1
|
Jia Y, Ye M, Bukulmez O, Norman RJ, Liu W, Chen M. Melatonin Rescues Hyperacetylation of Liver and Impaired Enzymatic Activities of Mitochondrial in IVF Offspring. Reprod Sci 2025:10.1007/s43032-025-01846-2. [PMID: 40246783 DOI: 10.1007/s43032-025-01846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
Increased risks of obesity and abnormal glucose metabolism were observed in IVF offspring. However, the underlying molecular mechanism was still unclear. As an important post-translational modification (PTM), lysine acetylation changed with the changes in the metabolic environment and usually occurred on metabolic enzymes to regulate metabolic pathways and enzyme activities and participated in the regulation of downstream metabolites. In our previous study, we proved that supplementation of melatonin in the culture medium improved obesity and metabolic dysfunction in IVF mice. In this study, we further demonstrated that elevated levels of protein acetylation in hepatic cells might be associated with impaired glucose metabolism in IVF offspring, and melatonin could significantly reduce the acetylation level and improve the adverse phenotype of IVF mice. More importantly, we discovered that the supplementation of melatonin in the culture medium during in vitro fertilization significantly enhanced the activity of enzymes, especially citrate synthase (CS) and isocitrate dehydrogenase (IDH) which were involved in tricarboxylic acid recycling and played critical roles in glucose metabolism of liver. Thus, our findings elucidated a new perspective on the mechanisms of metabolic reprogramming of IVF mice.
Collapse
Affiliation(s)
- Yanping Jia
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Mingming Ye
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert J Norman
- Robinson Research Institute, School of Paediatrics and Reproductive Health, the University of Adelaide, Adelaide, SA, Australia
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China.
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China.
| |
Collapse
|
2
|
Luciano AM, Franciosi F, Dey P, Ladron De Guevara M, Monferini N, Bonumallu SKN, Musmeci G, Fagali Franchi F, Garcia Barros R, Colombo M, Lodde V. Progress toward species-tailored prematuration approaches in carnivores. Theriogenology 2023; 196:202-213. [PMID: 36423514 DOI: 10.1016/j.theriogenology.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
In the past four decades, the bovine model has been highly informative and inspiring to assisted reproductive technologies (ART) in other species. Most of the recent advances in ART have come from studies in cattle, particularly those unveiling the importance of several processes that must be recapitulated in vitro to ensure the proper development of the oocyte. The maintenance of structural and functional communications between the cumulus cells and the oocyte and a well-orchestrated chromatin remodeling with the gradual silencing of transcriptional activity represent essential processes for the progressive acquisition of oocyte developmental competence. These markers are now considered the milestones of physiological approaches to increase the efficiency of reproductive technologies. Different in vitro approaches have been proposed. In particular, the so-called "pre-IVM" or "prematuration" is a culture step performed before in vitro maturation (IVM) to support the completion of the oocyte differentiation process. Although these attempts only partially improved the embryo quality and yield, they currently represent a proof of principle that oocytes retrieved from an ovary or an ovarian batch shouldn't be treated as a whole and that tailored approaches can be developed for culturing competent oocytes in several species, including humans. An advancement in ART's efficiency would be desirable in carnivores, where the success is still limited. Since the progress in reproductive medicine has often come from comparative studies, this review highlights aspects that have been critical in other species and how they may be extended to carnivores.
Collapse
Affiliation(s)
- Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy.
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Pritha Dey
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Magdalena Ladron De Guevara
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Sai Kamal Nag Bonumallu
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giulia Musmeci
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Fernanda Fagali Franchi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Rodrigo Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Martina Colombo
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| |
Collapse
|
3
|
Nagata S, Tatematsu K, Yamaguchi H, Inoue Y, Tanaka K, Tasaki H, Shirasuna K, Iwata H. Effect of docosahexaenoic acid on in vitro growth of bovine oocytes. Reprod Med Biol 2021; 20:485-493. [PMID: 34646077 PMCID: PMC8499585 DOI: 10.1002/rmb2.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The present study investigated the effects of docosahexaenoic acid (DHA) on the growth of bovine oocytes. METHODS Oocytes and granulosa cell complexes (OGCs) were collected from early antral follicles (0.4-0.7 mm) on the surface of ovaries harvested from a slaughterhouse. The OGCs were cultured with 0, 1, and 10 μmol/L docosahexanoic acid (DHA) for 16 days. RESULTS Antrum formation of the OGCs and the number of granulosa cells (GCs) surrounding the oocytes were comparable among groups, whereas supplementation of 0.1 μmol/L of DHA significantly improved oocyte growth. Oocytes grown with DHA had a higher fertilization rate, acetylation levels of H4K12, and ATP contents, as well as a lower lipid content compared with those grown without DHA. In addition, GCs surrounding OGCs grown with DHA had low lipid content compared with vehicle counterparts. Furthermore, when GCs were cultured in vitro, DHA increased ATP production, mitochondrial membrane potential, and reduced lipid content and levels of reactive oxygen species. RNA-seq of GCs revealed that DHA increased CPT1A expression levels and affect genes associated with focal adhesion, oxidative phosphorylation, and PI3K-AKT etc. CONCLUSION The results suggest that DHA supplementation affects granulosa cell characteristics and supports oocyte growth in vitro.
Collapse
Affiliation(s)
- Shuta Nagata
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Kaoru Tatematsu
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Hitoki Yamaguchi
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Yuki Inoue
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Keisuke Tanaka
- NODAI Genome Research CenterTokyo University of AgricultureTokyoJapan
| | - Hidetaka Tasaki
- Assisted Reproductive Technology CenterOkayama UniversityOkayamaJapan
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Koumei Shirasuna
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Hisataka Iwata
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| |
Collapse
|
4
|
Lodde V, Luciano AM, Musmeci G, Miclea I, Tessaro I, Aru M, Albertini DF, Franciosi F. A Nuclear and Cytoplasmic Characterization of Bovine Oocytes Reveals That Cysteamine Partially Rescues the Embryo Development in a Model of Low Ovarian Reserve. Animals (Basel) 2021; 11:ani11071936. [PMID: 34209664 PMCID: PMC8300191 DOI: 10.3390/ani11071936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Women’s reproductive performance starts declining in the mid-30s, and by age 40–45, the possibility of becoming pregnant becomes very small. Reproductive aging is a physiological process of fertility decline characterized by a decrease in quality and stockpile of eggs (also called ovarian reserve) in most mammals. However, young individuals too can show an accelerated reproductive aging that similarly results in a low ovarian reserve and hypofertility. This syndrome, called premature ovarian failure (POF), is becoming a relevant problem due to the general tendency to postpone the first pregnancy. In this study, we used bovine ovaries that were classified in two categories, according to the number of follicles visible on the ovarian surface, and analyzed some parameters of egg maturation. We observed that eggs from the ‘aging-like’ ovaries carry several defects that impair maturation. However, one of the parameters was improved upon supplementation with a scavenger of free radicals, providing a proof of concept that in-depth knowledge of the cellular mechanisms is essential to find solutions to everyday-life problems. Abstract Decreased oocyte quality is a major determinant of age-associated fertility decline. Similarly, individuals affected by early ovarian aging carry low-quality oocytes. Using an established bovine model of early ovarian aging, we investigated key features of ‘quality’ oocyte maturation, associated with the onset of egg aneuploidy and reproductive aging, such as histone modifications, mitochondria distribution and activity, reduced glutathione (GSH) content, and gap junction functionality. Bovine ovaries were classified according to the antral follicle count (AFC), and the retrieved oocytes were processed immediately or matured in vitro. We observed alterations in several cellular processes, suggesting a multifactorial etiology of the reduced oocyte quality. Furthermore, we performed a rescue experiment for one of the parameters considered. By adding cysteamine to the maturation medium, we experimentally increased the free radical scavenger ability of the ‘low competence’ oocytes and obtained a higher embryo development. Our findings show that adopting culture conditions that counteract the free radicals has a positive impact on the quality of ‘compromised’ oocytes. Specifically, cysteamine treatment seems to be a promising option for treating aging-related deficiencies in embryo development.
Collapse
Affiliation(s)
- Valentina Lodde
- Reproductive and Developmental Biology Lab., Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare ‘Carlo Cantoni’, Università degli Studi di Milano, 20133 Milano, Italy; (V.L.); (A.M.L.); (G.M.); (I.T.); (M.A.)
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Lab., Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare ‘Carlo Cantoni’, Università degli Studi di Milano, 20133 Milano, Italy; (V.L.); (A.M.L.); (G.M.); (I.T.); (M.A.)
| | - Giulia Musmeci
- Reproductive and Developmental Biology Lab., Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare ‘Carlo Cantoni’, Università degli Studi di Milano, 20133 Milano, Italy; (V.L.); (A.M.L.); (G.M.); (I.T.); (M.A.)
| | - Ileana Miclea
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Irene Tessaro
- Reproductive and Developmental Biology Lab., Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare ‘Carlo Cantoni’, Università degli Studi di Milano, 20133 Milano, Italy; (V.L.); (A.M.L.); (G.M.); (I.T.); (M.A.)
| | - Mariella Aru
- Reproductive and Developmental Biology Lab., Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare ‘Carlo Cantoni’, Università degli Studi di Milano, 20133 Milano, Italy; (V.L.); (A.M.L.); (G.M.); (I.T.); (M.A.)
| | | | - Federica Franciosi
- Reproductive and Developmental Biology Lab., Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare ‘Carlo Cantoni’, Università degli Studi di Milano, 20133 Milano, Italy; (V.L.); (A.M.L.); (G.M.); (I.T.); (M.A.)
- Correspondence:
| |
Collapse
|
5
|
Bezerra FTG, Dau AMP, Van Den Hurk R, Silva JRV. Molecular characteristics of oocytes and somatic cells of follicles at different sizes that influence in vitro oocyte maturation and embryo production. Domest Anim Endocrinol 2021; 74:106485. [PMID: 32858464 DOI: 10.1016/j.domaniend.2020.106485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022]
Abstract
During the last 10 to 15 yr, in vitro research to predict antral follicle growth and oocyte maturation has delivered interesting advances in the knowledge of processes regulating follicle growth and developmental competence of oocytes. This review discusses the contribution of cumulus and mural granulosa cells in the process of oocyte maturation and cumulus expansion in cumulus-oocyte complexes (COCs) from follicles of different sizes and shows that differences in gene expression in oocytes, granulosa, and theca cells of small and large follicles impact the success of in vitro blastocyst development. In addition, the molecular mechanisms by which COC metabolism and antioxidant defense provide oocyte competence are highlighted. Furthermore, new insights and perspectives on molecular and cellular regulation of in vitro oocyte maturation are emphasized.
Collapse
Affiliation(s)
- F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Graduation School of Biotechnology, Federal University of Ceara, Campus of Sobral, Sobral, Ceará, Brazil
| | - A M P Dau
- Federal Institute of Education, Science and Technology of Rio Grande do Sul, Rolante, Rio Grande do Sul, Brazil
| | - R Van Den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Graduation School of Biotechnology, Federal University of Ceara, Campus of Sobral, Sobral, Ceará, Brazil.
| |
Collapse
|
6
|
Lodde V, Colleoni S, Tessaro I, Corbani D, Lazzari G, Luciano AM, Galli C, Franciosi F. A prematuration approach to equine IVM: considering cumulus morphology, seasonality, follicle of origin, gap junction coupling and large-scale chromatin configuration in the germinal vesicle. Reprod Fertil Dev 2020; 31:1793-1804. [PMID: 31630726 DOI: 10.1071/rd19230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Several studies report that a two-step culture where mammalian oocytes are first kept under meiosis-arresting conditions (prematuration) followed by IVM is beneficial to embryo development. The most promising results were obtained by stratifying the oocyte population using morphological criteria and allocating them to different culture conditions to best meet their metabolic needs. In this study, horse oocytes were characterised to identify subpopulations that may benefit from prematuration. We investigated gap-junction (GJ) coupling, large-scale chromatin configuration and meiotic competence in compact and expanded cumulus-oocyte complexes (COCs) according to follicle size (<1, 1-2, >2cm) and season. Then we tested the effect of cilostamide-based prematuration in compact COCs collected from follicles <1 and 1-2cm in diameter on embryo development. Meiotic competence was not affected by prematuration, whereas COCs from follicles 1-2cm in diameter yielded embryos with a higher number of cells per blastocyst than oocytes that underwent direct IVM (P<0.01, unpaired Mann-Whitney test), suggesting improved developmental competence. Oocytes collected from follicles <1cm in diameter were not affected by prematuration. This study represents an extensive characterisation of the functional properties of immature horse oocytes and is the first report of the effects of cilostamide-based prematuration in horse oocyte IVM on embryo development.
Collapse
Affiliation(s)
- Valentina Lodde
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Silvia Colleoni
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Irene Tessaro
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Davide Corbani
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Giovanna Lazzari
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy; and Fondazione Avantea, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Alberto M Luciano
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy; and Fondazione Avantea, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Federica Franciosi
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy; and Corresponding author.
| |
Collapse
|
7
|
Bogolyubova I, Bogolyubov D. Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals. Cells 2020; 9:cells9061497. [PMID: 32575486 PMCID: PMC7348780 DOI: 10.3390/cells9061497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded "nucleolus", which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos.
Collapse
|
8
|
Cao Z, Xu T, Tong X, Zhang D, Liu C, Wang Y, Gao D, Luo L, Zhang L, Li Y, Zhang Y. HASPIN kinase mediates histone deacetylation to regulate oocyte meiotic maturation in pigs. Reproduction 2020; 157:501-510. [PMID: 30870811 DOI: 10.1530/rep-18-0447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/14/2019] [Indexed: 01/17/2023]
Abstract
HASPIN kinase-catalyzed phosphorylation of histone H3 on threonine 3 (H3T3p) directs the activity and localization of chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC) to regulate chromosome condensation and segregation in both mitosis and meiosis. However, the function of HASPIN kinase in the meiotic maturation of porcine oocytes is not yet known. Here, we found that HASPIN mRNA is constantly expressed in porcine oocyte maturation and subsequent early embryo development. H3T3p is highly enriched on chromosomes at germinal vesicle breakdown (GVBD) stage and thereafter maintains a low level in progression through metaphase I (MI) to metaphase II (MII). Correspondingly, H3T3p was completely abolished in oocytes treated with an inhibitor of HASPIN kinase. Functionally, inhibition of HASPIN activity led to a significant reduction in the rate of oocyte meiotic maturation and the limited cumulus expansion. Additionally, HASPIN inhibition caused both spindle disorganization and chromosome misalignment in oocytes at MI and MII stage. Importantly, HASPIN inhibition severely prevented deacetylation of several highly conserved lysine (K) residues of histone H3 and H4 including H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 on the metaphase chromosomes during oocyte meiotic maturation. Taken together, these results demonstrate that HASPIN kinase regulates porcine oocyte meiotic maturation via modulating histone deacetylation.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xu Tong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Dandan Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chengxue Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Luo
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Gérard N, Robin E. Cellular and molecular mechanisms of the preovulatory follicle differenciation and ovulation: What do we know in the mare relative to other species. Theriogenology 2019; 130:163-176. [PMID: 30921545 DOI: 10.1016/j.theriogenology.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Terminal follicular differentiation and ovulation are essential steps of reproduction. They are induced by the increase in circulating LH, and lead to the expulsion from the ovary of oocytes ready to be fertilized. This review summarizes our current understanding of cellular and molecular pathways that control ovulation using a broad mammalian literature, with a specific focus to the mare, which is unique in some aspects of ovarian function in some cases. Essential steps and key factors are approached. The first part of this review concerns LH, receptors and signaling, addressing the description of the equine gonadotropin and cloning, signaling pathways that are activated following the binding of LH to its receptors, and implication of transcription factors which better known are CCAAT-enhancer-binding proteins (CEBP) and cAMP response element-binding protein (CREB). The second and major part is devoted to the cellular and molecular actors within follicular cells during preovulatory maturation. We relate to 1) molecules involved in vascular permeability and vasoconstriction, 2) involvement of neuropeptides, such as kisspeptin, neurotrophins and neuronal growth factor, neuropeptide Y (NPY), 3) the modification of steroidogenesis, steroids intrafollicular levels and enzymes activity, 4) the local inflammation, with the increase in prostaglandins synthesis, and implication of leukotrienes, cytokines and glucocorticoids, 5) extracellular matrix remodelling with involvement of proteases, antiproteases and inhibitors, as well as relaxin, and finaly 6) the implication of oxytocine, osteopontin, growth factors and reactive oxygen species. The third part describes our current knowledge on molecular aspect of in vivo cumulus-oocyte-complexe maturation, with a specific focus on signaling pathways, paracrine factors, and intracellular regulations that occur in cumulus cells during expansion, and in the oocyte during nuclear and cytoplasmic meiosis resumption. Our aim was to give an overall and comprehensive map of the regulatory mechanisms that intervene within the preovulatory follicle during differentiation and ovulation.
Collapse
Affiliation(s)
- Nadine Gérard
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Elodie Robin
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
10
|
Franciosi F, Goudet G, Tessaro I, Papillier P, Dalbies-Tran R, Reigner F, Deleuze S, Douet C, Miclea I, Lodde V, Luciano AM. In vitro maturation affects chromosome segregation, spindle morphology and acetylation of lysine 16 on histone H4 in horse oocytes. Reprod Fertil Dev 2018; 29:721-730. [PMID: 26651296 DOI: 10.1071/rd15350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/12/2015] [Indexed: 12/14/2022] Open
Abstract
Implantation failure and genetic developmental disabilities in mammals are caused by errors in chromosome segregation originating mainly in the oocyte during meiosis I. Some conditions, like maternal ageing or in vitro maturation (IVM), increase the incidence of oocyte aneuploidy. Here oocytes from adult mares were used to investigate oocyte maturation in a monovulatory species. Experiments were conducted to compare: (1) the incidence of aneuploidy, (2) the morphology of the spindle, (3) the acetylation of lysine 16 on histone H4 (H4K16) and (4) the relative amount of histone acetyltransferase 1 (HAT1), K(lysine) acetyltransferase 8 (KAT8, also known as MYST1), histone deacetylase 1 (HDAC1) and NAD-dependent protein deacetylase sirtuin 1 (SIRT1) mRNA in metaphase II stage oocytes that were in vitro matured or collected from peri-ovulatory follicles. The frequency of aneuploidy and anomalies in spindle morphology was increased following IVM, along with a decrease in H4K16 acetylation that was in agreement with our previous observations. However, differences in the amount of the transcripts investigated were not detected. These results suggest that the degradation of transcripts encoding for histone deacetylases and acetyltransferases is not involved in the changes of H4K16 acetylation observed following IVM, while translational or post-translational mechanisms might have a role. Our study also suggests that epigenetic instabilities introduced by IVM may affect the oocyte and embryo genetic stability.
Collapse
Affiliation(s)
- Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, via Celoria, 10, Milan, 20133, Italy
| | - Ghylene Goudet
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Irene Tessaro
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, via Celoria, 10, Milan, 20133, Italy
| | - Pascal Papillier
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Rozenn Dalbies-Tran
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | | | - Stefan Deleuze
- Université de Liège, Clinique des Animaux de Compagnie et des Équidés, Place du 20 Août 7, Liège, 4000, Belgium
| | - Cecile Douet
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France
| | - Ileana Miclea
- University of Agricultural Sciences and Veterinary Medicine, Calea M?n?tur 3-5, Cluj-Napoca 400372, Romania
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, via Celoria, 10, Milan, 20133, Italy
| | - Alberto M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, via Celoria, 10, Milan, 20133, Italy
| |
Collapse
|
11
|
Deleuze S, Douet C, Couty I, Moros-Nicolás C, Barrière P, Blard T, Reigner F, Magistrini M, Goudet G. Ovum Pick Up and In Vitro Maturation of Jennies Oocytes Toward the Setting Up of Efficient In Vitro Fertilization and In Vitro Embryos Culture Procedures in Donkey ( Equus asinus ). J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update 2018; 24:245-266. [PMID: 29432538 PMCID: PMC5907346 DOI: 10.1093/humupd/dmx040] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Collapse
Affiliation(s)
- Marco Conti
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| | - Federica Franciosi
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| |
Collapse
|
13
|
Current perspectives on in vitro maturation and its effects on oocyte genetic and epigenetic profiles. SCIENCE CHINA-LIFE SCIENCES 2018; 61:633-643. [PMID: 29569023 DOI: 10.1007/s11427-017-9280-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
In vitro maturation (IVM), the maturation in culture of immature oocytes, has been used in clinic for more than 20 years. Although IVM has the specific advantages of low cost and minor side effects over controlled ovarian stimulation, the prevalence of IVM is less than 1% of routine in vitro fertilization and embryo transfer techniques in many reproductive centers. In this review, we searched the MEDLINE database for all full texts and/or abstract articles published in English with content related to oocyte IVM mainly between 2000 and 2016. Many different aspects of the IVM method may influence oocyte potential, including priming, gonadotrophin, growth factors, and culture times. The culture conditions of IVM result in alterations in the oocyte or cumulus cell transcriptome that are not observed under in vivo culture conditions. Additionally, epigenetic modifications, such as DNA methylation or acetylation, are also different between in vitro and in vivo cultured oocytes. In sum, current IVM technique is still not popular and requires more systematic and intensive research to improve its effects and applications. This review will help point our problems, supply evidence or clues for future improving IVM technique, thus assist patients for fertility treatment or preservation as an additional option.
Collapse
|
14
|
Tatone C, Di Emidio G, Barbonetti A, Carta G, Luciano AM, Falone S, Amicarelli F. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update 2018; 24:267-289. [DOI: 10.1093/humupd/dmy003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | | | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Alberto M Luciano
- Department of Health, Animal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, 20133 Milan, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Institute of Translational Pharmacology (IFT), CNR, 67100 L’Aquila, Italy
| |
Collapse
|
15
|
Virant-Klun I, Bauer C, Ståhlberg A, Kubista M, Skutella T. Human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes. Reprod Biomed Online 2018; 36:508-523. [PMID: 29503212 DOI: 10.1016/j.rbmo.2018.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
The conventional method of human oocyte maturation in vitro in the presence of gonadotrophins continues to be a relatively low-success procedure in the assisted conception programme owing to suboptimal maturation conditions in the absence of an ovarian 'niche' and poor understanding of this procedure at the molecular level in oocytes. In this study, the gene expression profiles of human oocytes were analysed according to their manner of maturation: in vivo (in the ovaries) or in vitro (matured either by the conventional method or by a new approach - co-cultured with cumulus cells of mature oocytes from the same patient). Our results show that the in-vitro maturation procedure strongly affects the gene expression profile of human oocytes, including several genes involved in transcriptional regulation, embryogenesis, epigenetics, development, and the cell cycle. The in-vitro maturation of oocytes co-cultured with cumulus cells from mature oocytes provides an ovarian 'niche' to some degree, which improves oocyte maturation rates and their gene expression profile to the extent that they are more comparable to oocytes that naturally mature in the ovarian follicle.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.
| | | | - Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, The Sahlgrenska Academy University of Gothenburg, 41390, Gothenburg, Sweden
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Bogolyubov DS. Karyosphere (Karyosome): A Peculiar Structure of the Oocyte Nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:1-48. [PMID: 29551157 DOI: 10.1016/bs.ircmb.2017.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The karyosphere, aka the karyosome, is a meiosis-specific structure that represents a "knot" of condensed chromosomes joined together in a limited volume of the oocyte nucleus. The karyosphere is an evolutionarily conserved but morphologically rather "multifaceted" structure. It forms at the diplotene stage of meiotic prophase in many animals, from hydra and Drosophila to human. Karyosphere formation is generally linked with transcriptional silencing of the genome. It is believed that karyosphere/karyosome is a prerequisite for proper completion of meiotic divisions and further development. Here, a brief review on the karyosphere features in some invertebrates and vertebrates is provided. Special emphasis is made on terminology, since current discrepancies in this field may lead to confusions. In particular, it is proposed to distinguish the karyosphere with a capsule and the karyosome (a karyosphere devoid of a capsule). The "inverted" karyospheres are also considered, in which the chromosomes situate externally to an extrachromosomal structure (e.g., in human oocytes).
Collapse
Affiliation(s)
- Dmitry S Bogolyubov
- Institute of Cytology of the Russian Academy of Science, St. Petersburg, Russia.
| |
Collapse
|
17
|
Zhang Y, Wang T, Lan M, Zang XW, Li YL, Cui XS, Kim NH, Sun SC. Melatonin protects oocytes from MEHP exposure-induced meiosis defects in porcine†. Biol Reprod 2018; 98:286-298. [DOI: 10.1093/biolre/iox185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Teng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mei Lan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin-Wei Zang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Lun Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Iwata H. Age-associated changes in granulosa cells and follicular fluid in cows. J Reprod Dev 2017; 63:339-345. [PMID: 28496019 PMCID: PMC5593084 DOI: 10.1262/jrd.2017-048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022] Open
Abstract
Age-associated decline in oocyte quality is common in mammals. Oocytes take a long time to reach their full-grown size in large animals, and maternal physical conditions profoundly affect follicle development. Aging affects the oocyte itself as well as the surrounding environment, such as granulosa cells and follicular fluid. This review discusses age-associated changes that occur in granulosa cells and follicular fluid in cows and suggests that age-associated decline in granulosa cells and follicular fluid hampers proper oocyte development.
Collapse
Affiliation(s)
- Hisataka Iwata
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
19
|
Franciosi F, Tessaro I, Dalbies-Tran R, Douet C, Reigner F, Deleuze S, Papillier P, Miclea I, Lodde V, Luciano AM, Goudet G. Analysis of Chromosome Segregation, Histone Acetylation, and Spindle Morphology in Horse Oocytes. J Vis Exp 2017. [PMID: 28518085 DOI: 10.3791/55242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The field of assisted reproduction has been developed to treat infertility in women, companion animals, and endangered species. In the horse, assisted reproduction also allows for the production of embryos from high performers without interrupting their sports career and contributes to an increase in the number of foals from mares of high genetic value. The present manuscript describes the procedures used for collecting immature and mature oocytes from horse ovaries using ovum pick-up (OPU). These oocytes were then used to investigate the incidence of aneuploidy by adapting a protocol previously developed in mice. Specifically, the chromosomes and the centromeres of metaphase II (MII) oocytes were fluorescently labeled and counted on sequential focal plans after confocal laser microscope scanning. This analysis revealed a higher incidence in the aneuploidy rate when immature oocytes were collected from the follicles and matured in vitro compared to in vivo. Immunostaining for tubulin and the acetylated form of histone four at specific lysine residues also revealed differences in the morphology of the meiotic spindle and in the global pattern of histone acetylation. Finally, the expression of mRNAs coding for histone deacetylases (HDACs) and acetyl-transferases (HATs) was investigated by reverse transcription and quantitative-PCR (q-PCR). No differences in the relative expression of transcripts were observed between in vitro and in vivo matured oocytes. In agreement with a general silencing of the transcriptional activity during oocyte maturation, the analysis of the total transcript amount can only reveal mRNA stability or degradation. Therefore, these findings indicate that other translational and post-translational regulations might be affected. Overall, the present study describes an experimental approach to morphologically and biochemically characterize the horse oocyte, a cell type that is extremely challenging to study due to low sample availability. However, it can expand our knowledge on the reproductive biology and infertility in monovulatory species.
Collapse
Affiliation(s)
- Federica Franciosi
- Department of Health, Animal Science and Food Safety, University of Milan;
| | - Irene Tessaro
- Department of Health, Animal Science and Food Safety, University of Milan; IRCCS. Istituto Ortopedico Galeazzi
| | | | | | | | - Stefan Deleuze
- Clinique des Animaux de Compagnie et des Équidés, Université de Liège
| | | | - Ileana Miclea
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Valentina Lodde
- Department of Health, Animal Science and Food Safety, University of Milan
| | - Alberto M Luciano
- Department of Health, Animal Science and Food Safety, University of Milan
| | | |
Collapse
|
20
|
Chen Z, Zuo X, Li H, Hong R, Ding B, Liu C, Gao D, Shang H, Cao Z, Huang W, Zhang X, Zhang Y. Effects of melatonin on maturation, histone acetylation, autophagy of porcine oocytes and subsequent embryonic development. Anim Sci J 2017; 88:1298-1310. [PMID: 28349625 DOI: 10.1111/asj.12779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Melatonin (MLT) is an endogenous hormone with roles in animal germ cell development. However, the effect of MLT on porcine oocyte maturation and its underlying mechanisms remain largely unknown. Here, we investigated the effects of exogenous MLT on oocyte maturation, histone acetylation, autophagy and subsequent embryonic development. We found that 1 nmol/L MLT supplemented in maturation medium was the optimal concentration to promote porcine oocyte maturation and subsequent developmental competence and quality of parthenogenetic embryos. Interestingly, the beneficial effects of 1 nmol/L MLT treatment on porcine oocyte maturation and embryo development were mainly attributed to the first half period of in vitro maturation. Simultaneously, MLT treatment could also improve maturation of small follicle-derived oocytes, morphologically poor (cumulus cell layer ≤1) and even artificially denuded oocytes and their subsequent embryo development. Furthermore, MLT treatment not only could decrease the levels of H3K27ac and H4K16ac in metaphase II (MII) oocytes, but also could increase the expression abundances of genes associated with cumulus cell expansion, meiotic maturation, histone acetylation and autophagy in cumulus cells or MII oocytes. These results indicate that MLT treatment can facilitate porcine oocyte maturation and subsequent embryonic development probably, through improvements in histone acetylation and autophagy in oocytes.
Collapse
Affiliation(s)
- Zhen Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Hui Li
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Renyun Hong
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Biao Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Chengxue Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Di Gao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Hui Shang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Xiaorong Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| |
Collapse
|
21
|
Accumulation of Chromatin Remodelling Enzyme and Histone Transcripts in Bovine Oocytes. Results Probl Cell Differ 2017; 63:223-255. [PMID: 28779321 DOI: 10.1007/978-3-319-60855-6_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During growth, the oocyte accumulates mRNAs that will be required in the later stages of oogenesis and early embryogenesis until the activation of the embryonic genome. Each of these developmental stages is controlled by multiple regulatory mechanisms that ensure proper protein production. Thus mRNAs are stabilized, stored, recruited, polyadenylated, translated and/or degraded over a period of several days. As a consequence, understanding the biological significance of changes in the abundance of transcripts during oocyte growth and differentiation is rather complex. Nevertheless the availability of transcriptomic platforms applicable to scarce samples such as oocytes has generated large amounts of data that depict the transcriptome of oocytes under different conditions. Despite several technical constrains related to protein determination in oocytes that still limit the possibility to verify certain hypothesis, it is now possible to use mRNA levels to start building plausible scenarios. To start deciphering the changes in the level of specific mRNAs involved in chromatin remodelling, we have performed a meta-analysis of existing microarray datasets from germinal vesicle (GV) stage bovine oocytes during the final stages of oocyte differentiation. We then analysed the expression profiles of histone and histone-remodelling enzyme mRNAs and correlated these with the major histone modifications known to occur at the same period, based on data available in the literature. We believe that this approach could reveal the function of specific enzymes in the oocyte. In turn, this information will be useful in future studies, which final ambitious goal is to decipher the 'oocyte-specific histone code'.
Collapse
|
22
|
Eini F, Novin MG, Joharchi K, Hosseini A, Nazarian H, Piryaei A, Bidadkosh A. Intracytoplasmic oxidative stress reverses epigenetic modifications in polycystic ovary syndrome. Reprod Fertil Dev 2017; 29:2313-2323. [DOI: 10.1071/rd16428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
In polycystic ovary syndrome (PCOS), substantial genetic and environmental alterations, along with hyperandrogenism, affect the quality of oocytes and decrease ovulation rates. To determine the mechanisms underlying these alterations caused specifically by an increase in plasma androgens, the present study was performed in experimentally-induced PCOS mice. As the study model, female B6D2F1 mice were treated with dehydroepiandrosterone (DHEA, 6 mg per 100 g bodyweight). After 20 days, oocytes at the germinal vesicle and metaphase II stages were retrieved from isolated ovaries and subsequent analyses of oocyte quality were performed for each mouse. DHEA treatment resulted in excessive abnormal morphology and decreased polar body extrusion rates in oocytes, and was associated with an increase in oxidative stress. Analysis of fluorescence intensity revealed a significant reduction of DNA methylation and dimethylation of histone H3 at lysine 9 (H3K9) in DHEA-treated oocytes, which was associated with increased acetylation of H4K12. Similarly, mRNA expression of DNA methyltransferase-1 and histone deacetylase-1 was significantly decreased in DHEA-treated mice. There was a significant correlation between excessive reactive oxygen species (ROS) production and increased histone acetylation, which is a novel finding and may provide new insights into the mechanism causing PCOS. The results of the present study indicate that epigenetic modifications of oocytes possibly affect the quality of maturation and ovulation rates in PCOS, and that the likely mechanism may be augmentation of intracytoplasmic ROS.
Collapse
|
23
|
Enhanced or Reduced Fetal Growth Induced by Embryo Transfer Into Smaller or Larger Breeds Alters Postnatal Growth and Metabolism in Weaned Horses. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Motheo TF, Arnold DR, Padilha-Nakaghi LC, Pires-Buttler EA, Alves AE, Apparicio M, Vicente WRR, Lopes FL. Changes in acetylation of lysine 5 on histone H4 in canine oocytes following in vitro maturation. Reprod Domest Anim 2016; 52 Suppl 2:103-107. [DOI: 10.1111/rda.12897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- TF Motheo
- Department of Animal Reproduction; Faculdade de Ciencias Agrarias e Veterinarias Campus de Jaboticabal; Universidade Estadual Paulista Julio de Mesquita Filho; Jaboticabal Brazil
| | - DR Arnold
- In vitro Brasil S/A; Mogi Mirim Brazil
| | - LC Padilha-Nakaghi
- Department of Animal Reproduction; Faculdade de Ciencias Agrarias e Veterinarias Campus de Jaboticabal; Universidade Estadual Paulista Julio de Mesquita Filho; Jaboticabal Brazil
| | - EA Pires-Buttler
- Department of Animal Reproduction; Faculdade de Ciencias Agrarias e Veterinarias Campus de Jaboticabal; Universidade Estadual Paulista Julio de Mesquita Filho; Jaboticabal Brazil
| | - AE Alves
- Universidade Federal de Uberlandia - Campus Umuarama; Uberlandia Brazil
| | - M Apparicio
- Programa de Mestrado em Ciência Animal; Universidade de Franca; Franca Brazil
| | - WRR Vicente
- Department of Animal Reproduction; Faculdade de Ciencias Agrarias e Veterinarias Campus de Jaboticabal; Universidade Estadual Paulista Julio de Mesquita Filho; Jaboticabal Brazil
| | - FL Lopes
- Department of Support, Production and Animal Health; Faculdade de Medicina Veterinária de Araçatuba - FMVA/UNESP; Universidade Estadual Júlio de Mesquita Filho; Araçatuba Brazil
| |
Collapse
|
25
|
Fernandes C, Martins L, Gaudêncio Neto S, Tavares K, Aguiar L, Calderón C, Silva A, Alves J, Silva C, Rossetto R, Bertolini L, Bertolini M, Rondina D. Gene expression, oocyte quality and embryo production by cloning in goats supplemented with different diets. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Influence of transvaginal ultrasound-guided follicular punctures in the mare on heart rate, respiratory rate, facial expression changes, and salivary cortisol as pain scoring. Theriogenology 2016; 86:1757-63. [PMID: 27354340 DOI: 10.1016/j.theriogenology.2016.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/20/2022]
Abstract
Transvaginal ultrasound-guided follicular punctures are widely used in the mare for diagnosis, research, and commercial applications. The objective of our study was to determine their influence on pain, stress, and well-being in the mare, by evaluating heart rate, breath rate, facial expression changes, and salivary cortisol before, during, and after puncture. For this experiment, 21 pony mares were used. Transvaginal ultrasound-guided aspirations were performed on 11 mares. After injections for sedation, analgesia, and antispasmodia, the follicles from both ovaries were aspirated with a needle introduced through the vagina wall into the ovary. In the control group, 10 mares underwent similar treatments and injections, but no follicular aspiration. Along the session, heart rate and breath rate were evaluated by a trained veterinarian, ears position, eyelid closure, and contraction of facial muscles were evaluated, and salivary samples were taken for evaluation of cortisol concentration. A significant relaxation was observed after sedative injection in the punctured and control mares, according to ear position, eyelid closure, and contraction of facial muscles, but no difference between punctured and control animals was recorded. No significant modification of salivary cortisol concentration during puncture and no difference between punctured and control mares at any time were observed. No significant modification of the breath rate was observed along the procedure for the punctured and the control mares. Heart rate increased significantly but transiently when the needle was introduced in the ovary and was significantly higher at that time for the punctured mares than that for control mares. None of the other investigated parameters were affected at that time, suggesting discomfort is minimal and transient. Improving analgesia, e.g., through a multimodal approach, during that possibly more sensitive step could be recommended. The evaluation of facial expression changes and heart rate is easy-to-use and accurate tools to evaluate pain and well-being of the mare.
Collapse
|
27
|
Munakata Y, Ichinose T, Ogawa K, Itami N, Tasaki H, Shirasuna K, Kuwayama T, Iwata H. Relationship between the number of cells surrounding oocytes and energy states of oocytes. Theriogenology 2016; 86:1789-1798.e1. [DOI: 10.1016/j.theriogenology.2016.05.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 02/02/2023]
|
28
|
Establishment of conditions for ovum pick up and IVM of jennies oocytes toward the setting up of efficient IVF and in vitro embryos culture procedures in donkey (Equus asinus). Theriogenology 2016; 86:528-35. [DOI: 10.1016/j.theriogenology.2016.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/08/2023]
|
29
|
Martins LT, Neto SG, Tavares KCS, Calderón CEM, Aguiar LH, Lazzarotto CR, Ongaratto FL, Rodrigues VHV, Carneiro IDS, Rossetto R, Almeida AP, Fernandes CCL, Rondina D, Dias ACO, Chies JM, Polejaeva IA, Rodrigues JL, Forell F, Bertolini LR, Bertolini M. Developmental Outcome and Related Abnormalities in Goats: Comparison Between Somatic Cell Nuclear Transfer- and In Vivo-Derived Concepti During Pregnancy Through Term. Cell Reprogram 2016; 18:264-79. [PMID: 27362734 DOI: 10.1089/cell.2015.0082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cloning by somatic cell nuclear transfer (SCNT) is characterized by low efficiency and the occurrence of developmental abnormalities, which are rather poorly studied phenomena in goats. This study aimed at comparing overall SCNT efficiency in goats by using in vitro-matured (IVM) or in vivo-matured oocytes and fibroblast donor cells (mock transfected, transgenic, or wild type), also characterizing symptoms of the Abnormal Offspring Syndrome (AOS) in development, comparing results with pregnancies produced by artificial insemination (AI) and in vivo-derived (IVD) embryos. The SCNT group had lower pregnancy rate (18.3%, 11/60), total number of concepti (20.0%, 12/60), term births (3.3%, 2/60), and live births (1.7%, 1/60) than both the IVD (77.8%, 7/9; 155.5%, 14/9; 122.2%, 11/9; 88.8%, 8/9) and the AI (71.4%, 10/14; 121.4%, 17/14; 100%, 14/14; 78.5%, 11/14) groups, respectively (p < 0.05). No SCNT pregnancies reached term using IVM oocytes, but in vivo-matured oocytes resulted in two term transgenic cloned kids. The proportion fetal membrane (FM) weight/birth weight reflected an increase in FM size and cotyledonary enlargement in clones, for disproportionally bigger newborns in relation to cotyledonary numbers. Overall, goat cloning showed losses and abnormality patterns similar to the AOS in cloned cattle and sheep, which have not been previously well recognized in goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Felipe Ledur Ongaratto
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,2 Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, Brazil
| | | | | | - Rafael Rossetto
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,3 Ceará State University (UECE) , Fortaleza, Brazil
| | - Anderson Pinto Almeida
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,3 Ceará State University (UECE) , Fortaleza, Brazil
| | | | | | | | | | - Irina A Polejaeva
- 5 Department of Animal, Dairy and Veterinary Sciences, Utah State University , Logan, Utah, USA
| | | | - Fabiana Forell
- 6 Santa Catarina State University (UDESC) , Lages, Brazil
| | - Luciana Relly Bertolini
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,7 Pontificial Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre, Brazil
| | - Marcelo Bertolini
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,2 Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, Brazil
| |
Collapse
|
30
|
Chavatte-Palmer P, Robles M, Tarrade A, Duranthon V. Gametes, Embryos, and Their Epigenome: Considerations for Equine Embryo Technologies. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Peugnet P, Robles M, Wimel L, Tarrade A, Chavatte-Palmer P. Management of the pregnant mare and long-term consequences on the offspring. Theriogenology 2016; 86:99-109. [PMID: 26954944 DOI: 10.1016/j.theriogenology.2016.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/21/2023]
Abstract
The study of early developmental conditioning of health and disease in adulthood is particularly relevant in the horse, which is bred mainly to perform in demanding sport challenges. On the basis of this concept, the management of the broodmare could be considered an effective means to produce animals with the desired features. Knowledge on the Developmental Origins of Health and Disease in the equine species remains relatively scarce, with some experimental studies and one single epidemiologic study. Data highlight the determinant role of the maternal environment for postnatal body conformation, immune response, energy homeostasis, osteoarticular status and thyroidal, adrenocortical, and cardiovascular functions of the foal. Most research, however, focuses on the first months/years after birth. Long-term effects on the adult horse phenotype have not been investigated so far.
Collapse
Affiliation(s)
- Pauline Peugnet
- UMR 1198 Developmental Biology and Reproduction, French Institute for Agricultural Research (INRA), Jouy-en-Josas, France.
| | - Morgane Robles
- UMR 1198 Developmental Biology and Reproduction, French Institute for Agricultural Research (INRA), Jouy-en-Josas, France
| | - Laurence Wimel
- Experimental farm, French Horse and Riding Institute (IFCE), Chamberet, France
| | - Anne Tarrade
- UMR 1198 Developmental Biology and Reproduction, French Institute for Agricultural Research (INRA), Jouy-en-Josas, France
| | - Pascale Chavatte-Palmer
- UMR 1198 Developmental Biology and Reproduction, French Institute for Agricultural Research (INRA), Jouy-en-Josas, France
| |
Collapse
|
32
|
Peugnet P, Mendoza L, Wimel L, Duchamp G, Dubois C, Reigner F, Caudron I, Deliège B, Toquet MP, Richard E, Chaffaux S, Tarrade A, Lejeune JP, Serteyn D, Chavatte-Palmer P. Longitudinal Study of Growth and Osteoarticular Status in Foals Born to Between-Breed Embryo Transfers. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2015.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Adair P, Kim YC, Pratt KP, Scott DW. Avidity of human T cell receptor engineered CD4(+) T cells drives T-helper differentiation fate. Cell Immunol 2015; 299:30-41. [PMID: 26653006 DOI: 10.1016/j.cellimm.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
The role of the T cell receptor (TCR) in antigen recognition and activation of T lymphocytes is well established. However, how the TCR affects T-helper differentiation/skewing is less well understood, particularly for human CD4(+) (CD4) T cell subsets. Here we investigate the role of TCR specific antigen avidity in differentiation and maintenance of human Th1, Th2 and Th17 subsets. Two human TCRs, both specific for the same peptide antigen but with different avidities, were cloned and expressed in human CD4 T cells. These TCR engineered cells were then stimulated with specific antigen in unskewed and T-helper skewed conditions. We show that TCR avidity can control the percentage of IL-4 and IFN-γ co-expression in unskewed TCR engineered cells, that effector function can be maintained in a TCR avidity-dependent manner in skewed TCR engineered cells, and that increased TCR avidity can accelerate Th1 skewing of TCR engineered cells.
Collapse
Affiliation(s)
- Patrick Adair
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA; Molecular Medicine Program, University of Maryland School of Medicine, Baltimore, MD 20814, USA
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| |
Collapse
|
34
|
Labrecque R, Lodde V, Dieci C, Tessaro I, Luciano AM, Sirard MA. Chromatin remodelling and histone m RNA accumulation in bovine germinal vesicle oocytes. Mol Reprod Dev 2015; 82:450-62. [PMID: 25940597 DOI: 10.1002/mrd.22494] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/14/2015] [Indexed: 01/24/2023]
Abstract
Major remodelling of the chromatin enclosed within the germinal vesicle occurs towards the end of oocyte growth in mammals, but the mechanisms involved in this process are not completely understood. In bovine, four distinct stages of chromatin compaction-ranging from a diffused state (GV0) to a fully compacted configuration (GV3)-are linked to the gradual acquisition of developmental potential. To better understand the molecular events and to identify mRNA modulations occurring in the oocyte during the GV0-to-GV3 transition, transcriptomic analysis was performed with the EmbryoGENE microarray platform. The mRNA abundance of several genes decreased as chromatin compaction increased, which correlates with progressive transcriptional silencing that is characteristic of the end of oocyte growth. On the other hand, the abundance of some transcripts increased during the same period, particularly several histone gene transcripts from the H2A, H2B, H3, H4, and linker H1 family. In silico analysis predicted RNA-protein interactions between specific histone transcripts and the bovine stem-loop binding protein 2 (SLBP2), which helps regulate the translation of histone mRNA during oogenesis. These results suggest that some histone-encoding transcripts are actively stored, possibly to sustain the needs of the embryo before genome activation. This dataset offers a unique opportunity to survey which histone mRNAs are needed to complete chromatin compaction during oocyte maturation and which are stockpiled for the first three cell cycles following fertilization.
Collapse
Affiliation(s)
- R Labrecque
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Québec, Canada
| | - V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - C Dieci
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - I Tessaro
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - M A Sirard
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Québec, Canada
- Department of Animal Sciences, Laval University, Québec, Québec, Canada
| |
Collapse
|
35
|
Tasaki H, Munakata Y, Arai S, Murakami S, Kuwayama T, Iwata H. The Effect of High Glucose Concentration on the Quality of Oocytes Derived from Different Growth Stages of Follicles. ACTA ACUST UNITED AC 2015. [DOI: 10.1274/jmor.32.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Bakhtari A, Rahmani HR, Bonakdar E, Jafarpour F, Asgari V, Hosseini SM, Hajian M, Edriss MA, Nasr-Esfahani MH. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology 2014; 69:419-27. [DOI: 10.1016/j.cryobiol.2014.09.379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/18/2023]
|
37
|
Shirakata Y, Hiradate Y, Inoue H, Sato E, Tanemura K. Histone h4 modification during mouse spermatogenesis. J Reprod Dev 2014; 60:383-7. [PMID: 25087733 PMCID: PMC4219996 DOI: 10.1262/jrd.2014-018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The core histone is composed of four proteins (H2A, H2B, H3 and H4). Investigation of the modification patterns of histones is critical to understanding their roles in biological processes. Although histone modification is observed in multiple cells and tissues, little is known about its function in spermatogenesis. We focused on the modification patterns of histone H4 during murine spermatogenesis. We demonstrated that the individual N-terminal sites of H4 show different modification patterns during the differentiation of male germ cells. The methylation pattern varied depending on the residues that were mono-, di-, or tri-methylated. All the H4 modifications were high during the meiotic prophase, suggesting that histone H4 modification plays an important role during this stage of spermatogenesis. Elongating spermatids showed increased acetylation of histone H4, which may be associated with a histone-to-protamine substitution. Our results provide further insight into the specific relationship between histone H4 modification and gene expression during spermatogenesis, which could help to elucidate the epigenetic disorders underlying male infertility.
Collapse
Affiliation(s)
- Yoshiki Shirakata
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
38
|
Luciano AM, Franciosi F, Dieci C, Lodde V. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim Reprod Sci 2014; 149:3-10. [PMID: 25028181 DOI: 10.1016/j.anireprosci.2014.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/18/2023]
Abstract
The mammalian oocyte nucleus or germinal vesicle (GV) exhibits characteristic chromatin configurations, which are subject to dynamic modifications through oogenesis. Aim of this review is to highlight how changes in chromatin configurations are related to both functional and structural modifications occurring in the oocyte nuclear and cytoplasmic compartments. During the long phase of meiotic arrest at the diplotene stage, the chromatin enclosed within the GV is subjected to several levels of regulation. Morphologically, the chromosomes lose their individuality and form a loose chromatin mass. The decondensed configuration of chromatin then undergoes profound rearrangements during the final stages of oocyte growth that are tightly associated with the acquisition of meiotic and developmental competence. Functionally, the discrete stages of chromatin condensation are characterized by different level of transcriptional activity, DNA methylation and covalent histone modifications. Interestingly, the program of chromatin rearrangement is not completely intrinsic to the oocyte, but follicular cells exert their regulatory actions through gap junction mediated communications and intracellular messenger dependent mechanism(s). With this in mind and since oocyte growth mostly relies on the bidirectional interaction with the follicular cells, a connection between cumulus cells gene expression profile and oocyte developmental competence, according to chromatin configuration is proposed. This analysis can help in identifying candidate genes involved in the process of oocyte developmental competence acquisition and in providing non-invasive biomarkers of oocyte health status that can have important implications in treating human infertility as well as managing breeding schemes in domestic mammals.
Collapse
Affiliation(s)
- Alberto M Luciano
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy.
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| | - Cecilia Dieci
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| |
Collapse
|
39
|
Sato K, Wakai T, Seita Y, Takizawa A, Fissore RA, Ito J, Kashiwazaki N. Molecular characteristics of horse phospholipase C zeta (PLCζ). Anim Sci J 2013; 84:359-68. [PMID: 23590511 DOI: 10.1111/asj.12044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/17/2012] [Indexed: 01/17/2023]
Abstract
A sperm-specific phospholipase C (PLC), PLCzeta (PLCζ), is thought to underlie the initiation of calcium ([Ca(2+) ]i ) oscillations that induce egg activation in mammals. In large domestic species, only bovine, porcine and recently equine PLCζ have been cloned, and the physiological functions of these molecules have not been fully characterized. Here, we evaluated the physiological functions of equine PLCζ (ePLCζ) in mouse oocytes. ePLCζ was cloned from testis using RT-PCR. The expression of ePLCζ messenger RNA was confirmed in testis but not in other tissues. Microinjection of ePLCζ complementary RNA (cRNA) into mouse oocytes induced long-lasting [Ca(2+) ]i oscillations, and most of the injected oocytes formed pronuclei (PN). The injection of cRNAs encoding horse, mouse, human and cow PLCζ into mouse oocytes showed that ePLCζ had the highest [Ca(2+) ]i oscillation-inducing activity among the species tested. Mutation of D202R, which renders the protein inactive, abrogated the activity of ePLCζ. The nuclear translocation ability of ePLCζ was defective when expressed in mouse oocytes. Taken together, our findings show for the first time that ePLCζ has highest activity of the mammalian species studied to date. Our findings will be useful for the improvement of reproductive technologies in the horse.
Collapse
Affiliation(s)
- Kana Sato
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Luciano AM, Lodde V, Franciosi F, Tessaro I, Corbani D, Modina S. Large-scale chromatin morpho-functional changes during mammalian oocyte growth and differentiation. Eur J Histochem 2012; 56:e37. [PMID: 23027353 PMCID: PMC3493983 DOI: 10.4081/ejh.2012.e37] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023] Open
Abstract
Mammalian oocyte development is characterized by impressive changes in chromatin structure and function within the germinal vesicle (GV). These changes are crucial to confer the oocyte with meiotic and developmental competencies. In cow, oocytes collected from early and middle antral follicles present four patterns of chromatin configuration, from GV0 to GV3, and its progressive condensation has been related to the achievement of developmental potential. During oogenesis, follicular cells are essential for the acquisition of meiotic and developmental competencies and communicate with the oocyte by paracrine and gap junction mediated mechanisms. We recently analyzed the role of gap junction communications (GJC) on chromatin remodeling process during the specific phase of folliculogenesis that coincides with the transcriptional silencing and sequential acquisition of meiotic and developmental capabilities. Our studies demonstrated that GJC between germinal and somatic compartments plays a fundamental role in the regulation of chromatin remodeling and transcription activities during the final oocyte differentiation, throughout cAMP dependent mechanism(s).
Collapse
Affiliation(s)
- A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|