1
|
Chen J, Zhao W, Cao L, Martins RST, Canário AVM. Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish. BMC Biol 2024; 22:163. [PMID: 39075492 PMCID: PMC11288053 DOI: 10.1186/s12915-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Energy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction. A bioinformatic and experimental study suggested co-regulation of the circadian clock, reproductive axis and growth-regulating genes in zebrafish. While loss-of-function of most of the identified co-regulated genes had no effect or only had mild effects on reproduction, no such information existed about the co-regulated somatostatin, well-known for its actions on growth and metabolism. RESULTS We show that somatostatin signalling is pivotal in regulating fecundity and metabolism. Knock-out of zebrafish somatostatin 1.1 (sst1.1) and somatostatin 1.2 (sst1.2) caused a 20-30% increase in embryonic primordial germ cells, and sst1.2-/- adults laid 40% more eggs than their wild-type siblings. The sst1.1-/- and sst1.2-/- mutants had divergent metabolic phenotypes: the former had 25% more pancreatic α-cells, were hyperglycaemic and glucose intolerant, and had increased adipocyte mass; the latter had 25% more pancreatic β-cells, improved glucose clearance and reduced adipocyte mass. CONCLUSIONS We conclude that somatostatin signalling regulates energy metabolism and fecundity through anti-proliferative and modulatory actions on primordial germ cells, pancreatic insulin and glucagon cells and the hypothalamus. The ancient origin of the somatostatin system suggests it could act as a switch linking metabolism and reproduction across vertebrates. The results raise the possibility of applications in human and animal fertility.
Collapse
Affiliation(s)
- Jie Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Wenting Zhao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lei Cao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Rute S T Martins
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Adelino V M Canário
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
2
|
Mossa F, Evans ACO. Review: The ovarian follicular reserve - implications for fertility in ruminants. Animal 2023; 17 Suppl 1:100744. [PMID: 37567673 DOI: 10.1016/j.animal.2023.100744] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 08/13/2023] Open
Abstract
Ruminants are born with a finite number of healthy ovarian follicles and oocytes (ovarian reserve) and germ cell proliferation in the developing foetal gonad predominantly occurs during early gestation. Two markers have been established to reliably estimate the size of the ovarian reserve in cattle: the number of antral follicles ≤3 mm in diameter recruited per follicular wave (Antral Follicle Count, AFC) and peripheral concentrations of the Anti-Müllerian hormone (AMH). Studies that used one or both indicators show that the size of ovarian reserve varies greatly among age-matched individuals, but is highly repeatable in the same animal. Conditions during prenatal life are likely among the causes of such variation in the ovarian reserve. In addition, the size of the ovarian reserve is a moderately heritable trait in cattle. The association between ovarian reserve and fertility is controversial. Several studies indicate that cattle with a low ovarian reserve have phenotypic characteristics that are associated with suboptimal fertility. On the contrary, the presence and absence of a positive association between AFC and/or AMH and fertility measures (i.e. no. on services/conception, pregnancy rates, pregnancy loss) have been equally reported in cattle. In conclusion, the size of the ovarian reserve in the progeny can be enhanced by improving management of the dam from preconception to early gestation and also through genetic selection. However, although the ovarian reserve may be among the determinants of reproductive success in ruminants, the use of AFC/AMH as reliable predictors of fertility is yet to be established. Furthermore, the possibility that there is a complex interaction of AFC, AMH and reproduction has yet to be fully characterised and exploited to improve fertility in cattle.
Collapse
Affiliation(s)
- F Mossa
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - A C O Evans
- School of Agriculture and Food Science, College of Health and Agricultural Sciences, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
3
|
Bharti D, Tikka M, Lee SY, Bok EY, Lee HJ, Rho GJ. Female Germ Cell Development, Functioning and Associated Adversities under Unfavorable Circumstances. Int J Mol Sci 2021; 22:1979. [PMID: 33671303 PMCID: PMC7922109 DOI: 10.3390/ijms22041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
In the present era, infertility is one of the major issues which restricts many couples to have their own children. Infertility is the inability to achieve a clinical pregnancy after regular unprotected sexual intercourse for the period of one year or more. Various factors including defective male or female germ cell development, unhealthy and improper lifestyles, diseases like cancer and associated chemo-or-radiation therapies, congenital disorders, etc., may be responsible for infertility. Therefore, it is highly important to understand the basic concepts of germ cell development including primordial germ cell (PGC) formation, specification, migration, entry to genital ridges and their molecular mechanisms, activated pathways, paracrine and autocrine signaling, along with possible alteration which can hamper germ cell development and can cause adversities like cancer progression and infertility. Knowing all these aspects in a proper way can be very much helpful in improving our understanding about gametogenesis and finding possible ways to cure related disorders. Here in this review, various aspects of gametogenesis especially female gametes and relevant factors causing functional impairment have been thoroughly discussed.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Manisha Tikka
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala 147002, India;
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Hyeon-Jeong Lee
- Department of Medicine, University of California, San Diego, CA 92093-0021, USA;
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| |
Collapse
|
4
|
Sills ES, Wood SH. Autologous activated platelet-rich plasma injection into adult human ovary tissue: molecular mechanism, analysis, and discussion of reproductive response. Biosci Rep 2019; 39:BSR20190805. [PMID: 31092698 PMCID: PMC6549090 DOI: 10.1042/bsr20190805] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
In clinical infertility practice, one intractable problem is low (or absent) ovarian reserve which in turn reflects the natural oocyte depletion associated with advancing maternal age. The number of available eggs has been generally thought to be finite and strictly limited, an entrenched and largely unchallenged tenet dating back more than 50 years. In the past decade, it has been suggested that renewable ovarian germline stem cells (GSCs) exist in adults, and that such cells may be utilized as an oocyte source for women seeking to extend fertility. Currently, the issue of whether mammalian females possess such a population of renewable GSCs remains unsettled. The topic is complex and even agreement on a definitive approach to verify the process of 'ovarian rescue' or 're-potentiation' has been elusive. Similarities have been noted between wound healing and ovarian tissue repair following capsule rupture at ovulation. In addition, molecular signaling events which might be necessary to reverse the effects of reproductive ageing seem congruent with changes occurring in tissue injury responses elsewhere. Recently, clinical experience with such a technique based on autologous activated platelet-rich plasma (PRP) treatment of the adult human ovary has been reported. This review summarizes the present state of understanding of the interaction of platelet-derived growth factors with adult ovarian tissue, and the outcome of human reproductive potential following PRP treatment.
Collapse
Affiliation(s)
- E Scott Sills
- Gen 5 Fertility Center, Office for Reproductive Research, Center for Advanced Genetics; San Diego, CA, U.S.A.
- Applied Biotechnology Research Group, University of Westminster; London W1B 2HW, U.K
| | - Samuel H Wood
- Gen 5 Fertility Center, Office for Reproductive Research, Center for Advanced Genetics; San Diego, CA, U.S.A
| |
Collapse
|
5
|
Ge W, Li L, Dyce PW, De Felici M, Shen W. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci 2019; 76:1729-1746. [PMID: 30810760 PMCID: PMC11105173 DOI: 10.1007/s00018-019-03028-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
The reproductive life span in women starts at puberty and ends at menopause, following the exhaustion of the follicle stockpile termed the ovarian reserve. Increasing data from experimental animal models and epidemiological studies indicate that exposure to a number of ubiquitously distributed reproductively toxic environmental chemicals (RTECs) can contribute to earlier menopause and even premature ovarian failure. However, the causative relationship between environmental chemical exposure and earlier menopause in women remains poorly understood. The present work, is an attempt to review the current evidence regarding the effects of RTECs on the main ovarian activities in mammals, focusing on how such compounds can affect the ovarian reserve at any stages of ovarian development. We found that in rodents, strong evidence exists that in utero, neonatal, prepubescent and even adult exposure to RTECs leads to impaired functioning of the ovary and a shortening of the reproductive lifespan. Regarding human, data from cross-sectional surveys suggest that human exposure to certain environmental chemicals can compromise a woman's reproductive health and in some cases, correlate with earlier menopause. In conclusion, evidences exist that exposure to RTECs can compromise a woman's reproductive health. However, human exposures may date back to the developmental stage, while the adverse effects are usually diagnosed decades later, thus making it difficult to determine the association between RTECs exposure and human reproductive health. Therefore, epidemiological surveys and more experimental investigation on humans, or alternatively primates, are needed to determine the direct and indirect effects caused by RTECs exposure on the ovary function, and to characterize their action mechanisms.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Martin JJ, Woods DC, Tilly JL. Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries. Cells 2019; 8:E93. [PMID: 30696098 PMCID: PMC6407002 DOI: 10.3390/cells8020093] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Jessica J Martin
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Milani L, Maurizii MG. Insights into Germline Development and Differentiation in Molluscs and Reptiles: The Use of Molecular Markers in the Study of Non-model Animals. Results Probl Cell Differ 2019; 68:321-353. [PMID: 31598863 DOI: 10.1007/978-3-030-23459-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When shifting research focus from model to non-model species, many differences in the working approach should be taken into account and usually methodological modifications are required because of the lack of genetics/genomics and developmental information for the vast majority of organisms. This lack of data accounts for the largely incomplete understanding of how the two components-genes and developmental programs-are intermingled in the process of evolution. A deeper level of knowledge was reached for a few model animals, making it possible to understand some of the processes that guide developmental changes during evolutionary time. However, it is often difficult to transfer the obtained information to other, even closely related, animals. In this chapter, we present and discuss some examples, such as the choice of molecular markers to be used to characterize differentiation and developmental processes. The chosen examples pertain to the study of germline in molluscs, reptiles, and other non-model animals.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Martínez-Juárez A, López-Luna MA, Porras-Gómez TJ, Moreno-Mendoza N. Expression of theSox9,Foxl2,Vasa, andTRPV4genes in the ovaries and testes of the Morelet's crocodile,Crocodylus moreletii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:148-164. [DOI: 10.1002/jez.b.22799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Adriana Martínez-Juárez
- Departamento de Biología Celular y Fisiología; Instituto de Investigaciones Biomédicas; UNAM; Mexico Mexico
| | - Marco A. López-Luna
- División Académica de Ciencias Biológicas; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco; Mexico Mexico
| | - Tania J. Porras-Gómez
- Departamento de Biología Celular y Fisiología; Instituto de Investigaciones Biomédicas; UNAM; Mexico Mexico
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología; Instituto de Investigaciones Biomédicas; UNAM; Mexico Mexico
| |
Collapse
|
9
|
Yazdekhasti H, Hosseini MA, Rajabi Z, Parvari S, Salehnia M, Koruji M, Izadyar F, Aliakbari F, Abbasi M. Improved Isolation, Proliferation, and Differentiation Capacity of Mouse Ovarian Putative Stem Cells. Cell Reprogram 2017; 19:132-144. [PMID: 28375748 DOI: 10.1089/cell.2016.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The recent discovery of ovarian stem cells in postnatal mammalian ovaries, also referred to as putative stem cells (PSCs), and their roles in mammalian fertility has challenged the long-existing theory that women are endowed with a certain number of germ cells. The rare amount of PSCs is the major limitation for utilizing them through different applications. Therefore, this study was conducted in six phases to find a way to increase the number of Fragilis- and mouse vasa homolog (MVH)-positive sorted cells from 14-day-old NMRI strain mice. Results showed that there is a population of Fragilis- and MVH-positive cells with pluripotent stem cell characteristics, which can be isolated and expanded for months in vitro. PSCs increase their proliferation capacity under the influence of some mitogenic agents, and our results showed that different doses of stem cell factor (SCF) induce PSC proliferation with the maximum increase observed at 50 ng/mL. SCF was also able to increase the number of Fragilis- and MVH-positive cells after sorting by magnetic-activated cell sorting and enhance colony formation efficiency in sorted cells. Differentiation capacity assay indicated that there is a basic level of spontaneous differentiation toward oocyte-like cells during 3 days of culture. However, relative gene expression was significantly higher in the follicle-stimulating hormone-treated groups, especially in the Fragilis- sorted PSCs. We suggest that higher number of PSCs provides us either a greater source of energy that can be injected into energy-impaired oocytes in women with a history of repeat IVF failure or a good source for research.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Marzieh Agha Hosseini
- 2 Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Soraya Parvari
- 3 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Mojdeh Salehnia
- 4 Department of Anatomy, School of Medical Sciences, Tarbiat Modarres University , Tehran, Iran
| | - Morteza Koruji
- 5 Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | | | - Fereshte Aliakbari
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Abbasi
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
10
|
Bhartiya D, Anand S, Patel H, Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017; 15:89. [PMID: 29145898 PMCID: PMC5691385 DOI: 10.1186/s12958-017-0308-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Infertile couples including cancer survivors stand to benefit from gametes differentiated from embryonic or induced pluripotent stem (ES/iPS) cells. It remains challenging to convert human ES/iPS cells into primordial germ-like cells (PGCLCs) en route to obtaining gametes. Considerable success was achieved in 2016 to obtain fertile offspring starting with mouse ES/iPS cells, however the specification of human ES/iPS cells into PGCLCs in vitro is still not achieved. Human ES cells will not yield patient-specific gametes unless and until hES cells are derived by somatic cell nuclear transfer (therapeutic cloning) whereas iPS cells retain the residual epigenetic memory of the somatic cells from which they are derived and also harbor genomic and mitochondrial DNA mutations. Thus, they may not be ideal starting material to produce autologus gametes, especially for aged couples. Pluripotent, very small embryonic-like stem cells (VSELs) have been reported in adult tissues including gonads, are relatively quiescent in nature, survive oncotherapy and can be detected in aged, non-functional gonads. Being developmentally equivalent to PGCs (natural precursors to gametes), VSELs spontaneously differentiate into gametes in vitro. It is also being understood that gonadal stem cells niche is compromised by oncotherapy and with age. Improving the gonadal somatic niche could regenerate non-functional gonads from endogenous VSELs to restore fertility. Niche cells (Sertoli/mesenchymal cells) can be directly transplanted and restore gonadal function by providing paracrine support to endogenous VSELs. This strategy has been successful in several mice studies already and resulted in live birth in a woman with pre-mature ovarian failure.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Sandhya Anand
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
11
|
Yazdekhasti H, Rajabi Z, Parvari S, Abbasi M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J Ovarian Res 2016; 9:68. [PMID: 27765047 PMCID: PMC5072317 DOI: 10.1186/s13048-016-0274-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022] Open
Abstract
Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rajabi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
13
|
Zhang XL, Wu J, Wang J, Shen T, Li H, Lu J, Gu Y, Kang Y, Wong CH, Ngan CY, Shao Z, Wu J, Zhao X. Integrative epigenomic analysis reveals unique epigenetic signatures involved in unipotency of mouse female germline stem cells. Genome Biol 2016; 17:162. [PMID: 27465593 PMCID: PMC4963954 DOI: 10.1186/s13059-016-1023-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/08/2016] [Indexed: 01/26/2023] Open
Abstract
Background Germline stem cells play an essential role in establishing the fertility of an organism. Although extensively characterized, the regulatory mechanisms that govern the fundamental properties of mammalian female germline stem cells remain poorly understood. Results We generate genome-wide profiles of the histone modifications H3K4me1, H3K27ac, H3K4me3, and H3K27me3, DNA methylation, and RNA polymerase II occupancy and perform transcriptome analysis in mouse female germline stem cells. Comparison of enhancer regions between embryonic stem cells and female germline stem cells identifies the lineage-specific enhancers involved in germline stem cell features. Additionally, our results indicate that DNA methylation primarily contributes to female germline stem cell unipotency by suppressing the somatic program and is potentially involved in maintenance of sexual identity when compared with male germline stem cells. Moreover, we demonstrate down-regulation of Prmt5 triggers differentiation and thus uncover a role for Prmt5 in maintaining the undifferentiated status of female germline stem cells. Conclusions The genome-wide epigenetic signatures and the transcription regulators identified here provide an invaluable resource for understanding the fundamental features of mouse female germline stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1023-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Wu
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Wang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Shen
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Li
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Lu
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunzhao Gu
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yani Kang
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chee-Hong Wong
- Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Chew Yee Ngan
- Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Zhifeng Shao
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Jung D, Kee K. Insights into female germ cell biology: from in vivo development to in vitro derivations. Asian J Androl 2016; 17:415-20. [PMID: 25652637 PMCID: PMC4430939 DOI: 10.4103/1008-682x.148077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
Collapse
Affiliation(s)
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
16
|
Bhartiya D, Anand S, Parte S. VSELs may obviate cryobanking of gonadal tissue in cancer patients for fertility preservation. J Ovarian Res 2015; 8:75. [PMID: 26576728 PMCID: PMC4650843 DOI: 10.1186/s13048-015-0199-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 01/17/2023] Open
Abstract
Background Infertility is an undesirable side effect and gonadal tissue banking is advocated in young cancer patients who are unable to preserve embryos or gametes prior to oncotherapy to achieve biological parenthood later on. Banking gonadal tissue is challenging and protocols to mature gametes in vitro are not yet clinically established. Transplanting ovarian cortical tissue at hetero-or orthotopic sites in women and bone marrow transplantation (BMT) in both men and women has resulted in spontaneous recovery of fertility, pregnancy and live births. Various studies in humans and mice suggest that genetic origin of offspring after BMT is similar to transplanted patient and not the donor. Thus the source of oocytes/sperm which result in spontaneous pregnancies still remains contentious. Findings Very small embryonic-like stem cells (VSELs) have been reported in adult human testis and ovary, in azoospermic testicular biopsies from survivors of childhood cancer and also in women with premature ovarian failure and menopause. VSELs survive chemotherapy because of their quiescent nature and can be detected in chemoablated mice gonads at protein and mRNA level and also by flow cytometry. Surviving VSELs spontaneously differentiate into oocyte-like structures and sperm when inhibitory factors are overcome in vitro. Transplantation of mesenchymal cells (isolated from different sources) has led to regeneration of chemoablated mouse gonads and also live births. Spermatogenesis is also restored from endogenous stem cells on inter-tubular transplantation of Sertoli cells in chemoablated mouse testis. Conclusions Endogenous VSELs (which survive oncotherapy) can possibly regenerate non-functional gonads in cancer survivors when exposed to a healthy niche in vitro or in vivo (by way of transplanting mesenchymal cells which secrete trophic factors required for endogenous VSELs to differentiate into gametes). Presence of VSELs can also explain spontaneous pregnancies after BMT and cortical tissue transplantation (at heterotopic or orthotopic sites). This understanding once verified and accepted by the scientific community could obviate the need to remove whole ovary or testicular biopsy for cryopreservation prior to oncotherapy.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400 012, India.
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400 012, India.
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
17
|
Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly. Stem Cells Int 2015; 2016:5096596. [PMID: 26635884 PMCID: PMC4655292 DOI: 10.1155/2016/5096596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 01/27/2023] Open
Abstract
Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility.
Collapse
|
18
|
Khosravi-Farsani S, Amidi F, Habibi Roudkenar M, Sobhani A. Isolation and enrichment of mouse female germ line stem cells. CELL JOURNAL 2015; 16:406-15. [PMID: 25685731 PMCID: PMC4297479 DOI: 10.22074/cellj.2015.487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/25/2013] [Indexed: 12/31/2022]
Abstract
Objective The existence of female germ-line stem cells (FGSCs) has been the subject of
a wide range of recent studies. Successful isolation and culture of FGSCs could facilitate
studies on regenerative medicine and infertility treatments in the near future. Our aim in
the present study was evaluation of the most commonly used techniques in enrichment of
FGSCs and in establishment of the best procedure.
Materials and Methods In this experimental study, after digesting neonate ovary from
C57Bl/6 mice, we performed 2 different isolation experiments: magnetic activated cell
sorting (MACS) and pre-plating. MACS was applied using two different antibodies against
mouse vasa homolog (MVH) and stage-specific embryonic antigen-1 (SSEA1) markers.
After the cells were passaged and proliferated in vitro, colony-forming cells were characterized using reverse transcription-polymerase chain reaction (RT-PCR) (for analysis
of expression of Oct4, Nanog, C-kit, Fragilis, Mvh, Dazl, Scp3 and Zp3), alkaline phosphatase (AP) activity test and immunocytochemistry.
Results Data showed that colonies can be seen more frequently in pre-plating technique
than that in MACS. Using the SSEA1 antibody with MACS, 1.98 ± 0.49% (Mean ± SDV)
positive cells were yield as compared to the total cells sorted. The colonies formed after
pre-plating expressed pluripotency and germ stem cell markers (Oct4, Nanog, C-kit, Fragilis, Mvh and Dazl) whereas did not express Zp3 and Scp3 at the mRNA level. Immunocytochemistry in these colonies further confirmed the presence of OCT4 and MVH proteins,
and AP activity measured by AP-kit showed positive reaction. Conclusion We established a simple and an efficient pre-plating technique to culture and to
enrich FGSCs from neonatal mouse ovaries.
Collapse
Affiliation(s)
- Somayeh Khosravi-Farsani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ; Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehryar Habibi Roudkenar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2014; 103:303-16. [PMID: 25497448 DOI: 10.1016/j.fertnstert.2014.11.015] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
Bidirectional somatic cell-oocyte signaling is essential to create a changing intrafollicular microenvironment that controls primordial follicle growth into a cohort of growing follicles, from which one antral follicle is selected to ovulate a healthy oocyte. Such intercellular communications allow the oocyte to determine its own fate by influencing the intrafollicular microenvironment, which in turn provides the necessary cellular functions for oocyte developmental competence, which is defined as the ability of the oocyte to complete meiosis and undergo fertilization, embryogenesis, and term development. These coordinated somatic cell-oocyte interactions attempt to balance cellular metabolism with energy requirements during folliculogenesis, including changing energy utilization during meiotic resumption. If these cellular mechanisms are perturbed by metabolic disease and/or maternal aging, molecular damage of the oocyte can alter macromolecules, induce mitochondrial mutations, and reduce adenosine triphosphate production, all of which can harm the oocyte. Recent technologies are now exploring transcriptional, translational, and post-translational events within the human follicle with the goal of identifying biomarkers that reliably predict oocyte quality in the clinical setting.
Collapse
|
20
|
Yuan J, Zhang D, Wang L, Liu M, Mao J, Yin Y, Ye X, Liu N, Han J, Gao Y, Cheng T, Keefe DL, Liu L. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells 2014; 31:2538-50. [PMID: 23897655 DOI: 10.1002/stem.1480] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 12/15/2022]
Abstract
Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age.
Collapse
Affiliation(s)
- Jihong Yuan
- State Key Laboratory of Medicinal Chemical Biology, The 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China; Key Laboratory of Ministry of Health on Hormones and Development, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gheorghisan-Galateanu AA, Hinescu ME, Enciu AM. Ovarian adult stem cells: hope or pitfall? J Ovarian Res 2014; 7:71. [PMID: 25018783 PMCID: PMC4094411 DOI: 10.1186/1757-2215-7-71] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/29/2014] [Indexed: 12/22/2022] Open
Abstract
For many years, ovarian biology has been based on the dogma that oocytes reserve in female mammals included a finite number, established before or at birth and it is determined by the number and quality of primordial follicles developed during the neonatal period. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of postnatal neo-oogenesis. Recent experimental data showed that ovarian surface epithelium and cortical tissue from both mouse and human were proved to contain very low proportion of cells able to propagate themselves, but also to generate immature oocytes in vitro or in vivo, when transplanted into immunodeficient mice ovaries. By mentioning several landmarks of ovarian stem cell reserve and addressing the exciting perspective of translation into clinical practice as treatment for infertility pathologies, the purpose of this article is to review the knowledge about adult mammalian ovarian stem cells, a topic that, since the first approach quickly attracted the attention of both the scientific media and patients.
Collapse
Affiliation(s)
- Ancuta Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; C.I.Parhon National Institute of Endocrinology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; V.Babes National Institute of Pathology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ana Maria Enciu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; V.Babes National Institute of Pathology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|
22
|
Bui HT, Van Thuan N, Kwon DN, Choi YJ, Kang MH, Han JW, Kim T, Kim JH. Identification and characterization of putative stem cells in the adult pig ovary. Development 2014; 141:2235-44. [DOI: 10.1242/dev.104554] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, the concept of ‘neo-oogenesis’ has received increasing attention, since it was shown that adult mammals have a renewable source of eggs. The purpose of this study was to elucidate the origin of these eggs and to confirm whether neo-oogenesis continues throughout life in the ovaries of the adult mammal. Adult female pigs were utilized to isolate, identify and characterize, including their proliferation and differentiation capabilities, putative stem cells (PSCs) from the ovary. PSCs were found to comprise a heterogeneous population based on c-kit expression and cell size, and also express stem and germ cell markers. Analysis of PSC molecular progression during establishment showed that these cells undergo cytoplasmic-to-nuclear translocation of Oct4 in a manner reminiscent of gonadal primordial germ cells (PGCs). Hence, cells with the characteristics of early PGCs are present or are generated in the adult pig ovary. Furthermore, the in vitro establishment of porcine PSCs required the presence of ovarian cell-derived extracellular regulatory factors, which are also likely to direct stem cell niche interactions in vivo. In conclusion, the present work supports a crucial role for c-kit and kit ligand/stem cell factor in stimulating the growth, proliferation and nuclear reprogramming of porcine PSCs, and further suggests that porcine PSCs might be the culture equivalent of early PGCs.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
- Department of Biotechnology, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 70000, Vietnam
- School of Biotechnology, Tan Tao University, Long An 81000, Vietnam
| | - Nguyen Van Thuan
- Department of Biotechnology, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 70000, Vietnam
- School of Biotechnology, Tan Tao University, Long An 81000, Vietnam
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Min-Hee Kang
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Jae-Woong Han
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Teoan Kim
- Department of Physiology, Catholic University of Daegu School of Medicine, Daegu 705718, Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
23
|
Pan Y. A new tool to generate transgenic rats using female germline stem cells from post-natal ovaries. Mol Hum Reprod 2014; 20:283-5. [PMID: 24608712 DOI: 10.1093/molehr/gau017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yuqiong Pan
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Pluripotent Very Small Embryonic-like Stem Cells in Adult Mammalian Gonads. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-1001-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Olovnikov AM. Why do primordial germ cells migrate through an embryo and what does it mean for biological evolution? BIOCHEMISTRY (MOSCOW) 2013; 78:1190-9. [PMID: 24237154 DOI: 10.1134/s0006297913100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An explanation of the role of primordial germ cell (PGC) migration during embryogenesis is proposed. According to the hypothesis, various PGCs during their migrations through an early embryo are contacting with anlagen of organs and acquiring nonidentical organ specificities. An individual PGC gets such an organ specificity, which corresponds to specificity of the first anlage with which this PGC has the first contact. As a result, the cellular descendants of PGCs (oocytes or spermatocytes) will express nonidentical organ-specific receptors, hence becoming functionally heterogeneous. Therefore, each clone of germ cells becomes capable of recognizing specifically the molecular signals that correspond only to "its" organ of the body. Such signals are produced by the body's organ when it functions in an extreme mode. Signals from the "exercising" organ of the body are delivered to the gonad only via the brain retransmitter, which is composed of neurons grouped as virtual organs of a homunculus. Homunculi are so-called somatotopic maps of the skeletomotor and other parts of the body represented in the brain. Signals, as complexes of regulatory RNAs and proteins, are transported from the "exercising" organ of the body to the corresponding virtual organ of the homunculus where they are processed and then forwarded to the gonad. The organ-specific signal will be selectively recognized by certain gametocytes according to their organ specificity, and then it will initiate the directed epimutation in the gametocyte genome. The nonrandomness of the gene order in chromosomes, that is the synteny and genetic map, is controlled by the so-called creatron that consolidates the soma and germline into a united system, providing the possibility of evolutionary responses of an organism to environmental influences.
Collapse
Affiliation(s)
- A M Olovnikov
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 125319, Russia.
| |
Collapse
|
26
|
Intraovarian transplantation of primordial follicles fails to rescue chemotherapy injured ovaries. Sci Rep 2013; 3:1384. [PMID: 23463338 PMCID: PMC3589785 DOI: 10.1038/srep01384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/15/2013] [Indexed: 01/15/2023] Open
Abstract
Busulfan and cyclophosphamide (B/C)-treated mice exhibited a marked increase in apoptosis and a concomitant decrease in the ovarian weight. Histological and RT-PCR analysis indicate that the period of germ cell depletion in the B/C-treated ovaries coincides with decreased expression of genes Figla, Lhx8, Nobox, c-kit, and Sox3. However, depletion of the ovarian germ cells is mediated by autophagy-independent pathways that involve Fas/FasL-, TNF-, and/or p53-signalings. Treatment with B/C resulted in the cease of the reproductive function to produce their offspring during the 15(th) week post-treatment period in female mice. Furthermore, injection of the 3 × 10(6) GFP positive primordial follicles into the ovaries of the B/C treated mouse did not show apparent colonization of the transplanted follicles within the recipient ovaries. The present results suggest that B/C treatment is closely associated with an increased risk of premature ovarian failure.
Collapse
|
27
|
De Felici M, Barrios F. Seeking the origin of female germline stem cells in the mammalian ovary. Reproduction 2013; 146:R125-30. [PMID: 23801781 DOI: 10.1530/rep-13-0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The function of female germline stem cells (FGSCs, also called oogonial stem cells) in the adult mammalian ovary is currently debated in the scientific community. As the evidence to support or discard the possible crucial role of this new class of germ cells in mammals has been extensively discussed, in this review, we wonder which could be their origin. We will assume that FGSCs are present in the post-natal ovaries and speculate as to what origin and characteristics such cells could have. We believe that the definition of these features might shed light on future experimental approaches that could clarify the ongoing debate.
Collapse
Affiliation(s)
- Massimo De Felici
- Section of Histology and Embryology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | | |
Collapse
|
28
|
Very small embryonic-like stem cells: implications in reproductive biology. BIOMED RESEARCH INTERNATIONAL 2013; 2013:682326. [PMID: 23509758 PMCID: PMC3586435 DOI: 10.1155/2013/682326] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/12/2012] [Indexed: 01/17/2023]
Abstract
The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.
Collapse
|
29
|
Rengaraj D, Lee BR, Choi JW, Lee SI, Seo HW, Kim TH, Choi HJ, Song G, Han JY. Gene pathways and cell cycle-related genes in cultured avian primordial germ cells. Poult Sci 2013; 91:3167-77. [PMID: 23155027 DOI: 10.3382/ps.2012-02279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Primordial germ cells (PGC) from early embryos are applicable to various kinds of research, including the production of transgenic animals. Primordial germ cells eventually migrate and differentiate into germ cells in the gonads, where they settle and rapidly proliferate. However, the proliferation rate of PGC is low in early embryos, and there are many significant pathways that mediate PGC activity. Therefore, in vitro culture of PGC from early embryos with efficient growth factors has been necessary. Recently, we cultured chicken PGC from embryonic d 2.5 with basic fibroblast growth factor and characterized the PGC through analysis of cell morphology, survival, proliferation, and apoptosis. However, large-scale analyses of genes expressed in cultured PGC and the genes involved in associated pathways are limited. The objective of the present investigation was to identify the signaling and metabolic pathways of expressed genes by microarray comparison between PGC and their somatic counterpart, chicken embryonic fibroblasts (CEF). We identified 795 genes that were expressed more predominantly in PGC and 824 genes that were expressed more predominantly in CEF. Among the predominant genes in PGC, 201 were differentially identified in 106 pathways. Among the predominant genes in CEF, 242 were differentially identified in 99 pathways. To further validate the genes involved in at least one candidate pathway, those involved in the cell cycle (12 predominant genes in PGC and 8 predominant genes in CEF) were examined by real-time PCR. To the best of our knowledge, this study is the first to investigate signaling and metabolic pathways in cultured PGC.
Collapse
Affiliation(s)
- D Rengaraj
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen B, Zhang L, Tang J, Feng X, Feng Y, Liang G, Wang L, Feng Y, Li L, De Felici M, Shi Q, Shen W. Recovery of functional oocytes from cultured premeiotic germ cells after kidney capsule transplantation. Stem Cells Dev 2012; 22:567-80. [PMID: 22978409 DOI: 10.1089/scd.2012.0436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The efficiency of in vitro culture systems for a premeiotic female germ cell is still low, mostly because of our incomplete understanding of the mechanisms controlling oogenesis and the obvious difficulties in reproducing the complex in vivo environment of such a process under in vitro conditions. Here we explored the possibility of recovering the developmental potential of mouse oocytes generated in vitro from premeiotic germ cells by transplantation under a kidney capsule of adult animals. To this aim, mouse embryonic ovaries of 12.5 days postcoitum cultured in vitro in a serum-free medium for 7 or 14 days, were transplanted beneath the kidney capsule of immunodeficient mice and analyzed after 21 (7+21 group) or 14 days (14+14 group). Cultured ovaries before transplantation showed delayed oocyte meiotic progression and follicle development. Interestingly, grafted ovaries of both groups, especially those of the 7+21 group, seemed able to restore the reproductive cycle of recipients. While the almost complete absence of primordial follicles was observed in grafted ovaries, oocytes from these ovaries showed transcript levels of genes associated to oocyte maturation similar to control. Moreover, the developmental stage of follicles and oocytes of the 7+21 group ovaries were comparable to that of 21 days post partum in vivo ovaries, whereas significant developmental delay were found in the 14+14 group ovaries. Nevertheless, oocytes retrieved from transplanted ovaries of both groups matured (around 80%) and were fertilized in vitro (around 20%-45%). Two-cell embryos from the fertilized oocytes developed to hatching blastocysts (about 50%) or gave rise to healthy live offspring (from 6% to 10%) when transplanted in a host mother. In conclusion, our results indicate that premeiotic female germ cells cultured in vitro up to primordial/primary follicle stages preserve their capability to complete oogenesis and can be fertilized and generate live pups after transplantation into a suitable in vivo environment.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stansfield FJ, Nöthling JO, Soley JT, Allen WR. Development of the germinal ridge and ovary in the African elephant (Loxodonta africana). Reproduction 2012; 144:583-93. [DOI: 10.1530/rep-12-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The follicular reserve and its ontogeny in the elephant are of interest because elephants have the longest reproductive life of all land-based mammals. They also have the longest recorded pregnancy, which allows a protracted view of the series of significant events involved in the development of the embryonic and fetal gonads. The large elephant population of Zimbabwe provided the opportunity to collect conceptuses from elephants culled for management reasons and hunted professionally. Five embryos aged 76–96 days and the ovaries of four fetuses aged 4.8–11.2 months were fixed in 4% buffered formalin and studied by conventional histological sectioning and a stereological protocol to calculate the follicle reserve of each fetus. These observations enabled the conclusion that the migration of primordial germ cells into the indifferent gonad terminates at around 76 days of gestation while entry of oogonia into meiosis along with first follicle formation starts at around 5 months. Peak numbers of follicles are present by mid-gestation towards the end of the 6-month mitotic–meiotic transition period. It appears that the cortex of the elephant fetal ovary at mid-gestation (11 months) has already reached a developmental stage exhibited by the ovaries of many other mammals at full term.
Collapse
|
32
|
Mechanisms of reproductive aging in the females. SCIENCE CHINA-LIFE SCIENCES 2012; 55:653-8. [DOI: 10.1007/s11427-012-4351-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/28/2012] [Indexed: 10/27/2022]
|
33
|
Stansfield FJ, Nöthling JO, Allen WR. Growth and development of the ovary and small follicle pool from mid fetal life to pre-puberty in the African elephant (Loxodonta africana). BMC Vet Res 2012; 8:119. [PMID: 22824067 PMCID: PMC3488027 DOI: 10.1186/1746-6148-8-119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/09/2012] [Indexed: 11/29/2022] Open
Abstract
Background Follicle numbers and developing ovarian morphology, particularly with reference to the presence of interstitial tissue, are intimately linked within the ovary of the African elephant during the period spanning mid-gestation to puberty. These have not been previously quantified in any studies. The collection of 7 sets of elephant fetal ovaries between 11.2 and 20.2 months of gestation, and 29 pairs of prepubertal calf ovaries between 2 months and 9 years of age during routine management off-takes of complete family groups in private conservancies in Zimbabwe provided an opportunity for a detailed study of this period. Results The changing morphology of the ovary is described as the presumptive cortex and medulla components of the fetal ovary settled into their adult form. Interstitial tissue dominated the ovary in late fetal life and these cells stained strongly for 3β–hydroxysteroid dehydrogenase. This staining continued postnatally through to 4.5 years of age suggesting continued secretion of progestagens by the ovary during this period. The considerable growth of antral follicles peaked at 28% of ovarian volume at around 16.7 months of fetal age. The numbers of small follicles (primordial, early primary and true primary), counted in the cortex using stereological protocols, revealed fewer small follicles in the ovaries of animals aged 0 to 4.5 years of age than during either late fetal life or prepubertal life. Conclusions The small follicle populations of the late-fetal and prepubertal ovaries of the African elephant were described along with the changing morphology of these organs. The changes noted represent a series of events that have been recorded only in the elephant and the giraffe species to date. The expansion of the interstitial tissue of the fetal ovary and its continued presence in early post natal life may well contribute to the control of follicle development in these early years. Further research is required to determine the reasons behind the variation of numbers of small follicles in the ovaries of prepubertal calves.
Collapse
Affiliation(s)
- Fiona J Stansfield
- Department of Production Animal Studies, University of Pretoria, Onderstepoort, Republic of South Africa.
| | | | | |
Collapse
|
34
|
Stem cell interaction with somatic niche may hold the key to fertility restoration in cancer patients. Obstet Gynecol Int 2012; 2012:921082. [PMID: 22548074 PMCID: PMC3324916 DOI: 10.1155/2012/921082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/08/2011] [Accepted: 12/19/2011] [Indexed: 01/17/2023] Open
Abstract
The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs), and slightly larger “progenitor” ovarian germ stem cells (OGSCs). Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue cryopreservation options.
Collapse
|
35
|
Byskov AG, Høyer PE, Yding Andersen C, Kristensen SG, Jespersen A, Møllgård K. No evidence for the presence of oogonia in the human ovary after their final clearance during the first two years of life. Hum Reprod 2011; 26:2129-39. [PMID: 21572085 DOI: 10.1093/humrep/der145] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Conflicting results of studies on mouse and human have either verified or refuted the presence of oogonia/primordial germ cells in the post-natal ovary. The aim of this study was to trace whether oogonia recognized by immunohistochemical methods in the first trimester human ovary were present also in peri- and post-natal ovaries. METHODS For this study, 82 human ovaries were collected: 25 from embryos from 5 to 10 weeks post conception (wpc), 2 at 18 wpc, 32 from 32 wpc to 2 years and 23 from 2 to 32 years. Of these, 80 ovaries were fixed and paraffin-embedded and 2 (8 year-old) ovaries were processed for plastic sections. Serial sections were prepared for immunohistochemical detection of markers for oogonia: tyrosine kinase receptor for stem cell factor (SCF)(C-KIT), stage-specific embryonic antigen-4 (SSEA4), homeobox gene transcription factor (NANOG), octamer binding transcription factor 4 (OCT4) and melanoma antigen-4 (Mage-A4), while noting that C-KIT also stains diplotene oocytes. RESULTS Almost all oogonia exclusively stained for SSEA4, NANOG, OCT4 and C-KIT, whereas MAGE-A4 only stained a small fraction. At birth only a few oogonia were stained. These disappeared before 2 years, leaving only diplotene oocytes stained for C-KIT. From 18 wpc to 2 years, the medulla contained conglomerates of healthy and degenerating oogonia and small follicles, waste baskets (WBs) and oogonia enclosed in growing follicles (FWB). Medulla of older ovaries contained groups of primordial, healthy follicles. CONCLUSIONS We found no evidence for the presence of oogonia in the human ovary after their final clearing during the first 2 years. We suggest that perinatal medullary WB and FWB give rise to the groups of small, healthy follicles in the medulla.
Collapse
Affiliation(s)
- A G Byskov
- Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen, Rigshospitalet, Section 5712, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
36
|
Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K, Hinduja I. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 2011; 20:1451-64. [PMID: 21291304 PMCID: PMC3148829 DOI: 10.1089/scd.2010.0461] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1-3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4-7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells. Pluripotent gene transcripts of Oct-4, Oct-4A, Nanog, Sox-2, TERT, and Stat-3 in human and sheep OSE were detected by reverse transcriptase-polymerase chain reaction. The PSCs underwent spontaneous differentiation into oocyte-like structures, parthenote-like structures, embryoid body-like structures, cells with neuronal-like phenotype, and embryonic stem cell-like colonies, whereas the epithelial cells transformed into mesenchymal phenotype by epithelial-mesenchymal transition in 3 weeks of OSE culture. Germ cell markers like c-Kit, DAZL, GDF-9, VASA, and ZP4 were immuno-localized in oocyte-like structures. In conclusion, as opposed to the existing view of OSE being a bipotent source of oocytes and granulosa cells, mammalian ovaries harbor distinct very small embryonic-like PSCs and tissue committed progenitor stem cells population that have the potential to develop into oocyte-like structures in vitro, whereas mesenchymal fibroblasts appear to form supporting granulosa-like somatic cells. Research at the single-cell level, including complete gene expression profiling, is required to further confirm whether postnatal oogenesis is a conserved phenomenon in adult mammals.
Collapse
Affiliation(s)
- Seema Parte
- Department of Stem Cell Biology, National Institute for Research in Reproductive Health, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
37
|
Notarianni E. Reinterpretation of evidence advanced for neo-oogenesis in mammals, in terms of a finite oocyte reserve. J Ovarian Res 2011; 4:1. [PMID: 21211009 PMCID: PMC3024995 DOI: 10.1186/1757-2215-4-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/06/2011] [Indexed: 12/22/2022] Open
Abstract
The central tenet of ovarian biology, that the oocyte reserve in adult female mammals is finite, has been challenged over recent years by proponents of neo-oogenesis, who claim that germline stem cells exist in the ovarian surface epithelium or the bone marrow. Currently opinion is divided over these claims, and further scrutiny of the evidence advanced in support of the neo-oogenesis hypothesis is warranted - especially in view of the enormous implications for female fertility and health. This article contributes arguments against the hypothesis, providing alternative explanations for key observations, based on published data. Specifically, DNA synthesis in germ cells in the postnatal mouse ovary is attributed to mitochondrial genome replication, and to DNA repair in oocytes lagging in meiotic progression. Lines purported to consist of germline stem cells are identified as ovarian epithelium or as oogonia, from which cultures have been derived previously. Effects of ovotoxic treatments are found to negate claims for the existence of germline stem cells. And arguments are presented for the misidentification of ovarian somatic cells as de novo oocytes. These clarifications, if correct, undermine the concept that germline stem cells supplement the oocyte quota in the postnatal ovary; and instead comply with the theory of a fixed, unregenerated reserve. It is proposed that acceptance of the neo-oogenesis hypothesis is erroneous, and may effectively impede research in areas of ovarian biology. To illustrate, a novel explanation that is consistent with orthodox theory is provided for the observed restoration of fertility in chemotherapy-treated female mice following bone marrow transplantation, otherwise interpreted by proponents of neo-oogenesis as involving stimulation of endogenous germline stem cells. Instead, it is proposed that the chemotherapeutic regimens induce autoimmunity to ovarian antigens, and that the haematopoietic chimaerism produced by bone marrow transplantation circumvents activation of an autoreactive response, thereby rescuing ovarian function. The suggested mechanism draws from animal models of autoimmune ovarian disease, which implicate dysregulation of T cell regulatory function; and from a surmised role for follicular apoptosis in the provision of ovarian autoantigens, to sustain self-tolerance during homeostasis. This interpretation has direct implications for fertility preservation in women undergoing chemotherapy.
Collapse
Affiliation(s)
- Elena Notarianni
- Department of Biological & Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
38
|
Hillier SG, Smitz J, Eichenlaub-Ritter U. Folliculogenesis and oogenesis: from basic science to the clinic. Mol Hum Reprod 2010; 16:617-20. [DOI: 10.1093/molehr/gaq068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|