing germ-cell mutagenic actions of long-chain PFAS.
Collapse
Affiliation(s)
- Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China
| | - Linglong Dai
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, P. R. China
| | - Jiali Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Jingyi Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Anhui, No. 81, Mei-Shan Road, Hefei 230032, P. R. China
| | - Xialian Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, P. R. China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China.
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China.
| |
Collapse
|
6
|
Crombie TA, Rajaei M, Saxena AS, Johnson LM, Saber S, Tanny RE, Ponciano JM, Andersen EC, Zhou J, Baer CF. Direct inference of the distribution of fitness effects of spontaneous mutations from recombinant inbred Caenorhabditis elegans mutation accumulation lines. Genetics 2024; 228:iyae136. [PMID: 39139098 DOI: 10.1093/genetics/iyae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
The distribution of fitness effects of new mutations plays a central role in evolutionary biology. Estimates of the distribution of fitness effect from experimental mutation accumulation lines are compromised by the complete linkage disequilibrium between mutations in different lines. To reduce the linkage disequilibrium, we constructed 2 sets of recombinant inbred lines from a cross of 2 Caenorhabditis elegans mutation accumulation lines. One set of lines ("RIAILs") was intercrossed for 10 generations prior to 10 generations of selfing; the second set of lines ("RILs") omitted the intercrossing. Residual linkage disequilibrium in the RIAILs is much less than in the RILs, which affects the inferred distribution of fitness effect when the sets of lines are analyzed separately. The best-fit model estimated from all lines (RIAILs + RILs) infers a large fraction of mutations with positive effects (∼40%); models that constrain mutations to have negative effects fit much worse. The conclusion is the same using only the RILs. For the RIAILs, however, models that constrain mutations to have negative effects fit nearly as well as models that allow positive effects. When mutations in high linkage disequilibrium are pooled into haplotypes, the inferred distribution of fitness effect becomes increasingly negative-skewed and leptokurtic. We conclude that the conventional wisdom-most mutations have effects near 0, a handful of mutations have effects that are substantially negative, and mutations with positive effects are very rare-is likely correct, and that unless it can be shown otherwise, estimates of the distribution of fitness effect that infer a substantial fraction of mutations with positive effects are likely confounded by linkage disequilibrium.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Moein Rajaei
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sayran Saber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Juannan Zhou
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
9
|
Tintori SC, Çağlar D, Ortiz P, Chyzhevskyi I, Mousseau TA, Rockman MV. Environmental radiation exposure at Chornobyl has not systematically affected the genomes or chemical mutagen tolerance phenotypes of local worms. Proc Natl Acad Sci U S A 2024; 121:e2314793121. [PMID: 38442158 PMCID: PMC10945782 DOI: 10.1073/pnas.2314793121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Abstract
The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Whether or not this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to mutagen exposure remains an open question. In this study, we collected, cultured, and cryopreserved 298 wild nematode isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oscheius tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field, and observed no evidence of an association between mutation and radioactivity at the sites of collection. Multigenerational exposure of each of these strains to several chemical mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites, and Chornobyl isolates were not systematically more resistant than strains from undisturbed habitats. In sum, the absence of mutational signatures does not reflect unique capacity for tolerating DNA damage.
Collapse
Affiliation(s)
- Sophia C. Tintori
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Derin Çağlar
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Patrick Ortiz
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Ihor Chyzhevskyi
- Department of Coordination of International Projects of the State Specialized Enterprise “Ecocentre”, Kyiv01133, Ukraine
| | - Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC29208
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| |
Collapse
|
10
|
Petersen C, Hamerich IK, Adair KL, Griem-Krey H, Torres Oliva M, Hoeppner MP, Bohannan BJM, Schulenburg H. Host and microbiome jointly contribute to environmental adaptation. THE ISME JOURNAL 2023; 17:1953-1965. [PMID: 37673969 PMCID: PMC10579302 DOI: 10.1038/s41396-023-01507-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Most animals and plants have associated microorganisms, collectively referred to as their microbiomes, which can provide essential functions. Given their importance, host-associated microbiomes have the potential to contribute substantially to adaptation of the host-microbiome assemblage (the "metaorganism"). Microbiomes may be especially important for rapid adaptation to novel environments because microbiomes can change more rapidly than host genomes. However, it is not well understood how hosts and microbiomes jointly contribute to metaorganism adaptation. We developed a model system with which to disentangle the contributions of hosts and microbiomes to metaorganism adaptation. We established replicate mesocosms containing the nematode Caenorhabditis elegans co-cultured with microorganisms in a novel complex environment (laboratory compost). After approximately 30 nematode generations (100 days), we harvested worm populations and associated microbiomes, and subjected them to a common garden experiment designed to unravel the impacts of microbiome composition and host genetics on metaorganism adaptation. We observed that adaptation took different trajectories in different mesocosm lines, with some increasing in fitness and others decreasing, and that interactions between host and microbiome played an important role in these contrasting evolutionary paths. We chose two exemplary mesocosms (one with a fitness increase and one with a decrease) for detailed study. For each example, we identified specific changes in both microbiome composition (for both bacteria and fungi) and nematode gene expression associated with each change in fitness. Our study provides experimental evidence that adaptation to a novel environment can be jointly influenced by host and microbiome.
Collapse
Affiliation(s)
- Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | - Inga K Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | - Karen L Adair
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | | | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany.
- Max-Planck Institute for Evolutionary Biology, Ploen, Germany.
| |
Collapse
|
11
|
Hwang HY, Wang J. Effect of recombination on genetic diversity of Caenorhabditis elegans. Sci Rep 2023; 13:16425. [PMID: 37777524 PMCID: PMC10542817 DOI: 10.1038/s41598-023-42600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2023] [Indexed: 10/02/2023] Open
Abstract
Greater molecular divergence and genetic diversity are present in regions of high recombination in many species. Studies describing the correlation between variant abundance and recombination rate have long focused on recombination in the context of linked selection models, whereby interference between linked sites under positive or negative selection reduces genetic diversity in regions of low recombination. Here, we show that indels, especially those of intermediate sizes, are enriched relative to single nucleotide polymorphisms in regions of high recombination in C. elegans. To explain this phenomenon, we reintroduce an alternative model that emphasizes the mutagenic effect of recombination. To extend the analysis, we examine the variants with a phylogenetic context and discuss how different models could be examined together. The number of variants generated by recombination in natural populations could be substantial including possibly the majority of some indel subtypes. Our work highlights the potential importance of a mutagenic effect of recombination, which could have a significant role in the shaping of natural genetic diversity.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
13
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Zhang G, Andersen EC. Interplay Between Polymorphic Short Tandem Repeats and Gene Expression Variation in Caenorhabditis elegans. Mol Biol Evol 2023; 40:msad067. [PMID: 36999565 PMCID: PMC10075192 DOI: 10.1093/molbev/msad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Short tandem repeats (STRs) have orders of magnitude higher mutation rates than single nucleotide variants (SNVs) and have been proposed to accelerate evolution in many organisms. However, only few studies have addressed the impact of STR variation on phenotypic variation at both the organismal and molecular levels. Potential driving forces underlying the high mutation rates of STRs also remain largely unknown. Here, we leverage the recently generated expression and STR variation data among wild Caenorhabditis elegans strains to conduct a genome-wide analysis of how STRs affect gene expression variation. We identify thousands of expression STRs (eSTRs) showing regulatory effects and demonstrate that they explain missing heritability beyond SNV-based expression quantitative trait loci. We illustrate specific regulatory mechanisms such as how eSTRs affect splicing sites and alternative splicing efficiency. We also show that differential expression of antioxidant genes and oxidative stresses might affect STR mutations systematically using both wild strains and mutation accumulation lines. Overall, we reveal the interplay between STRs and gene expression variation by providing novel insights into regulatory mechanisms of STRs and highlighting that oxidative stress could lead to higher STR mutation rates.
Collapse
Affiliation(s)
- Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
15
|
Plavskin Y, de Biase MS, Schwarz RF, Siegal ML. The rate of spontaneous mutations in yeast deficient for MutSβ function. G3 (BETHESDA, MD.) 2023; 13:6931805. [PMID: 36529906 PMCID: PMC9997558 DOI: 10.1093/g3journal/jkac330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Mutations in simple sequence repeat loci underlie many inherited disorders in humans, and are increasingly recognized as important determinants of natural phenotypic variation. In eukaryotes, mutations in these sequences are primarily repaired by the MutSβ mismatch repair complex. To better understand the role of this complex in mismatch repair and the determinants of simple sequence repeat mutation predisposition, we performed mutation accumulation in yeast strains with abrogated MutSβ function. We demonstrate that mutations in simple sequence repeat loci in the absence of mismatch repair are primarily deletions. We also show that mutations accumulate at drastically different rates in short (<8 bp) and longer repeat loci. These data lend support to a model in which the mismatch repair complex is responsible for repair primarily in longer simple sequence repeats.
Collapse
Affiliation(s)
- Yevgeniy Plavskin
- Center for Genomics and Systems Biology, New York University, New York 10003, USA.,Department of Biology, New York University, New York 10003, USA
| | - Maria Stella de Biase
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany.,Department of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany.,Institute for Computational Cancer Biology, Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany.,Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin 10623, Germany
| | - Mark L Siegal
- Center for Genomics and Systems Biology, New York University, New York 10003, USA.,Department of Biology, New York University, New York 10003, USA
| |
Collapse
|
16
|
Mutation Rate and Spectrum of the Silkworm in Normal and Temperature Stress Conditions. Genes (Basel) 2023; 14:genes14030649. [PMID: 36980921 PMCID: PMC10048334 DOI: 10.3390/genes14030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Mutation rate is a crucial parameter in evolutionary genetics. However, the mutation rate of most species as well as the extent to which the environment can alter the genome of multicellular organisms remain poorly understood. Here, we used parents–progeny sequencing to investigate the mutation rate and spectrum of the domestic silkworm (Bombyx mori) among normal and two temperature stress conditions (32 °C and 0 °C). The rate of single-nucleotide mutations in the normal temperature rearing condition was 0.41 × 10−8 (95% confidence interval, 0.33 × 10−8–0.49 × 10−8) per site per generation, which was up to 1.5-fold higher than in four previously studied insects. Moreover, the mutation rates of the silkworm under the stresses are significantly higher than in normal conditions. Furthermore, the mutation rate varies less in gene regions under normal and temperature stresses. Together, these findings expand the known diversity of the mutation rate among eukaryotes but also have implications for evolutionary analysis that assumes a constant mutation rate among species and environments.
Collapse
|
17
|
Wilson R, Le Bourgeois M, Perez M, Sarkies P. Fluctuations in chromatin state at regulatory loci occur spontaneously under relaxed selection and are associated with epigenetically inherited variation in C. elegans gene expression. PLoS Genet 2023; 19:e1010647. [PMID: 36862744 PMCID: PMC10013927 DOI: 10.1371/journal.pgen.1010647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Some epigenetic information can be transmitted between generations without changes in the underlying DNA sequence. Changes in epigenetic regulators, termed epimutations, can occur spontaneously and be propagated in populations in a manner reminiscent of DNA mutations. Small RNA-based epimutations occur in C. elegans and persist for around 3-5 generations on average. Here, we explored whether chromatin states also undergo spontaneous change and whether this could be a potential alternative mechanism for transgenerational inheritance of gene expression changes. We compared the chromatin and gene expression profiles at matched time points from three independent lineages of C. elegans propagated at minimal population size. Spontaneous changes in chromatin occurred in around 1% of regulatory regions each generation. Some were heritable epimutations and were significantly enriched for heritable changes in expression of nearby protein-coding genes. Most chromatin-based epimutations were short-lived but a subset had longer duration. Genes subject to long-lived epimutations were enriched for multiple components of xenobiotic response pathways. This points to a possible role for epimutations in adaptation to environmental stressors.
Collapse
Affiliation(s)
- Rachel Wilson
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Marcos Perez
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Mallard F, Noble L, Baer CF, Teotónio H. Variation in mutational (co)variances. G3 (BETHESDA, MD.) 2023; 13:jkac335. [PMID: 36548954 PMCID: PMC9911065 DOI: 10.1093/g3journal/jkac335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Because of pleiotropy, mutations affect the expression and inheritance of multiple traits and, together with selection, are expected to shape standing genetic covariances between traits and eventual phenotypic divergence between populations. It is therefore important to find if the M matrix, describing mutational variances of each trait and covariances between traits, varies between genotypes. We here estimate the M matrix for six locomotion behavior traits in lines of two genotypes of the nematode Caenorhabditis elegans that accumulated mutations in a nearly neutral manner for 250 generations. We find significant mutational variance along at least one phenotypic dimension of the M matrices, but neither their size nor their orientation had detectable differences between genotypes. The number of generations of mutation accumulation, or the number of MA lines measured, was likely insufficient to sample enough mutations and detect potentially small differences between the two M matrices. We then tested if the M matrices were similar to one G matrix describing the standing genetic (co)variances of a population derived by the hybridization of several genotypes, including the two measured for M, and domesticated to a lab-defined environment for 140 generations. We found that the M and G were different because the genetic covariances caused by mutational pleiotropy in the two genotypes are smaller than those caused by linkage disequilibrium in the lab population. We further show that M matrices differed in their alignment with the lab population G matrix. If generalized to other founder genotypes of the lab population, these observations indicate that selection does not shape the evolution of the M matrix for locomotion behavior in the short-term of a few tens to hundreds of generations and suggests that the hybridization of C. elegans genotypes allows selection on new phenotypic dimensions of locomotion behavior.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Luke Noble
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, FL 32611, USA
| | - Henrique Teotónio
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| |
Collapse
|
19
|
Savino S, Desmet T, Franceus J. Insertions and deletions in protein evolution and engineering. Biotechnol Adv 2022; 60:108010. [PMID: 35738511 DOI: 10.1016/j.biotechadv.2022.108010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations.
Collapse
Affiliation(s)
- Simone Savino
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium..
| |
Collapse
|
20
|
Saber S, Snyder M, Rajaei M, Baer CF. Mutation, selection, and the prevalence of the Caenorhabditis elegans heat-sensitive mortal germline phenotype. G3 (BETHESDA, MD.) 2022; 12:jkac063. [PMID: 35311992 PMCID: PMC9073675 DOI: 10.1093/g3journal/jkac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
Caenorhabditis elegans strains with the heat-sensitive mortal germline phenotype become progressively sterile over the course of a few tens of generations when maintained at temperatures near the upper range of C. elegans' tolerance. Mortal germline is transgenerationally heritable, and proximately under epigenetic control. Previous studies have suggested that mortal germline presents a relatively large mutational target and that mortal germline is not uncommon in natural populations of C. elegans. The mortal germline phenotype is not monolithic. Some strains exhibit a strong mortal germline phenotype, in which individuals invariably become sterile over a few generations, whereas other strains show a weaker (less penetrant) phenotype in which the onset of sterility is slower and more stochastic. We present results in which we (1) quantify the rate of mutation to the mortal germline phenotype and (2) quantify the frequency of mortal germline in a collection of 95 wild isolates. Over the course of ∼16,000 meioses, we detected one mutation to a strong mortal germline phenotype, resulting in a point estimate of the mutation rate UMrt≈ 6×10-5/genome/generation. We detected no mutations to a weak mortal germline phenotype. Six out of 95 wild isolates have a strong mortal germline phenotype, and although quantification of the weak mortal germline phenotype is inexact, the weak mortal germline phenotype is not rare in nature. We estimate a strength of selection against mutations conferring the strong mortal germline phenotype s¯≈0.1%, similar to selection against mutations affecting competitive fitness. The appreciable frequency of weak mortal germline variants in nature combined with the low mutation rate suggests that mortal germline may be maintained by balancing selection.
Collapse
Affiliation(s)
- Sayran Saber
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
| | - Michael Snyder
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
| | - Moein Rajaei
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- University of Florida Genetics Institute, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Katju V, Konrad A, Deiss TC, Bergthorsson U. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 GENES|GENOMES|GENETICS 2022; 12:6407146. [PMID: 34849777 PMCID: PMC8727991 DOI: 10.1093/g3journal/jkab364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
- Faculdade de Ciência da Universidade de Lisboa (FCUL), CE3C—Centre for Ecology, Evolution and Environmental Changes, 1749-016 Lisboa, Portugal
| | - Thaddeus C Deiss
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
22
|
Gilbert KJ, Zdraljevic S, Cook DE, Cutter AD, Andersen EC, Baer CF. The distribution of mutational effects on fitness in Caenorhabditis elegans inferred from standing genetic variation. Genetics 2022; 220:iyab166. [PMID: 34791202 PMCID: PMC8733438 DOI: 10.1093/genetics/iyab166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
The distribution of fitness effects (DFE) for new mutations is one of the most theoretically important but difficult to estimate properties in population genetics. A crucial challenge to inferring the DFE from natural genetic variation is the sensitivity of the site frequency spectrum to factors like population size change, population substructure, genome structure, and nonrandom mating. Although inference methods aim to control for population size changes, the influence of nonrandom mating remains incompletely understood, despite being a common feature of many species. We report the DFE estimated from 326 genomes of Caenorhabditis elegans, a nematode roundworm with a high rate of self-fertilization. We evaluate the robustness of DFE inferences using simulated data that mimics the genomic structure and reproductive life history of C. elegans. Our observations demonstrate how the combined influence of self-fertilization, genome structure, and natural selection on linked sites can conspire to compromise estimates of the DFE from extant polymorphisms with existing methods. These factors together tend to bias inferences toward weakly deleterious mutations, making it challenging to have full confidence in the inferred DFE of new mutations as deduced from standing genetic variation in species like C. elegans. Improved methods for inferring the DFE are needed to appropriately handle strong linked selection and selfing. These results highlight the importance of understanding the combined effects of processes that can bias our interpretations of evolution in natural populations.
Collapse
Affiliation(s)
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- University of Florida Genetics Institute, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Ho EKH, Schaack S. Intraspecific Variation in the Rates of Mutations Causing Structural Variation in Daphnia magna. Genome Biol Evol 2021; 13:6444992. [PMID: 34849778 PMCID: PMC8691059 DOI: 10.1093/gbe/evab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations that cause structural variation are important sources of genetic variation upon which other evolutionary forces can act, however, they are difficult to observe and therefore few direct estimates of their rate and spectrum are available. Understanding mutation rate evolution, however, requires adding to the limited number of species for which direct estimates are available, quantifying levels of intraspecific variation in mutation rates, and assessing whether rate estimates co-vary across types of mutation. Here, we report structural variation-causing mutation rates (svcMRs) for six categories of mutations (short insertions and deletions, long deletions and duplications, and deletions and duplications at copy number variable sites) from nine genotypes of Daphnia magna collected from three populations in Finland, Germany, and Israel using a mutation accumulation approach. Based on whole-genome sequence data and validated using simulations, we find svcMRs are high (two orders of magnitude higher than base substitution mutation rates measured in the same lineages), highly variable among populations, and uncorrelated across categories of mutation. Furthermore, to assess the impact of scvMRs on the genome, we calculated rates while adjusting for the lengths of events and ran simulations to determine if the mutations occur in genic regions more or less frequently than expected by chance. Our results pose a challenge to most prevailing theories aimed at explaining the evolution of the mutation rate, underscoring the importance of obtaining additional mutation rate estimates in more genotypes, for more types of mutation, in more species, in order to improve our future understanding of mutation rates, their variation, and their evolution.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, USA
| |
Collapse
|
24
|
Rajaei M, Saxena AS, Johnson LM, Snyder MC, Crombie TA, Tanny RE, Andersen EC, Joyner-Matos J, Baer CF. Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans. Genome Res 2021; 31:1602-1613. [PMID: 34404692 PMCID: PMC8415377 DOI: 10.1101/gr.275372.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between C. elegans laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between mev-1, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in mev-1, consistent with studies in other organisms in which environmental stress increased the rate of insertion–deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.
Collapse
Affiliation(s)
- Moein Rajaei
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | | | - Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Michael C Snyder
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Timothy A Crombie
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Joanna Joyner-Matos
- Department of Biology, Eastern Washington University, Cheney, Washington 99004, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.,University of Florida Genetics Institute, Gainesville, Florida 32608, USA
| |
Collapse
|
25
|
The rate and molecular spectrum of mutation are selectively maintained in yeast. Nat Commun 2021; 12:4044. [PMID: 34193872 PMCID: PMC8245649 DOI: 10.1038/s41467-021-24364-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
What determines the rate (μ) and molecular spectrum of mutation is a fundamental question. The prevailing hypothesis asserts that natural selection against deleterious mutations has pushed μ to the minimum achievable in the presence of genetic drift, or the drift barrier. Here we show that, contrasting this hypothesis, μ substantially exceeds the drift barrier in diverse organisms. Random mutation accumulation (MA) in yeast frequently reduces μ, and deleting the newly discovered mutator gene PSP2 nearly halves μ. These results, along with a comparison between the MA and natural yeast strains, demonstrate that μ is maintained above the drift barrier by stabilizing selection. Similar comparisons show that the mutation spectrum such as the universal AT mutational bias is not intrinsic but has been selectively preserved. These findings blur the separation of mutation from selection as distinct evolutionary forces but open the door to alleviating mutagenesis in various organisms by genome editing. How natural selection shapes the rate and molecular spectrum of mutations is debated. Yeast mutation accumulation experiments identify a gene promoting mutagenesis and show stabilizing selection maintaining the mutation rate above the drift barrier. Selection also preserves the mutation spectrum.
Collapse
|
26
|
Cai M, Zhang C, Wang W, Peng Q, Song X, Tyler BM, Liu X. Stepwise accumulation of mutations in CesA3 in Phytophthora sojae results in increasing resistance to CAA fungicides. Evol Appl 2021; 14:996-1008. [PMID: 33897816 PMCID: PMC8061276 DOI: 10.1111/eva.13176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023] Open
Abstract
Flumorph is a carboxylic acid amide (CAA) fungicide with high activity against oomycetes. However, evolution to CAAs from low resistance to high resistance has never been reported. This study investigated the basis of resistance evolution of flumorph in Phytophthora sojae. Total of 120 P. sojae isolates were collected and their sensitivity to flumorph was evaluated. Although no spontaneous resistance was found among the field isolates, adaptation on flumorph-amended media resulted in the selection of five stable mutant types exhibiting varying degrees of resistance to CAAs. Type I, which exhibited the lowest resistance level, was obtained when the wild-type isolate was exposed to a low concentration of flumorph, but no resistant mutants were obtained by direct exposure to higher concentrations. However, the more resistant types (Type II, III, IV and V) were obtained when Type I were exposed to higher concentrations of flumorph. Similar results were obtained when the entire screening process was repeated, which implied that evolution of resistance to flumorph in P. sojae could be a two-step process, where high resistance phenotypes could develop gradually from low resistance ones. Further investigation into molecular mechanism strongly confirmed that evolution of isolates highly resistant to flumorph occurs in a stepwise process with Type I as intermediary, through accumulation of mutations in their target protein of CAAs (CesA3). Together, our findings indicate that application of low rates of flumorph in field could result in selection of low resistance Type I isolates, but that raising dosage to maintain comparable levels of control could elicit rapid evolution of more resistant Type II, III, IV and V isolates with stepwise accumulation of mutations in CesA3, which would render flumorph ineffective as a control method. Precautionary resistance management strategy should be implemented. The phenomenon described in the study could have broader biological significance.
Collapse
Affiliation(s)
- Meng Cai
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
- College of ChemistryKey Laboratory of Pesticide & Chemical Biology of Ministry of EducationCentral China Normal UniversityWuhanChina
| | - Can Zhang
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Weizhen Wang
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Qin Peng
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xi Song
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Brett M. Tyler
- Department of Botany & Plant PathologyOregon State UniversityCorvallisOregonUSA
| | - Xili Liu
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
27
|
Noble LM, Rockman MV, Teotónio H. Gene-level quantitative trait mapping in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2021; 11:jkaa061. [PMID: 33693602 PMCID: PMC8022935 DOI: 10.1093/g3journal/jkaa061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
The Caenorhabditis elegans multiparental experimental evolution (CeMEE) panel is a collection of genome-sequenced, cryopreserved recombinant inbred lines useful for mapping the evolution and genetic basis of quantitative traits. We have expanded the resource with new lines and new populations, and here report the genotype and haplotype composition of CeMEE version 2, including a large set of putative de novo mutations, and updated additive and epistatic mapping simulations. Additive quantitative trait loci explaining 4% of trait variance are detected with >80% power, and the median detection interval approaches single-gene resolution on the highly recombinant chromosome arms. Although CeMEE populations are derived from a long-term evolution experiment, genetic structure is dominated by variation present in the ancestral population.
Collapse
Affiliation(s)
- Luke M Noble
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Matthew V Rockman
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| |
Collapse
|
28
|
Estimation of the SNP Mutation Rate in Two Vegetatively Propagating Species of Duckweed. G3-GENES GENOMES GENETICS 2020; 10:4191-4200. [PMID: 32973000 PMCID: PMC7642947 DOI: 10.1534/g3.120.401704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutation rate estimates for vegetatively reproducing organisms are rare, despite their frequent occurrence across the tree of life. Here we report mutation rate estimates in two vegetatively reproducing duckweed species, Lemna minor and Spirodela polyrhiza We use a modified approach to estimating mutation rates by taking into account the reduction in mutation detection power that occurs when new individuals are produced from multiple cell lineages. We estimate an extremely low per generation mutation rate in both species of duckweed and note that allelic coverage at de novo mutation sites is very skewed. We also find no substantial difference in mutation rate between mutation accumulation lines propagated under benign conditions and those grown under salt stress. Finally, we discuss the implications of interpreting mutation rate estimates in vegetatively propagating organisms.
Collapse
|
29
|
Johnson LM, Smith OJ, Hahn DA, Baer CF. Short-term heritable variation overwhelms 200 generations of mutational variance for metabolic traits in Caenorhabditis elegans. Evolution 2020; 74:2451-2464. [PMID: 32989734 DOI: 10.1111/evo.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/05/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Metabolic disorders have a large heritable component, and have increased markedly in human populations over the past few generations. Genome-wide association studies of metabolic traits typically find a substantial unexplained fraction of total heritability, suggesting an important role of spontaneous mutation. An alternative explanation is that epigenetic effects contribute significantly to the heritable variation. Here, we report a study designed to quantify the cumulative effects of spontaneous mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the activity and concentration of two metabolic enzymes and the standing pools of their associated metabolites. The only prior studies on the effects of mutation on metabolic enzyme activity, in Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to that of morphological and life-history traits. However, those studies were not designed to account for short-term heritable effects. We find that the short-term heritable variance for most traits is of similar magnitude as the variance among MA lines. This result suggests that the potential heritable effects of epigenetic variation in metabolic disease warrant additional scrutiny.
Collapse
Affiliation(s)
- Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Ology Bioservices, Inc., Alachua, Florida, 32615
| | - Olivia J Smith
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, 32611.,University of Florida Genetics Institute, Gainesville, Florida, 32611
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,University of Florida Genetics Institute, Gainesville, Florida, 32611
| |
Collapse
|
30
|
Low Base-Substitution Mutation Rate but High Rate of Slippage Mutations in the Sequence Repeat-Rich Genome of Dictyostelium discoideum. G3-GENES GENOMES GENETICS 2020; 10:3445-3452. [PMID: 32732307 PMCID: PMC7466956 DOI: 10.1534/g3.120.401578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe the rate and spectrum of spontaneous mutations for the social amoeba Dictyostelium discoideum, a key model organism in molecular, cellular, evolutionary and developmental biology. Whole-genome sequencing of 37 mutation accumulation lines of D. discoideum after an average of 1,500 cell divisions yields a base-substitution mutation rate of 2.47 × 10−11 per site per generation, substantially lower than that of most eukaryotic and prokaryotic organisms, and of the same order of magnitude as in the ciliates Paramecium tetraurelia and Tetrahymena thermophila. Known for its high genomic AT content and abundance of simple sequence repeats, we observe that base-substitution mutations in D. discoideum are highly A/T biased. This bias likely contributes both to the high genomic AT content and to the formation of simple sequence repeats in the AT-rich genome of Dictyostelium discoideum. In contrast to the situation in other surveyed unicellular eukaryotes, indel rates far exceed the base-substitution mutation rate in this organism with a high proportion of 3n indels, particularly in regions without simple sequence repeats. Like ciliates, D. discoideum has a large effective population size, reducing the power of random genetic drift, magnifying the effect of selection on replication fidelity, in principle allowing D. discoideum to evolve an extremely low base-substitution mutation rate.
Collapse
|
31
|
Besnard F, Picao-Osorio J, Dubois C, Félix MA. A broad mutational target explains a fast rate of phenotypic evolution. eLife 2020; 9:54928. [PMID: 32851977 PMCID: PMC7556874 DOI: 10.7554/elife.54928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
The rapid evolution of a trait in a clade of organisms can be explained by the sustained action of natural selection or by a high mutational variance, that is the propensity to change under spontaneous mutation. The causes for a high mutational variance are still elusive. In some cases, fast evolution depends on the high mutation rate of one or few loci with short tandem repeats. Here, we report on the fastest evolving cell fate among vulva precursor cells in Caenorhabditis nematodes, that of P3.p. We identify and validate causal mutations underlying P3.p's high mutational variance. We find that these positions do not present any characteristics of a high mutation rate, are scattered across the genome and the corresponding genes belong to distinct biological pathways. Our data indicate that a broad mutational target size is the cause of the high mutational variance and of the corresponding fast phenotypic evolutionary rate. Heritable characteristics or traits of a group of organisms, for example the large brain size of primates or the hooves of a horse, are determined by genes, the environment, and by the interactions between them. Traits can change over time and generations when enough mutations in these genes have spread in a species to result in visible differences. However, some traits, such as the large brain of primates, evolve faster than others, but why this is the case has been unclear. It could be that a few specific genes important for that trait in question mutate at a high rate, or, that many genes affect the trait, creating a lot of variation for natural selection to choose from. Here, Besnard, Picao-Osorio et al. studied the roundworm Caenorhabditis elegans to better understand the causes underlying the different rates of trait evolution. These worms have a short life cycle and evolve quickly over many generations, making them an ideal candidate for studying mutation rates in different traits. Previous studies have shown that one of C. elegans’ six cells of the reproductive system evolves faster than the others. To investigate this further, Besnard, Picao-Osorio et al. analysed the genetic mutations driving change in this cell in 250 worm generations. The results showed that five mutations in five different genes – all responsible for different processes in the cells – were behind the supercharged evolution of this particular cell. This suggests that fast evolution results from natural selection acting upon a collection of genes, rather than one gene, and that many genes and pathways shape this trait. In conclusion, these results demonstrate that how traits are coded at the molecular level, in one gene or many, can influence the rate at which they evolve.
Collapse
Affiliation(s)
- Fabrice Besnard
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France.,Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Joao Picao-Osorio
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| | - Clément Dubois
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
32
|
Xu W, Long L, Zhao Y, Stevens L, Felipe I, Munoz J, Ellis RE, McGrath PT. Evolution of Yin and Yang isoforms of a chromatin remodeling subunit precedes the creation of two genes. eLife 2019; 8:e48119. [PMID: 31498079 PMCID: PMC6752949 DOI: 10.7554/elife.48119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Genes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene became fixed in two laboratory lineages of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300 kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.D and NURF-1.B, which we call Yin and Yang, respectively) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional side products necessary to transcribe the Yin and Yang transcripts in the same cells. Our work demonstrates how gene sharing, through the production of multiple isoforms, can precede the creation of new, independent genes.
Collapse
Affiliation(s)
- Wen Xu
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lijiang Long
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative BiosciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Yuehui Zhao
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Irene Felipe
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Center-CNIOMadridSpain
| | - Javier Munoz
- Proteomics Unit-ProteoRed-ISCIIISpanish National Cancer Research Center-CNIOMadridSpain
| | - Ronald E Ellis
- Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordUnited States
| | - Patrick T McGrath
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Parker H. Petit Institute of Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUnited States
- School of PhysicsGeorgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
33
|
Amos W. Flanking heterozygosity influences the relative probability of different base substitutions in humans. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191018. [PMID: 31598319 PMCID: PMC6774961 DOI: 10.1098/rsos.191018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Understanding when, where and which mutations are mostly likely to occur impacts many areas of evolutionary biology, from genetic diseases to phylogenetic reconstruction. Africans and non-African humans differ in the mutability of different triplet base combinations. Africans and non-Africans also differ in mutation rate, possibly because heterozygosity is mutagenic, such that diversity lost when humans expanded out of Africa also lowered the mutation rate. I show that these phenomena are linked: as flanking heterozygosity increases, some triplets become progressively more mutable while others become less so. Africans and non-African show near-identical patterns of dependence on heterozygosity. Thus, the striking differences in triplet mutation frequency between Africans and non-Africans, at least in part, seem to be an emergent property, driven by the way changes in heterozygosity 'out of Africa' have differentially impacted the mutability of different triplets. As heterozygosity decreased, the mutation spectrum outside Africa became enriched for triplet mutations that are favoured by low heterozygosity while those favoured by high heterozygosity became relatively rarer.
Collapse
|
34
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
35
|
Konrad A, Brady MJ, Bergthorsson U, Katju V. Mutational Landscape of Spontaneous Base Substitutions and Small Indels in Experimental Caenorhabditis elegans Populations of Differing Size. Genetics 2019; 212:837-854. [PMID: 31110155 PMCID: PMC6614903 DOI: 10.1534/genetics.119.302054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023] Open
Abstract
Experimental investigations into the rates and fitness effects of spontaneous mutations are fundamental to our understanding of the evolutionary process. To gain insights into the molecular and fitness consequences of spontaneous mutations, we conducted a mutation accumulation (MA) experiment at varying population sizes in the nematode Caenorhabditis elegans, evolving 35 lines in parallel for 409 generations at three population sizes (N = 1, 10, and 100 individuals). Here, we focus on nuclear SNPs and small insertion/deletions (indels) under minimal influence of selection, as well as their accrual rates in larger populations under greater selection efficacy. The spontaneous rates of base substitutions and small indels are 1.84 (95% C.I. ± 0.14) × 10-9 substitutions and 6.84 (95% C.I. ± 0.97) × 10-10 changes/site/generation, respectively. Small indels exhibit a deletion bias with deletions exceeding insertions by threefold. Notably, there was no correlation between the frequency of base substitutions, nonsynonymous substitutions, or small indels with population size. These results contrast with our previous analysis of mitochondrial DNA mutations and nuclear copy-number changes in these MA lines, and suggest that nuclear base substitutions and small indels are under less stringent purifying selection compared to the former mutational classes. A transition bias was observed in exons as was a near universal base substitution bias toward A/T. Strongly context-dependent base substitutions, where 5'-Ts and 3'-As increase the frequency of A/T → T/A transversions, especially at the boundaries of A or T homopolymeric runs, manifest as higher mutation rates in (i) introns and intergenic regions relative to exons, (ii) chromosomal cores vs. arms and tips, and (iii) germline-expressed genes.
Collapse
Affiliation(s)
- Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77845
| | - Meghan J Brady
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77845
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77845
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77845
| |
Collapse
|
36
|
Abstract
Environmental dependence of mutation in microbes is well-known, but most experiments have investigated contexts in which growth rate is greatly reduced below optimum. A new experiment shows mutational variability extends to contexts in which growth is near optimum.
Collapse
Affiliation(s)
- Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611-8525, USA.
| |
Collapse
|