1
|
Tarnopol RL, Tamsil JA, Cinege G, Ha JH, Verster KI, Ábrahám E, Magyar LB, Kim BY, Bernstein SL, Lipinszki Z, Andó I, Whiteman NK. Experimental horizontal transfer of phage-derived genes to Drosophila confers innate immunity to parasitoids. Curr Biol 2025; 35:514-529.e7. [PMID: 39708795 PMCID: PMC11975398 DOI: 10.1016/j.cub.2024.11.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/01/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins. In some cases, the genes that encode these toxins have been horizontally transferred to the genomes of the insects. Here, we used genome editing in Drosophila melanogaster to recapitulate the evolution of two toxin genes-cytolethal distending toxin B (cdtB) and apoptosis inducing protein of 56kDa (aip56)-that were horizontally transferred likely from phages of endosymbiotic bacteria to insects millions of years ago. We found that a cdtB::aip56 fusion gene (fusionB), which is conserved in D. ananassae subgroup species, dramatically promoted fly survival and suppressed parasitoid wasp development when heterologously expressed in D. melanogaster immune tissues. We found that FusionB was a functional nuclease and was secreted into the host hemolymph where it targeted the parasitoid embryo's serosal tissue. Although the mechanism of toxicity remains unknown, when expressed ubiquitously, fusionB resulted in delayed development of late-stage fly larvae and eventually killed pupating flies. These results point to the salience of regulatory constraint in mitigating autoimmunity during the domestication process following horizontal transfer. Our findings demonstrate how horizontal gene transfer can instantly provide new, potent innate immune modules in animals.
Collapse
Affiliation(s)
- Rebecca L Tarnopol
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Josephine A Tamsil
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary
| | - Ji Heon Ha
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kirsten I Verster
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Edit Ábrahám
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged 6726, Hungary; National Laboratory for Biotechnology Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary
| | - Lilla B Magyar
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary
| | - Bernard Y Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Susan L Bernstein
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zoltán Lipinszki
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged 6726, Hungary; National Laboratory for Biotechnology Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary
| | - István Andó
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary.
| | - Noah K Whiteman
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Whiteman NK. Insect herbivory: An inordinate fondness for plant cell wall degrading enzymes. Curr Biol 2025; 35:R107-R109. [PMID: 39904308 DOI: 10.1016/j.cub.2024.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Tens of thousands of species of leaf beetles rely on plant cell wall degrading enzymes in order to make the most of nutritionally depauperate plant tissues. Many of the genes encoding these enzymes were acquired from microbial donors, either through horizontal gene transfer or by hosting microbial endosymbionts. A new study explores how these insects have leveraged this metabolic potential to diversify and expand into new niches.
Collapse
Affiliation(s)
- Noah K Whiteman
- Department of Integrative Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94618, USA.
| |
Collapse
|
3
|
Duncan RP, Lewin GR, Cornforth DM, Diggle FL, Kapur A, Moustafa DA, Hilliam Y, Bomberger JM, Whiteley M, Goldberg JB. RNA-seq reproducibility of Pseudomonas aeruginosa in laboratory models of cystic fibrosis. Microbiol Spectr 2025; 13:e0151324. [PMID: 39625302 PMCID: PMC11705926 DOI: 10.1128/spectrum.01513-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Reproducibility is a fundamental expectation in science and enables investigators to have confidence in their research findings and the ability to compare data from disparate sources, but evaluating reproducibility can be elusive. For example, generating RNA sequencing (RNA-seq) data includes multiple steps where variance can be introduced. Thus, it is unclear if RNA-seq data from different sources can be validly compared. While most studies on RNA-seq reproducibility focus on eukaryotes, we evaluate bias in bacteria using Pseudomonas aeruginosa gene expression data from five laboratory models of cystic fibrosis. We leverage a large data set that includes samples prepared in three different laboratories and paired data sets where the same sample was sequenced using at least two different sequencing pipelines. We report here that expression data are highly reproducible across laboratories. In addition, while samples sequenced with different sequencing pipelines showed significantly more variance in expression profiles than between labs, gene expression was still highly reproducible between sequencing pipelines. Further investigation of expression differences between two sequencing pipelines revealed that library preparation methods were the largest source of error, though analyses to identify the source of this variance were inconclusive. Consistent with the reproducibility of expression between sequencing pipelines, we found that different pipelines detected over 80% of the same differentially expressed genes with large expression differences between conditions. Thus, bacterial RNA-seq data from different sources can be validly compared, facilitating the ability to advance understanding of bacterial behavior and physiology using the wide array of publicly available RNA-seq data sets.IMPORTANCERNA sequencing (RNA-seq) has revolutionized biology, but many steps in RNA-seq workflows can introduce variance, potentially compromising reproducibility. While reproducibility in RNA-seq has been thoroughly investigated in eukaryotes, less is known about pipelines and workflows that introduce variance and biases in bacterial RNA-seq data. By leveraging Pseudomonas aeruginosa transcriptomes in cystic fibrosis models from different laboratories and sequenced with different sequencing pipelines, we directly assess sources of bacterial RNA-seq variance. RNA-seq data were highly reproducible, with the largest variance due to sequencing pipelines, specifically library preparation. Different sequencing pipelines detected overlapping differentially expressed genes, especially those with large expression differences between conditions. This study confirms that different approaches to preparing and sequencing bacterial RNA libraries capture comparable transcriptional profiles, supporting investigators' ability to leverage diverse RNA-seq data sets to advance their science.
Collapse
Affiliation(s)
- Rebecca P. Duncan
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Gina R. Lewin
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daniel M. Cornforth
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Frances L. Diggle
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ananya Kapur
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dina A. Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Yasmin Hilliam
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marvin Whiteley
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Magyar LB, Ábrahám E, Lipinszki Z, Tarnopol RL, Whiteman NK, Varga V, Hultmark D, Andó I, Cinege G. Pore-Forming Toxin-Like Proteins in the Anti-Parasitoid Immune Response of Drosophila. J Innate Immun 2024; 17:10-28. [PMID: 39626640 PMCID: PMC11731912 DOI: 10.1159/000542583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/10/2024] [Indexed: 12/08/2024] Open
Abstract
INTRODUCTION Species of the ananassae subgroup of Drosophilidae are highly resistant to parasitoid wasp infections. We have previously shown that the genes encoding cytolethal distending toxin B (CdtB) and the apoptosis inducing protein of 56 kDa (AIP56) were horizontally transferred to these fly species from prokaryotes and are now instrumental in the anti-parasitoid immune defense of Drosophila ananassae. Here we describe a new family of genes, which encode proteins with hemolysin E domains, heretofore only identified in prokaryotes. Hemolysin E proteins are pore-forming toxins, important virulence factors of bacteria. METHODS Bioinformatical, transcriptional, and protein expressional studies were used. RESULTS The hemolysin E-like genes have a scattered distribution among the genomes of species belonging to several different monophyletic lineages in the family Drosophilidae. We detected structural homology with the bacterial Hemolysin E toxins and showed that the origin of the D. ananassae hemolysin E-like genes (hl1-38) is consistent with prokaryotic horizontal gene transfer. These genes encode humoral factors, secreted into the hemolymph by the fat body and hemocytes. Their expression is induced solely by parasitoid infection and the proteins bind to the developing parasitoids. CONCLUSIONS Hemolysin E-like proteins acquired by horizontal gene transfer and expressed by the primary immune organs may contribute to the elimination of parasitoids, as novel humoral factors in Drosophila innate immunity.
Collapse
Affiliation(s)
- Lilla B. Magyar
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Edit Ábrahám
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Rebecca L. Tarnopol
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Viktória Varga
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - István Andó
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
5
|
Nowell RW, Rodriguez F, Hecox-Lea BJ, Mark Welch DB, Arkhipova IR, Barraclough TG, Wilson CG. Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Nat Commun 2024; 15:5787. [PMID: 39025839 PMCID: PMC11258130 DOI: 10.1038/s41467-024-49919-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic animals whose genomes show elevated levels of horizontal gene transfer from non-metazoan taxa. When rotifers were challenged with a fungal pathogen, horizontally acquired genes were over twice as likely to be upregulated as other genes - a stronger enrichment than observed for abiotic stressors. Among hundreds of upregulated genes, the most markedly overrepresented were clusters resembling bacterial polyketide and nonribosomal peptide synthetases that produce antibiotics. Upregulation of these clusters in a pathogen-resistant rotifer species was nearly ten times stronger than in a susceptible species. By acquiring, domesticating, and expressing non-metazoan biosynthetic pathways, bdelloids may have evolved to resist natural enemies using antimicrobial mechanisms absent from other animals.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- Institute of Ecology and Evolution, University of Edinburgh; Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Bette J Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.
| |
Collapse
|
6
|
Pandey T, Kalluraya CA, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode interdomain horizontal gene transfer. EMBO J 2023; 42:e114835. [PMID: 37953666 PMCID: PMC10711659 DOI: 10.15252/embj.2023114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | - Bingying Wang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ting Xu
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xinya Huang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Shouhong Guang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | | | - Dengke K Ma
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
7
|
Patel V, Lynn-Bell N, Chevignon G, Kucuk RA, Higashi CHV, Carpenter M, Russell JA, Oliver KM. Mobile elements create strain-level variation in the services conferred by an aphid symbiont. Environ Microbiol 2023; 25:3333-3348. [PMID: 37864320 DOI: 10.1111/1462-2920.16520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Roy A Kucuk
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | | | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Pandey T, Kalluraya C, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode horizontal gene transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554039. [PMID: 37662235 PMCID: PMC10473587 DOI: 10.1101/2023.08.20.554039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Natural selection drives acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisition of functions in immunity, metabolism, and reproduction via interdomain HGT (iHGT) from bacteria. We report that the nematode gene rml-3, which was acquired by iHGT from bacteria, enables exoskeleton resilience and protection against environmental toxins in C. elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most highly similar to bacterial enzymes that biosynthesize L-rhamnose to build cell wall polysaccharides. C. elegans rml-3 is regulated in developing seam cells by heat stress and stress-resistant dauer stage. Importantly, rml-3 deficiency impairs cuticle integrity, barrier functions and organismal stress resilience, phenotypes that are rescued by exogenous L-rhamnose. We propose that iHGT of an ancient bacterial rml-3 homolog enables L-rhamnose biosynthesis in nematodes that facilitates cuticle integrity and organismal resilience in adaptation to environmental stresses during evolution. These findings highlight the remarkable contribution of iHGT on metazoan evolution that is conferred by the domestication of bacterial genes.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Chinmay Kalluraya
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Ting Xu
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinya Huang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
- Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
9
|
Zhang H, Guan W, Shu J, Yu S, Xiong Y, Liu G, Zhong Y, Chen J, Zhao Z, He N, Xing Q, Guo D, Li L, Hongbing O. Graphene nano zinc oxide reduces the expression and release of antibiotic resistance-related genes and virulence factors in animal manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163520. [PMID: 37061060 DOI: 10.1016/j.scitotenv.2023.163520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Animal manure contains many antibiotic resistance genes (ARGs) and virulence factors (VFs), posing significant health threats to humans. However, the effects of graphene nano zinc oxide (GZnONP), a zinc bioaugmentation substitute, on bacterial chemotaxis, ARGs, and VFs in animal manure remain scanty. Herein, the effect of GZnONP on the in vivo anaerobic expression of ARGs and VFs in cattle manure was assessed using high-throughput sequencing. Results showed that GZnONP inhibited bacterial chemotaxis by reducing the zinc pressure under anaerobic fermentation, altering the microbial community structure. The expression of ARGs was significantly lower in GZnONP than in zinc oxide and nano zinc oxide (ZnONP) groups. The expression of VFs was lower in the GZnONP than in the zinc oxide and ZnONP groups by 9.85 % and 13.46 %, respectively. Co-occurrence network analysis revealed that ARGs and VFs were expressed by the Spirochaetes phylum, Paraprevotella genus, and Treponema genus et al. The ARGs-VFs coexistence was related to the expression/abundance of ARGs and VFs genes. GZnONP reduces the abundance of certain bacterial species by disrupting chemotaxis, minimizing the transfer of ARGs and VFs. These findings suggest that GZnONP, a bacterial chemotaxis suppressor, effectively reduces the expression and release of ARGs and VFs in animal manure.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jun Shu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Sen Yu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yingmin Xiong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Gao Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jia Chen
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | | |
Collapse
|
10
|
Wisecaver JH, Auber RP, Pendleton AL, Watervoort NF, Fallon TR, Riedling OL, Manning SR, Moore BS, Driscoll WW. Extreme genome diversity and cryptic speciation in a harmful algal-bloom-forming eukaryote. Curr Biol 2023; 33:2246-2259.e8. [PMID: 37224809 PMCID: PMC10247466 DOI: 10.1016/j.cub.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Harmful algal blooms of the toxic haptophyte Prymnesium parvum are a recurrent problem in many inland and estuarine waters around the world. Strains of P. parvum vary in the toxins they produce and in other physiological traits associated with harmful algal blooms, but the genetic basis for this variation is unknown. To investigate genome diversity in this morphospecies, we generated genome assemblies for 15 phylogenetically and geographically diverse strains of P. parvum, including Hi-C guided, near-chromosome-level assemblies for two strains. Comparative analysis revealed considerable DNA content variation between strains, ranging from 115 to 845 Mbp. Strains included haploids, diploids, and polyploids, but not all differences in DNA content were due to variation in genome copy number. Haploid genome size between strains of different chemotypes differed by as much as 243 Mbp. Syntenic and phylogenetic analyses indicate that UTEX 2797, a common laboratory strain from Texas, is a hybrid that retains two phylogenetically distinct haplotypes. Investigation of gene families variably present across the strains identified several functional categories associated with metabolic and genome size variation in P. parvum, including genes for the biosynthesis of toxic metabolites and proliferation of transposable elements. Together, our results indicate that P. parvum comprises multiple cryptic species. These genomes provide a robust phylogenetic and genomic framework for investigations into the eco-physiological consequences of the intra- and inter-specific genetic variation present in P. parvum and demonstrate the need for similar resources for other harmful algal-bloom-forming morphospecies.
Collapse
Affiliation(s)
- Jennifer H Wisecaver
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA.
| | - Robert P Auber
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Amanda L Pendleton
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Nathan F Watervoort
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Timothy R Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Olivia L Riedling
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Schonna R Manning
- Department of Biological Sciences, Institute of Environment, Florida International University, 3000 NE 151st Street, MSB 250B, North Miami, FL 33181, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - William W Driscoll
- Department of Biology, Penn State Harrisburg, 777 W. Harrisburg Pike, Middletown, PA 17057, USA
| |
Collapse
|
11
|
Oliver KM. Flies co-opt bacterial toxins for use in defense against parasitoids. Proc Natl Acad Sci U S A 2023; 120:e2304493120. [PMID: 37126694 PMCID: PMC10175828 DOI: 10.1073/pnas.2304493120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA30602
| |
Collapse
|
12
|
Verster KI, Cinege G, Lipinszki Z, Magyar LB, Kurucz É, Tarnopol RL, Ábrahám E, Darula Z, Karageorgi M, Tamsil JA, Akalu SM, Andó I, Whiteman NK. Evolution of insect innate immunity through domestication of bacterial toxins. Proc Natl Acad Sci U S A 2023; 120:e2218334120. [PMID: 37036995 PMCID: PMC10120054 DOI: 10.1073/pnas.2218334120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023] Open
Abstract
Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B (cdtB) and apoptosis-inducing protein of 56 kDa (aip56), were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular (cdtB) or fused copies (cdtB::aip56) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo's serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals.
Collapse
Affiliation(s)
- Kirsten I. Verster
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Lilla B. Magyar
- Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged6720, Hungary
| | - Éva Kurucz
- Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Rebecca L. Tarnopol
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged6728, Hungary
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | | | - Josephine A. Tamsil
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Saron M. Akalu
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - István Andó
- Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
13
|
Feng H, Chen W, Hussain S, Shakir S, Tzin V, Adegbayi F, Ugine T, Fei Z, Jander G. Horizontally transferred genes as RNA interference targets for aphid and whitefly control. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:754-768. [PMID: 36577653 PMCID: PMC10037149 DOI: 10.1111/pbi.13992] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.
Collapse
Affiliation(s)
| | - Wenbo Chen
- Boyce Thompson InstituteIthacaNYUSA
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Sonia Hussain
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied SciencesFaisalabadPakistan
| | - Sara Shakir
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Gembloux Agro‐Bio Tech InstituteThe University of LiegeGemblouxBelgium
| | - Vered Tzin
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSede BoqerIsrael
| | - Femi Adegbayi
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Drexel University College of MedicinePhiladelphiaPAUSA
| | - Todd Ugine
- Department of EntomologyCornell UniversityIthacaNYUSA
| | | | | |
Collapse
|
14
|
Beekman MM, Donner SH, Litjens JJH, Dicke M, Zwaan BJ, Verhulst EC, Pannebakker BA. Do aphids in Dutch sweet pepper greenhouses carry heritable elements that protect them against biocontrol parasitoids? Evol Appl 2022; 15:1580-1593. [PMID: 36330308 PMCID: PMC9624084 DOI: 10.1111/eva.13347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
Biological control (biocontrol) of crop pests is a sustainable alternative to the use of biodiversity and organismal health-harming chemical pesticides. Aphids can be biologically controlled with parasitoid wasps; however, variable results of parasitoid-based aphid biocontrol in greenhouses are reported. Aphids may display genetically encoded (endogenous) defences that increase aphid resistance against parasitoids as under high parasitoid pressure there will be selection for parasitoid-resistant aphids, potentially affecting the success of parasitoid-based aphid biocontrol in greenhouses. Additionally, aphids may carry secondary bacterial endosymbionts that protect them against parasitoids. We studied whether there is variation in either of these heritable elements in aphids in greenhouses of sweet pepper, an agro-economically important crop in the Netherlands that is prone to aphid pests and where pest management heavily relies on biocontrol. We sampled aphid populations in organic (biocontrol only) and conventional (biocontrol and pesticides) sweet pepper greenhouses in the Netherlands during the 2019 crop growth season. We assessed the aphid microbiome through both diagnostic PCR and 16S rRNA sequencing and did not detect any secondary endosymbionts in the two most encountered aphid species, Myzus persicae and Aulacorthum solani. We also compared multiple aphid lines collected from different greenhouses for variation in levels of endogenous-based resistance against the parasitoids commonly used as biocontrol agents. We found no differences in the levels of endogenous-based resistance between different aphid lines. This study does not support the hypothesis that protective endosymbionts or the presence of endogenous resistant aphid lines affects the success of parasitoid-based biocontrol of aphids in Dutch greenhouses. Future investigations will need to address what is causing the variable successes of aphid biocontrol and what (biological and management-related) lessons can be learned for aphid control in other crops, and biocontrol in general.
Collapse
Affiliation(s)
- Mariska M. Beekman
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Suzanne H. Donner
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Jordy J. H. Litjens
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Bas J. Zwaan
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Eveline C. Verhulst
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Bart A. Pannebakker
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
15
|
Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, Moore LP, Eastman KE, Scott K, Konkel Z, Mondo SJ, Kuo A, Hayes RD, Haridas S, Andreopoulos B, Riley R, LaButti K, Pangilinan J, Lipzen A, Amirebrahimi M, Yan J, Adam C, Keymanesh K, Ng V, Louie K, Northen T, Drula E, Henrissat B, Hsieh HM, Youens-Clark K, Lutzoni F, Miadlikowska J, Eastwood DC, Hamelin RC, Grigoriev IV, U'Ren JM. Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. THE NEW PHYTOLOGIST 2022; 233:1317-1330. [PMID: 34797921 DOI: 10.1111/nph.17873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.
Collapse
Affiliation(s)
- Mario E E Franco
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jennifer H Wisecaver
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven Ahrendt
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lillian P Moore
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Katharine E Eastman
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kelsey Scott
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephen J Mondo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Richard D Hayes
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sajeet Haridas
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bill Andreopoulos
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Riley
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Juying Yan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine Adam
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katherine Louie
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent Northen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRAE, Marseille, 13288, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, DK-2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Huei-Mei Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ken Youens-Clark
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Igor V Grigoriev
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jana M U'Ren
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
16
|
Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185-198. [PMID: 34253453 PMCID: PMC8742837 DOI: 10.1016/j.tim.2021.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.
Collapse
Affiliation(s)
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA,Corresponding author,
| |
Collapse
|
17
|
Whiteman NK. Evolution in small steps and giant leaps. Evolution 2022; 76:67-77. [PMID: 35040122 PMCID: PMC9387839 DOI: 10.1111/evo.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
The first Editor of Evolution was Ernst Mayr. His foreword to the first issue of Evolution published in 1947 framed evolution as a "problem of interaction" that was just beginning to be studied in this broad context. First, I explore progress and prospects on understanding the subsidiary interactions identified by Mayr, including interactions between parts of organisms, between individuals and populations, between species, and between the organism and its abiotic environment. Mayr's overall "problem of interaction" framework is examined in the context of coevolution within and among levels of biological organization. This leads to a comparison in the relative roles of biotic versus abiotic agents of selection and fluctuating versus directional selection, followed by stabilizing selection in shaping the genomic architecture of adaptation. Oligogenic architectures may be typical for traits shaped more by fluctuating selection and biotic selection. Conversely, polygenic architectures may be typical for traits shaped more by directional followed by stabilizing selection and abiotic selection. The distribution of effect sizes and turnover dynamics of adaptive alleles in these scenarios deserves further study. Second, I review two case studies on the evolution of acquired toxicity in animals, one involving cardiac glycosides obtained from plants and one involving bacterial virulence factors horizontally transferred to animals. The approaches used in these studies and the results gained directly flow from Mayr's vision of an evolutionary biology that revolves around the "problem of interaction."
Collapse
Affiliation(s)
- Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
18
|
Cinege G, Magyar LB, Kovács AL, Lerner Z, Juhász G, Lukacsovich D, Winterer J, Lukacsovich T, Hegedűs Z, Kurucz É, Hultmark D, Földy C, Andó I. Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids. J Innate Immun 2021; 14:335-354. [PMID: 34864742 PMCID: PMC9275024 DOI: 10.1159/000520110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in Drosophila ananassae after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.
Collapse
Affiliation(s)
- Gyöngyi Cinege
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| | - Lilla B Magyar
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Zita Lerner
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Zoltán Hegedűs
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Kurucz
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - István Andó
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
19
|
Verster KI, Tarnopol RL, Akalu SM, Whiteman NK. Horizontal Transfer of Microbial Toxin Genes to Gall Midge Genomes. Genome Biol Evol 2021; 13:6358723. [PMID: 34450656 PMCID: PMC8455502 DOI: 10.1093/gbe/evab202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence has underscored the role of horizontal gene transfer (HGT) in animal evolution. Previously, we discovered the horizontal transfer of the gene encoding the eukaryotic genotoxin cytolethal distending toxin B (cdtB) from the pea aphid Acyrthosiphon pisum secondary endosymbiont (APSE) phages to drosophilid and aphid nuclear genomes. Here, we report cdtB in the nuclear genome of the gall-forming "swede midge" Contarinia nasturtii (Diptera: Cecidomyiidae) via HGT. We searched all available gall midge genome sequences for evidence of APSE-to-insect HGT events and found five toxin genes (aip56, cdtB, lysozyme, rhs, and sltxB) transferred horizontally to cecidomyiid nuclear genomes. Surprisingly, phylogenetic analyses of HGT candidates indicated APSE phages were often not the ancestral donor lineage of the toxin gene to cecidomyiids. We used a phylogenetic signal statistic to test a transfer-by-proximity hypothesis for animal HGT, which suggested that microbe-to-insect HGT was more likely between taxa that share environments than those from different environments. Many of the toxins we found in midge genomes target eukaryotic cells, and catalytic residues important for toxin function are conserved in insect copies. This class of horizontally transferred, eukaryotic cell-targeting genes is potentially important in insect adaptation.
Collapse
Affiliation(s)
- Kirsten I Verster
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Rebecca L Tarnopol
- Department of Plant & Microbial Biology, University of California, Berkeley, California, USA
| | - Saron M Akalu
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California, Berkeley, California, USA,Department of Molecular and Cell Biology, University of California, Berkeley, California, USA,Corresponding author: E-mail:
| |
Collapse
|
20
|
Perreau J, Moran NA. Genetic innovations in animal-microbe symbioses. Nat Rev Genet 2021; 23:23-39. [PMID: 34389828 DOI: 10.1038/s41576-021-00395-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Animal hosts have initiated myriad symbiotic associations with microorganisms and often have maintained these symbioses for millions of years, spanning drastic changes in ecological conditions and lifestyles. The establishment and persistence of these relationships require genetic innovations on the parts of both symbionts and hosts. The nature of symbiont innovations depends on their genetic population structure, categorized here as open, closed or mixed. These categories reflect modes of inter-host transmission that result in distinct genomic features, or genomic syndromes, in symbionts. Although less studied, hosts also innovate in order to preserve and control symbiotic partnerships. New capabilities to sequence host-associated microbial communities and to experimentally manipulate both hosts and symbionts are providing unprecedented insights into how genetic innovations arise under different symbiont population structures and how these innovations function to support symbiotic relationships.
Collapse
Affiliation(s)
- Julie Perreau
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
21
|
Cytolethal distending toxin: from genotoxin to a potential biomarker and anti-tumor target. World J Microbiol Biotechnol 2021; 37:150. [PMID: 34379213 DOI: 10.1007/s11274-021-03117-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Cytolethal Distending Toxin (CDT) belongs to the AB toxin family and is produced by a plethora of Gram-negative bacteria. Eight human-affecting enteropathogens harbor CDT that causes irritable bowel syndrome (IBS), dysentery, chancroid, and periodontitis worldwide. They have a novel molecular mode of action as they interfere in the eukaryotic cell-cycle progression leading to G2/M arrest and apoptosis. CDT, the first bacterial genotoxin described, is encoded in a single operon possessing three proteins, CdtA, CdtB, and CdtC. CdtA and CdtC are needed for the binding of the CDT toxin complex to the cholesterol-rich lipid domains of the host cell while the CdtB is the active moiety. Sequence and 3D structural-based analysis of CdtB showed similarities with nucleases and phosphatases, it was hypothesized that CdtB exercises a biochemical function identical to both these enzymes. CDT is secreted through the outer membrane vesicles from the producing bacteria. It is internalized in the target cells via clathrin-dependent endocytosis and translocated to the host cell nucleus through the Golgi complex and ER. This study discusses the virulence role of CDT, causing pathogenicity by acting as a tri-perditious complex in the CDT-producing species with an emphasis on its potential role as a biomarker and an anti-tumor agent.
Collapse
|
22
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
23
|
Jockusch EL, Fisher CR. Something old, something new, something borrowed, something red: the origin of ecologically relevant novelties in Hemiptera. Curr Opin Genet Dev 2021; 69:154-162. [PMID: 34058515 DOI: 10.1016/j.gde.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Comparative transcriptomics, applied in an evolutionary context, has transformed the possibilities for studying phenotypic evolution in non-model taxa. We review recent discoveries about the development of novel, ecologically relevant phenotypes in hemipteran insects. These discoveries highlight the diverse genomic substrates of novelty: 'something old', when novelty results from changes in the regulation of existing genes or gene duplication; 'something new', wherein lineage-restricted genes contribute to the evolution of new phenotypes; and 'something borrowed', showcasing contributions of horizontal gene transfer to the evolution of novelty, including carotenoid synthesis (resulting in 'something red'). These findings show the power and flexibility of comparative transcriptomic approaches for expanding beyond the 'toolkit' model for the evolution of development. We conclude by raising questions about the relationship between new genes and new traits and outlining a research framework for answering them in Hemiptera.
Collapse
Affiliation(s)
- Elizabeth L Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269, USA.
| | - Cera R Fisher
- Cornell University, Department of Entomology, 2126 Comstock Hall, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Kohli S, Gulati P, Narang A, Maini J, Shamsudheen KV, Pandey R, Scaria V, Sivasubbu S, Brahmachari V. Genome and transcriptome analysis of the mealybug Maconellicoccus hirsutus: Correlation with its unique phenotypes. Genomics 2021; 113:2483-2494. [PMID: 34022346 DOI: 10.1016/j.ygeno.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
Mealybugs are aggressive pests with world-wide distribution and are suitable for the study of different phenomena like genomic imprinting and epigenetics. Genomic approaches facilitate these studies in absence of robust genetics in this system. We sequenced, de novo assembled, annotated Maconellicoccus hirsutus genome. We carried out comparative genomics it with four mealybug and eight other insect species, to identify expanded, specific and contracted gene classes that relate to pesticide and desiccation resistance. We identified horizontally transferred genes adding to the mutualism between the mealybug and its endosymbionts. Male and female transcriptome analysis indicates differential expression of metabolic pathway genes correlating with their physiology and the genes for sexual dimorphism. The significantly lower expression of endosymbiont genes in males relates to the depletion of endosymbionts in males during development.
Collapse
Affiliation(s)
- Surbhi Kohli
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Parul Gulati
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ankita Narang
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | - Jayant Maini
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - K V Shamsudheen
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Vani Brahmachari
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
25
|
Abstract
CRISPR-Cas gene editing tools have brought us to an era of synthetic biology that will change the world. Excitement over the breakthroughs these tools have enabled in biology and medicine is balanced, justifiably, by concern over how their applications might go wrong in open environments. We do not know how genomic processes (including regulatory and epigenetic processes), evolutionary change, ecosystem interactions, and other higher order processes will affect traits, fitness, and impacts of edited organisms in nature. However, anticipating the spread, change, and impacts of edited traits or organisms in heterogeneous, changing environments is particularly important with "gene drives on the horizon." To anticipate how "synthetic threads" will affect the web of life on Earth, scientists must confront complex system interactions across many levels of biological organization. Currently, we lack plans, infrastructure, and funding for field science and scientists to track new synthetic organisms, with or without gene drives, as they move through open environments.
Collapse
|
26
|
Zilber-Rosenberg I, Rosenberg E. Microbial driven genetic variation in holobionts. FEMS Microbiol Rev 2021; 45:6261188. [PMID: 33930136 DOI: 10.1093/femsre/fuab022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic variation in holobionts, (host and microbiome), occurring by changes in both host and microbiome genomes, can be observed from two perspectives: observable variations and the processes that bring about the variation. The observable includes the enormous genetic diversity of prokaryotes, which gave rise to eukaryotic organisms. Holobionts then evolved a rich microbiome with a stable core containing essential genes, less so common taxa, and a more diverse non-core enabling considerable genetic variation. The result being that, the human gut microbiome, for example, contains 1,000 times more unique genes than are present in the human genome. Microbial driven genetic variation processes in holobionts include: (1) Acquisition of novel microbes from the environment, which bring in multiple genes in one step, (2) amplification/reduction of certain microbes in the microbiome, that contribute to holobiont` s adaptation to changing conditions, (3) horizontal gene transfer between microbes and between microbes and host, (4) mutation, which plays an important role in optimizing interactions between different microbiota and between microbiota and host. We suggest that invertebrates and plants, where microbes can live intracellularly, have a greater chance of genetic exchange between microbiota and host, thus a greater chance of vertical transmission and a greater effect of microbiome on evolution of host than vertebrates. However, even in vertebrates the microbiome can aid in environmental fluctuations by amplification/reduction and by acquisition of novel microorganisms.
Collapse
Affiliation(s)
- Ilana Zilber-Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv Israel
| | - Eugene Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv Israel
| |
Collapse
|
27
|
Huang J, Chen J, Fang G, Pang L, Zhou S, Zhou Y, Pan Z, Zhang Q, Sheng Y, Lu Y, Liu Z, Zhang Y, Li G, Shi M, Chen X, Zhan S. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat Commun 2021; 12:234. [PMID: 33431897 PMCID: PMC7801585 DOI: 10.1038/s41467-020-20332-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Parasitoids are ubiquitous in natural ecosystems. Parasitic strategies are highly diverse among parasitoid species, yet their underlying genetic bases are poorly understood. Here, we focus on the divergent adaptation of a specialist and a generalist drosophilid parasitoids. We find that a novel protein (Lar) enables active immune suppression by lysing the host lymph glands, eventually leading to successful parasitism by the generalist. Meanwhile, another novel protein (Warm) contributes to a passive strategy by attaching the laid eggs to the gut and other organs of the host, leading to incomplete encapsulation and helping the specialist escape the host immune response. We find that these diverse parasitic strategies both originated from lateral gene transfer, followed with duplication and specialization, and that they might contribute to the shift in host ranges between parasitoids. Our results increase our understanding of how novel gene functions originate and how they contribute to host adaptation.
Collapse
Affiliation(s)
- Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China.
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhongqiu Pan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China. .,State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Abstract
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod-microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.
Collapse
|
29
|
Callier V. Core Concept: Gene transfers from bacteria and viruses may be shaping complex organisms. Proc Natl Acad Sci U S A 2019; 116:13714-13716. [PMID: 31291702 PMCID: PMC6628661 DOI: 10.1073/pnas.1909030116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|