1
|
Zhou W, Li X, Li X, Liu Y, Song W, Yang Q. The role of circular RNA in preeclampsia: From pathophysiological mechanism to clinical application. Life Sci 2024; 338:122407. [PMID: 38184270 DOI: 10.1016/j.lfs.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Preeclampsia (PE) is a common pregnancy-induced hypertension disorder that poses a significant threat to the health of pregnant women and fetuses, and has become a leading cause of maternal, fetal, and neonatal mortality. Currently, the therapy strategy for PE is mainly prevention management and symptomatic treatment, and only delivery can completely terminate PE. Therefore, a deeper understanding of the pathogenesis of PE is needed to make treatment and prevention more effective and targeted. With the deepening of molecular etiology research, circular RNAs (circRNAs) have been found to be widely involved in various processes of PE pathogenesis. As a kind of RNA with a special "head to tail" loop structure, the characteristics of circRNAs enable them to play diverse roles in the pathophysiology of PE, and can also serve as ideal biomarkers for early prediction and monitoring progression of PE. In this review, we summarized the latest research on PE-related circRNAs, trying to elucidate the unique or shared roles of circRNAs in various pathophysiological mechanisms of PE, aiming to provide a whole picture of current research on PE-related circRNAs, and extend a new perspective for the precise screening and targeted therapy of PE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China; Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuying Li
- Medical Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xin Li
- Medical College, Jilin Engineering Vocational College, Siping, Jilin, China.
| | - Yaojia Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wenling Song
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Sridar J, Mafi A, Judge RA, Xu J, Kong KA, Wang JCK, Stoll VS, Koukos G, Simon RJ, Eaton D, Bratkowski M, Hao Q. Cryo-EM structure of human PAPP-A2 and mechanism of substrate recognition. Commun Chem 2023; 6:234. [PMID: 37898658 PMCID: PMC10613257 DOI: 10.1038/s42004-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Pregnancy-Associated Plasma Protein A isoforms, PAPP-A and PAPP-A2, are metalloproteases that cleave insulin-like growth factor binding proteins (IGFBPs) to modulate insulin-like growth factor signaling. The structures of homodimeric PAPP-A in complex with IGFBP5 anchor peptide, and inhibitor proteins STC2 and proMBP have been recently reported. Here, we present the single-particle cryo-EM structure of the monomeric, N-terminal LG, MP, and the M1 domains (with the exception of LNR1/2) of human PAPP-A2 to 3.13 Å resolution. Our structure together with functional studies provides insight into a previously reported patient mutation that inactivates PAPP-A2 in a distal region of the protein. Using a combinational approach, we suggest that PAPP-A2 recognizes IGFBP5 in a similar manner as PAPP-A and show that PAPP-A2 cleaves IGFBP5 less efficiently due to differences in the M2 domain. Overall, our studies characterize the cleavage mechanism of IGFBP5 by PAPP-A2 and shed light onto key differences with its paralog PAPP-A.
Collapse
Affiliation(s)
- Janani Sridar
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | | | | | - Jun Xu
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - Kailyn A Kong
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - John C K Wang
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | | | - Georgios Koukos
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - Reyna J Simon
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - Dan Eaton
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | | | - Qi Hao
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.
| |
Collapse
|
3
|
Chiu NF, Tai MJ, Nurrohman DT, Lin TL, Wang YH, Chen CY. Immunoassay-Amplified Responses Using a Functionalized MoS 2-Based SPR Biosensor to Detect PAPP-A2 in Maternal Serum Samples to Screen for Fetal Down's Syndrome. Int J Nanomedicine 2021; 16:2715-2733. [PMID: 33859474 PMCID: PMC8043798 DOI: 10.2147/ijn.s296406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Background Due to educational, social and economic reasons, more and more women are delaying childbirth. However, advanced maternal age is associated with several adverse pregnancy outcomes, and in particular a high risk of Down’s syndrome (DS). Hence, it is increasingly important to be able to detect fetal Down’s syndrome (FDS). Methods We developed an effective, highly sensitive, surface plasmon resonance (SPR) biosensor with biochemically amplified responses using carboxyl-molybdenum disulfide (MoS2) film. The use of carboxylic acid as a surface modifier of MoS2 promoted dispersion and formed specific three-dimensional coordination sites. The carboxylic acid immobilized unmodified antibodies in a way that enhanced the bioaffinity of MoS2 and preserved biorecognition properties of the SPR sensor surface. Complete antigen pregnancy-associated plasma protein-A2 (PAPP-A2) conjugated with the carboxyl-MoS2-modified gold chip to amplify the signal and improve detection sensitivity. This heterostructure interface had a high work function, and thus improved the efficiency of the electric field energy of the surface plasmon. These results provide evidence that the interface electric field improved performance of the SPR biosensor. Results The carboxyl-MoS2-based SPR biosensor was used successfully to evaluate PAPP-A2 level for fetal Down’s syndrome screening in maternal serum samples. The detection limit was 0.05 pg/mL, and the linear working range was 0.1 to 1100 pg/mL. The women with an SPR angle >46.57 m° were more closely associated with fetal Down’s syndrome. Once optimized for serum Down’s syndrome screening, an average recovery of 95.2% and relative standard deviation of 8.5% were obtained. Our findings suggest that carboxyl-MoS2-based SPR technology may have advantages over conventional ELISA in certain situations. Conclusion Carboxyl-MoS2-based SPR biosensors can be used as a new diagnostic technology to respond to the increasing need for fetal Down’s syndrome screening in maternal serum samples. Our results demonstrated that the carboxyl-MoS2-based SPR biosensor was capable of determining PAPP-A2 levels with acceptable accuracy and recovery. We hope that this technology will be investigated in diverse clinical trials and in real case applications for screening and early diagnosis in the future.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Ming-Jung Tai
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan.,Department of Electronics Engineering, State Polytechnic of Cilacap, Cilacap, Indonesia
| | - Ting-Li Lin
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Ying-Hao Wang
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, Taipei City, Taiwan
| |
Collapse
|
4
|
Fujimoto M, Andrew M, Dauber A. Disorders caused by genetic defects associated with GH-dependent genes: PAPPA2 defects. Mol Cell Endocrinol 2020; 518:110967. [PMID: 32739295 PMCID: PMC7609568 DOI: 10.1016/j.mce.2020.110967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH) and its mediator, insulin-like growth factor-1 (IGF-1), have long been recognized as central to human growth physiology. IGF-1 is known to complex with IGF binding proteins as well as with the acid labile subunit (ALS) in order to prolong its half-life in circulation. Factors regulating the bioavailability of IGF-1 (i.e. the balance between free and bound IGF-1) were less well understood. Recently, pregnancy-associated plasma protein-A2 (PAPP-A2) was discovered as a protease which specifically cleaves IGF-binding protein (IGFBP)-3 and -5. PAPP-A2 deficient patients present with characteristic findings including growth failure, elevated total IGF-1 and -2, IGFBPs, and ALS, but decreased percentage of free to total IGF-1. Additionally, patients with PAPP-A2 deficiency have impairments in glucose metabolism and bone mineral density (BMD). Treatment with recombinant human IGF-1 (rhIGF-1) improved height SD scores, growth velocity, body composition, and dysglycemia. Mouse models recapitulate many of the human findings of PAPP-A2 deficiency. This review summarizes the function of PAPP-A2 and its contribution to the GH-IGF axis through an examination of PAPP-A2 deficient patients and mouse models, thereby emphasizing the importance of the regulation of IGF-1 bioavailability in human growth.
Collapse
Affiliation(s)
- Masanobu Fujimoto
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Melissa Andrew
- Division of Endocrinology, Children's National Hospital, Washington, DC, 20010, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
5
|
Neuman RI, Alblas van der Meer MM, Nieboer D, Saleh L, Verdonk K, Kalra B, Kumar A, Alpadi K, van den Meiracker AH, Visser W, Danser AHJ. PAPP-A2 and Inhibin A as Novel Predictors for Pregnancy Complications in Women With Suspected or Confirmed Preeclampsia. J Am Heart Assoc 2020; 9:e018219. [PMID: 32990126 PMCID: PMC7792419 DOI: 10.1161/jaha.120.018219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Background We aimed to evaluate the value of inhibin A and PAPP-A2 (pregnancy-associated plasma protein-A2) as novel biomarkers in the prediction of preeclampsia-related complications and how they compare with angiogenic biomarkers. Methods and Results Making use of a secondary analysis of a prospective, multicenter, observational study, intended to evaluate the usefulness of sFlt-1 (soluble Fms-like tyrosine kinase-1)/PlGF (placental growth factor) ratio, we measured inhibin A and PAPP-A2 levels in 524 women with suspected/confirmed preeclampsia. Women had a median gestational age of 35 weeks (range, 20-41 weeks) while preeclampsia occurred in 170 (32%) women. Levels of inhibin A and PAPP-A2 were significantly increased in women with preeclampsia and in maternal perfusate of preeclamptic placentas. Inhibin A and PAPP-A2 (C-index = 0.73 and 0.75) significantly improved the prediction of maternal complications when added on top of the traditional criteria; gestational age, parity, proteinuria, and diastolic blood pressure (C-index = 0.60). PAPP-A2 was able to improve the C-index from 0.75 to 0.77 when added on top of the sFlt-1/PlGF ratio for the prediction of maternal complications. To discriminate fetal/neonatal complications on top of traditional criteria, inhibin A and PAPP-A2 showed additive value (C-index = 0.79 to 0.80 and 0.82, respectively) but their discriminative ability remained inferior to that of sFlt-1/PlGF ratio or PlGF. Interestingly, the PAPP-A2/PlGF ratio alone showed remarkable value to predict pregnancy complications, being superior to sFlt-1/PlGF ratio in the case of maternal complications. Conclusions Inhibin A and PAPP-A2 show significant potential to predict preeclampsia-related pregnancy complications and might prove beneficial on top of the angiogenic markers.
Collapse
Affiliation(s)
- Rugina I. Neuman
- Department of Internal MedicineDivision of Pharmacology and Vascular MedicineErasmus Medical Center RotterdamThe Netherlands
- Department of Gynecology and ObstetricsErasmus Medical Center RotterdamRotterdamThe Netherlands
| | | | - Daan Nieboer
- Department of Public HealthRotterdamThe Netherlands
| | - Langeza Saleh
- Department of Internal MedicineDivision of Pharmacology and Vascular MedicineErasmus Medical Center RotterdamThe Netherlands
- Department of Gynecology and ObstetricsErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Koen Verdonk
- Department of Internal MedicineDivision of Pharmacology and Vascular MedicineErasmus Medical Center RotterdamThe Netherlands
| | | | | | | | - Anton H. van den Meiracker
- Department of Internal MedicineDivision of Pharmacology and Vascular MedicineErasmus Medical Center RotterdamThe Netherlands
| | - Willy Visser
- Department of Internal MedicineDivision of Pharmacology and Vascular MedicineErasmus Medical Center RotterdamThe Netherlands
- Department of Gynecology and ObstetricsErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - A. H. Jan Danser
- Department of Internal MedicineDivision of Pharmacology and Vascular MedicineErasmus Medical Center RotterdamThe Netherlands
| |
Collapse
|
6
|
Bartell E, Fujimoto M, Khoury JC, Khoury PR, Vedantam S, Astley CM, Hirschhorn JN, Dauber A. Protein QTL analysis of IGF-I and its binding proteins provides insights into growth biology. Hum Mol Genet 2020; 29:2625-2636. [PMID: 32484228 PMCID: PMC7471503 DOI: 10.1093/hmg/ddaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
The growth hormone and insulin-like growth factor (IGF) system is integral to human growth. Genome-wide association studies (GWAS) have identified variants associated with height and located near the genes in this pathway. However, mechanisms underlying these genetic associations are not understood. To investigate the regulation of the genes in this pathway and mechanisms by which regulation could affect growth, we performed GWAS of measured serum protein levels of IGF-I, IGF binding protein-3 (IGFBP-3), pregnancy-associated plasma protein A (PAPP-A2), IGF-II and IGFBP-5 in 838 children (3-18 years) from the Cincinnati Genomic Control Cohort. We identified variants associated with protein levels near IGFBP3 and IGFBP5 genes, which contain multiple signals of association with height and other skeletal growth phenotypes. Surprisingly, variants that associate with protein levels at these two loci do not colocalize with height associations, confirmed through conditional analysis. Rather, the IGFBP3 signal (associated with total IGFBP-3 and IGF-II levels) colocalizes with an association with sitting height ratio (SHR); the IGFBP5 signal (associated with IGFBP-5 levels) colocalizes with birth weight. Indeed, height-associated single nucleotide polymorphisms near genes encoding other proteins in this pathway are not associated with serum levels, possibly excluding PAPP-A2. Mendelian randomization supports a stronger causal relationship of measured serum levels with SHR (for IGFBP-3) and birth weight (for IGFBP-5) than with height. In conclusion, we begin to characterize the genetic regulation of serum levels of IGF-related proteins in childhood. Furthermore, our data strongly suggest the existence of growth-regulating mechanisms acting through IGF-related genes in ways that are not reflected in measured serum levels of the corresponding proteins.
Collapse
Affiliation(s)
- Eric Bartell
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Masanobu Fujimoto
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Yonago, Tottori 683-8504, Japan
| | - Jane C Khoury
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Philip R Khoury
- Heart Institute Research Core, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sailaja Vedantam
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christina M Astley
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joel N Hirschhorn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Dauber
- Division of Endocrinology, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
7
|
Ou Y, Zhu L, Wei X, Bai S, Chen M, Chen H, Zhang J. Circular RNA circ_0111277 attenuates human trophoblast cell invasion and migration by regulating miR-494/HTRA1/Notch-1 signal pathway in pre-eclampsia. Cell Death Dis 2020; 11:479. [PMID: 32587240 PMCID: PMC7316814 DOI: 10.1038/s41419-020-2679-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
Mounting evidence has revealed that impaired spiral artery remodeling, placental dysfunction, and inadequate trophoblast invasion are closely correlated with the etiology and pathogenesis of pre-eclampsia (PE). Moreover, defective trophoblast invasion may trigger poor maternal-fetal circulation and placental hypoxia, leading to PE. However, the detailed molecular pathology of PE remains unclear. Although circRNAs, as a new type of stable and abundant endogenous noncoding RNA, have been proven to be essential to the pathogenesis of various diseases, their role in PE requires further verification. In this context, it is necessary to unveil the roles of circRNAs in regulating the migration and invasion of extravillous trophoblasts. In this study, using quantitative real-time PCR, we confirmed that hsa_circ_0111277 was upregulated in PE placentas relative to the level in normal pregnancy placentas. In addition, positive correlations between hsa_circ_0111277 expression and PE-related factors (proteinuria level at 24 h and placental weight) were identified by Pearson's analysis based on the clinical data of 25 PE patients. Moreover, fluorescence in situ hybridization analysis illustrated that circ_0111277 was preferentially localized within the cytoplasm. Mechanistically, circ_0111277 sponged hsa-miR-494-3p in trophoblast cells to attenuate the latter's repression by regulating HTRA1/Notch-1 expression. In conclusion, trophoblast cell migration and invasion were shown to be promoted and modulated by the hsa_circ_0111277/miR-494-3p/HTRA1/Notch-1 axis, which provides useful insight for exploring a new therapeutic approach for PE.
Collapse
Affiliation(s)
- Yuhua Ou
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Xiangcai Wei
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Shiyu Bai
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Manqi Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
8
|
Fan SY, Chiu NF, Chen CP, Chang CC, Chen CY. Simultaneous Real-Time Detection of Pregnancy-Associated Plasma Protein-A and -A2 Using a Graphene Oxide-Based Surface Plasmon Resonance Biosensor. Int J Nanomedicine 2020; 15:2085-2094. [PMID: 32273704 PMCID: PMC7105368 DOI: 10.2147/ijn.s237938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
Background Pregnancy-associated plasma protein-A and -A2 (PAPP-A and -A2) are principally expressed in placental trophoblasts and play a critical role in the regulation of fetal and placental growth. PAPP-A2 shares 45% amino acid similarity with PAPP-A. This study aimed to investigate the efficacy of real-time detection of PAPP-A and PAPP-A2 using a novel surface plasmon resonance (SPR) biosensor based on graphene oxide (GO). Methods Traditional SPR and GO-based SPR chips were fabricated to measure PAPP-A and PAPP-A2 concentrations. We compared SPR response curves of PAPP-A and PAPP-A2 between traditional SPR and GO-SPR biosensors. We also performed interference tests and specificity analyses among PAPP-A, PAPP-A2, and mixed interference proteins. Results The time to detect PAPP-A and PAPP-A2 was about 150 seconds with both traditional SPR and GO-SPR biosensors. Approximately double SPR angle shifts were noted with the GO-SPR biosensor compared to the traditional SPR biosensor at a PAPP-A and PAPP-A2 concentration of 5 μg/mL. The limit of detection of the GO-SPR biosensor was as low as 0.5 ng/mL for both PAPP-A and PAPP-A2. Interference testing revealed that almost all of the protein bonded on the GO-SPR biosensor with anti-PAPP-A from the mixture of proteins was PAPP-A, and that almost no other proteins were captured except for PAPP-A2. However, the SPR signal of PAPP-A2 (5.75 mdeg) was much smaller than that of PAPP-A (13.76 mdeg). Similar results were noted with anti-PAPP-A2, where almost all of the protein bonded on the GO-SPR biosensor was PAPP-A2. The SPR signal of PAPP-A (5.17 mdeg) was much smaller than that of PAPP-A2 (13.94 mdeg). Conclusion The GO-SPR biosensor could distinguish PAPP-A and PAPP-A2 from various mixed interference proteins with high sensitivity and specificity. It could potentially be used to measure PAPP-A and PAPP-A2 in clinical blood samples during pregnancy.
Collapse
Affiliation(s)
- Shi-Yuan Fan
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Nan-Fu Chiu
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Chen Chang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
9
|
Fujimoto M, Khoury JC, Khoury PR, Kalra B, Kumar A, Sluss P, Oxvig C, Hwa V, Dauber A. Anthropometric and biochemical correlates of PAPP-A2, free IGF-I, and IGFBP-3 in childhood. Eur J Endocrinol 2020; 182:363-374. [PMID: 31961798 PMCID: PMC7238294 DOI: 10.1530/eje-19-0859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Pregnancy-associated plasma protein-A2 (PAPP-A2) is a metalloproteinase that cleaves IGFBP-3 and IGFBP-5. Human mutations in PAPPA2 result in short stature with a low percentage of free IGF-I. Little is known about PAPP-A2 levels and the regulation of free IGF-I throughout childhood. We examined PAPP-A2 and intact IGFBP-3 levels in childhood and explored associations between PAPP-A2, free and total IGF-I, and total and intact IGFBP-3 and their relationship to the percentage of free to total IGF-I and anthropometric factors. DESIGN Cross-sectional study at a single center. METHODS PAPP-A2, free IGF-I, and intact IGFBP-3 levels were measured in childhood (3-18 years old) and an evaluation of the relationship between these proteins and anthropometric factors. RESULTS In 838 children, PAPP-A2 consistently decreased throughout childhood. In contrast, free IGF-I increased. A pubertal peak in free IGF-I was present in females but was less evident in males. Intact and total IGFBP-3 increased throughout childhood; however, intact IGFBP-3 had a more marked rise than total IGFBP-3. Percent free IGF-I decreased with no distinct pubertal peak. PAPP-A2 levels positively correlated with the percent free IGF-I (Male, Female; r = 0.18, 0.38; P < 0.001) and negatively with intact IGFBP-3 (Male, Female; r = -0.58, -0.65; P < 0.0001). CONCLUSIONS This is the first study to describe serum PAPP-A2 and intact IGFBP-3 in children between 3 and 18 years of age. Our correlative findings suggest that PAPP-A2 is an important regulator of the percent free IGF-I which can be a marker of perturbations in the GH/IGF-I axis.
Collapse
Affiliation(s)
- Masanobu Fujimoto
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Jane C Khoury
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Philip R Khoury
- Heart Institute Research Core, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Endocrinology, Children's National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Lamale-Smith LM, Gumina DL, Kramer AW, Browne VA, Toledo-Jaldin L, Julian CG, Winn VD, Moore LG. Uteroplacental Ischemia Is Associated with Increased PAPP-A2. Reprod Sci 2020; 27:529-536. [PMID: 31994005 DOI: 10.1007/s43032-019-00050-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/22/2019] [Indexed: 11/29/2022]
Abstract
Residence at high altitude (> 2500 m) has been associated with an increased frequency of preeclampsia. Pappalysin-2 (PAPP-A2) is an insulin-like growth factor binding protein-5 (IGFBP-5) protease that is elevated in preeclampsia, and up-regulated by hypoxia in placental explants. The relationships between PAPP-A2, altitude, and indices of uteroplacental ischemia are unknown. We aimed to evaluate the association of altitude, preeclampsia, and uterine artery flow or vascular resistance with PAPP-A2 levels. PAPP-A2, uterine artery diameter, volumetric blood flow, and pulsatility indices were measured longitudinally in normotensive Andean women residing at low or high altitudes in Bolivia and in a separate Andean high-altitude cohort with or without preeclampsia. PAPP-A2 levels increased with advancing gestation, with the rise tending to be greater at high compared to low altitude, and higher in early-onset preeclamptic compared to normotensive women at high altitude. Uterine artery blood flow was markedly lower and pulsatility index higher in early-onset preeclamptic normotensive women compared to normotensive women. PAPP-A2 was unrelated to uterine artery pulsatility index in normotensive women but positively correlated in the early-onset preeclampsia cases. We concluded that PAPP-A2 is elevated at high altitude and especially in cases of early-onset preeclampsia with Doppler indices of uteroplacental ischemia.
Collapse
Affiliation(s)
- Leah M Lamale-Smith
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, San Diego, CA, USA.
| | - Diane L Gumina
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Anita W Kramer
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Vaughn A Browne
- Department of Emergency Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Colleen G Julian
- Department of Medicine, University of Colorado, Denver, Aurora, CO, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
11
|
Lloyd KA, Parsons BN, Burkitt MD, Moore AR, Papoutsopoulou S, Boyce M, Duckworth CA, Exarchou K, Howes N, Rainbow L, Fang Y, Oxvig C, Dodd S, Varro A, Hall N, Pritchard DM. Netazepide Inhibits Expression of Pappalysin 2 in Type 1 Gastric Neuroendocrine Tumors. Cell Mol Gastroenterol Hepatol 2020; 10:113-132. [PMID: 32004755 PMCID: PMC7215182 DOI: 10.1016/j.jcmgh.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS In patients with autoimmune atrophic gastritis and achlorhydria, hypergastrinemia is associated with the development of type 1 gastric neuroendocrine tumors (gNETs). Twelve months of treatment with netazepide (YF476), an antagonist of the cholecystokinin B receptor (CCKBR or CCK2R), eradicated some type 1 gNETs in patients. We investigated the mechanisms by which netazepide induced gNET regression using gene expression profiling. METHODS We obtained serum samples and gastric corpus biopsy specimens from 8 patients with hypergastrinemia and type 1 gNETs enrolled in a phase 2 trial of netazepide. Control samples were obtained from 10 patients without gastric cancer. We used amplified and biotinylated sense-strand DNA targets from total RNA and Affymetrix (Thermofisher Scientific, UK) Human Gene 2.0 ST microarrays to identify differentially expressed genes in stomach tissues from patients with type 1 gNETs before, during, and after netazepide treatment. Findings were validated in a human AGSGR gastric adenocarcinoma cell line that stably expresses human CCK2R, primary mouse gastroids, transgenic hypergastrinemic INS-GAS mice, and patient samples. RESULTS Levels of pappalysin 2 (PAPPA2) messenger RNA were reduced significantly in gNET tissues from patients receiving netazepide therapy compared with tissues collected before therapy. PAPPA2 is a metalloproteinase that increases the bioavailability of insulin-like growth factor (IGF) by cleaving IGF binding proteins (IGFBPs). PAPPA2 expression was increased in the gastric corpus of patients with type 1 gNETs, and immunohistochemistry showed localization in the same vicinity as CCK2R-expressing enterochromaffin-like cells. Up-regulation of PAPPA2 also was found in the stomachs of INS-GAS mice. Gastrin increased PAPPA2 expression with time and in a dose-dependent manner in gastric AGSGR cells and mouse gastroids by activating CCK2R. Knockdown of PAPPA2 in AGSGR cells with small interfering RNAs significantly decreased their migratory response and tissue remodeling in response to gastrin. Gastrin altered the expression and cleavage of IGFBP3 and IGFBP5. CONCLUSIONS In an analysis of human gNETS and mice, we found that gastrin up-regulates the expression of gastric PAPPA2. Increased PAPPA2 alters IGF bioavailability, cell migration, and tissue remodeling, which are involved in type 1 gNET development. These effects are inhibited by netazepide.
Collapse
Affiliation(s)
- Katie A Lloyd
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bryony N Parsons
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R Moore
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Stamatia Papoutsopoulou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm Boyce
- Trio Medicines, Ltd, Hammersmith Medicines Research, London, United Kingdom
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Klaire Exarchou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Nathan Howes
- Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Lucille Rainbow
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Steven Dodd
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Neil Hall
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; The Earlham Institute, Norwich, Norfolk, United Kingdom; School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom.
| |
Collapse
|
12
|
Dereke J, Nilsson C, Strevens H, Landin-Olsson M, Hillman M. Pregnancy-associated plasma protein-A2 levels are increased in early-pregnancy gestational diabetes: a novel biomarker for early risk estimation. Diabet Med 2020; 37:131-137. [PMID: 31340069 DOI: 10.1111/dme.14088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 01/13/2023]
Abstract
AIM To determine whether pregnancy-associated plasma protein-A2 levels are increased in early pregnancies complicated by gestational diabetes and whether gestation age influences levels. The possible use of pregnancy-associated plasma protein-A2 as a pre-screening biomarker to reduce the need for performing oral glucose tolerance tests in pregnant women was also investigated. METHODS Pregnant women were diagnosed with gestational diabetes in early pregnancy after a 2-hour 75 g oral glucose tolerance test in the catchment area of Skåne University Hospital, Lund, Sweden during 2011-2015 (n = 99). Age- and BMI-matched pregnant women without diabetes were recruited at similar gestational ages from maternal healthcare centres in the same geographical area during 2014-2015 to act as controls (n = 100). Circulating pregnancy-associated plasma protein-A2 was analysed in participant serum using commercially available enzyme-linked immunosorbent assay kits. RESULTS Circulating pregnancy-associated plasma protein-A2 was increased in women diagnosed with gestational diabetes [13.5 (9.58-18.8) ng/ml] compared with controls [8.11 (5.74-11.3) ng/ml; P < 0.001]. Pregnancy-associated plasma protein-A2 was associated with gestational diabetes independent of age, BMI, C-peptide and adiponectin (P < 0.001). Pregnancy-associated plasma protein-A2 as a pre-screening biomarker to identify women at a decreased risk of gestational diabetes resulted in a negative predictive value of 99.7%, with a sensitivity of 96% and a specificity of 30% at a cut-off level of 6 ng/ml. CONCLUSIONS This is the first study to show increased pregnancy-associated plasma protein-A2 levels in gestational diabetes. Pregnancy-associated plasma protein-A2 also shows promise as a pre-screening biomarker with the potential to reduce the need for performing oral glucose tolerance tests in early pregnancy. Future prospective cohort studies in a larger group of both high- and low-risk women are, however, needed to further confirm this observation.
Collapse
Affiliation(s)
- J Dereke
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Diabetes Research Laboratory, Lund, Sweden
| | - C Nilsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Diabetes Research Laboratory, Lund, Sweden
- Department of Paediatrics, Helsingborg Hospital, Helsingborg, Sweden
| | - H Strevens
- Department of Obstetrics, Skåne University Hospital Lund, Lund, Sweden
| | - M Landin-Olsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Diabetes Research Laboratory, Lund, Sweden
- Department of Endocrinology, Skåne University Hospital Lund, Lund, Sweden
| | - M Hillman
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Diabetes Research Laboratory, Lund, Sweden
| |
Collapse
|
13
|
Hjortebjerg R, Espelund U, Rasmussen TR, Folkersen B, Steiniche T, Georgsen JB, Oxvig C, Frystyk J. Pregnancy-Associated Plasma Protein-A2 Is Associated With Mortality in Patients With Lung Cancer. Front Endocrinol (Lausanne) 2020; 11:614. [PMID: 32982990 PMCID: PMC7492290 DOI: 10.3389/fendo.2020.00614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) and its homolog PAPP-A2 are enzymes that modulate the availability and mitogenic activity of insulin-like growth factor-I (IGF-I). PAPP-A has been implicated in numerous cancers but reports on PAPP-A2 in malignancy are non-existent. In a prospective observational study of 689 patients under suspicion of lung cancer, we examined levels of PAPP-A and PAPP-A2 and their relationship with mortality. Serum PAPP-A and PAPP-A2 concentrations were determined in pre-diagnostic blood samples using ELISA, and immunohistochemical staining of PAPP-A and PAPP-A2 was performed in malignant tissue from five operable patients. A total of 144 patients were diagnosed with lung cancer, whereas the diagnosis was rejected in 545 subjects, who served as a control group. PAPP-A2 concentrations were higher in patients with lung cancer [median (IQR): 0.33 (0.21-0.56) ng/mL] than in controls [0.27 (0.17-0.39) ng/mL], p < 0.001, whereas PAPP-A levels did not differ. Presence of PAPP-A and PAPP-A2 were confirmed in tumor specimens, and staining occurred in a heterogeneous pattern. Patients were observed for a median (range) of 7 (6; 8) years, during which 114 patients (79.2%) died. Patient mortality differed according to PAPP-A2 tertile (p < 0.001). PAPP-A2 was associated with mortality with an unadjusted hazard ratio (95% CI) per doubling in protein concentration of 1.30 (1.12; 1.53), p = 0.001. In a multivariable model adjusted for age, sex, and BMI, PAPP-A2 remained predictive of the endpoint with a hazard ratio per doubling in protein concentration of 1.25 (1.05; 1.48), p = 0.013. Collectively, PAPP-A2, but not PAPP-A, is elevated in patients with lung cancer and associated with mortality. This novel role of PAPP-A2 in cancer warrants further functional studies as well as validation in external cohorts.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Endocrinology (KMEB), University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- *Correspondence: Rikke Hjortebjerg
| | - Ulrick Espelund
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Birgitte Folkersen
- Department of Pulmonary Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Frystyk
- Department of Molecular Endocrinology (KMEB), University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
14
|
Chiu NF, Tai MJ, Wu HP, Lin TL, Chen CY. Development of a bioaffinity SPR immunosensor based on functionalized graphene oxide for the detection of pregnancy-associated plasma protein A2 in human plasma. Int J Nanomedicine 2019; 14:6735-6748. [PMID: 31686806 PMCID: PMC6709825 DOI: 10.2147/ijn.s213653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background Graphene-like material such as functionalized carboxyl-graphene oxide (carboxyl-GO) can be intelligently tuned to achieve particular properties for biological and chemical sensing applications. Methods In this study, we propose a method to improve interference of non-specific proteins for use in human plasma assays. The highly specific interactions between molecules are an advantage of carboxyl-GO-based surface plasmon resonance (SPR) immunoassays, and this can be applied to spiked plasma samples with pregnancy-associated plasma protein A2 (PAPPA2). Results The experiment results showed that carboxyl-GO could be used to modulate the plasmon resonance energy, work function and conductivity properties. In addition, carboxyl groups could be used to enhance the conduction of electrons between carboxyl-GO and Au electrodes due to the excellent conductivity and electron transfer rate. The carboxyl-GO-based SPR chip exhibited high sensitivity based on the electric field amplification effects of the composite dielectric material. Therefore, the surface electric field could be enhanced by electron transfer, thereby greatly improving the sensitivity of the sensing system. Enhanced electric field intensity was generated around the carboxyl-GO of 63.58 V/m, and the measured work function was 4.95 eV. The results showed that the carboxyl-GO-based SPR biosensor had high sensitivity, affinity and selective ability for PAPPA2 protein with a high association rate constant (ka) of 3.1 ×109 M-1 S-1 and a limit of detection of 0.01 pg/mL in spiked human plasma. Conclusion The results showed a detection accuracy of protein in spiked plasma of >90% compared to PBS buffer, suggesting that the carboxyl-GO-based SPR biosensor could be used in assays of human plasma for early and late gynecological diseases. The future of this technology will be useful for the diagnosis and evaluation of the risk of early maternal preeclampsia and potentially in clinical applications for gestational diseases.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ming-Jung Tai
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hwai-Ping Wu
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ting-Li Lin
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City 10449, Taiwan.,Department of Medicine, Mackay Medical College, Taipei 25245, Taiwan
| |
Collapse
|
15
|
The potential role of pregnancy-associated plasma protein-A2 in angiogenesis and development of preeclampsia. Hypertens Res 2019; 42:970-980. [DOI: 10.1038/s41440-019-0224-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
16
|
Sun X, Qu T, He X, Yang X, Guo N, Mao Y, Xu X, Sun X, Zhang X, Wang W. Screening of differentially expressed proteins from syncytiotrophoblast for severe early-onset preeclampsia in women with gestational diabetes mellitus using tandem mass tag quantitative proteomics. BMC Pregnancy Childbirth 2018; 18:437. [PMID: 30404616 PMCID: PMC6223002 DOI: 10.1186/s12884-018-2066-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have revealed that women with gestational diabetes mellitus (GDM) have an increased risk of developing preeclampsia (PE). The possible reason is the abnormal lipid metabolism caused by GDM that leads to dysfunction of vascular endothelial cells and atherosclerosis, resulting in the onset of PE. However, studies focusing on the pathogenesis of PE in syncytiotrophoblast of GDM patients are lacking. This study aimed to compare differentially expressed proteins from syncytiotrophoblast between women with GDM and women with GDM with subsequently developed PE. METHODS Syncytiotrophoblast samples were obtained from pregnant women immediately after delivery. To explore the protein expression changes of syncytiotrophoblast that might explain the pathogenesis of PE in women with GDM, quantitative proteomics was performed using tandem mass tag (TMT) isobaric tags and liquid chromatography-tandem mass spectrometry. Bioinformatics analysis was performed to enrich the biological processes that these differentially expressed proteins were involved in. RESULTS A total of 28,234 unique peptides and 4140 proteins were identified in all samples. Among them, 23 differentially expressed proteins were identified between patients with GDM and patients with GDM with subsequently developed PE. Therein, 11 proteins were upregulated and 12 proteins were downregulated. Two relative proteins (FLT1 and PABPC4) were independently verified using immunoblotting analysis. Bioinformatic results indicated that the onset of PE in patients with GDM is a multifactorial disorder, involving factors such as apoptosis, transcriptional misregulation, oxidative stress, lipid metabolism, cell infiltration and migration, and angiogenesis. CONCLUSION These results indicated that the inadequacy of endometrium infiltration, angiogenic disorder, and oxidative stress in syncytiotrophoblast are more likely to occur in patients with GDM and may be the potential mechanisms leading to such patients secondarily developing severe early-onset PE.
Collapse
Affiliation(s)
- Xiaotong Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Tao Qu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, China
| | - Xiyan He
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Xueping Yang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Nan Guo
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Mao
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Xianghong Xu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuehong Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Weihua Wang
- Houston Fertility Laboratory, Houston, TX USA
| |
Collapse
|
17
|
Dauber A, Muñoz-Calvo MT, Barrios V, Domené HM, Kloverpris S, Serra-Juhé C, Desikan V, Pozo J, Muzumdar R, Martos-Moreno GÁ, Hawkins F, Jasper HG, Conover CA, Frystyk J, Yakar S, Hwa V, Chowen JA, Oxvig C, Rosenfeld RG, Pérez-Jurado LA, Argente J. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol Med 2017; 8:363-74. [PMID: 26902202 PMCID: PMC4818753 DOI: 10.15252/emmm.201506106] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations in multiple genes of the growth hormone/IGF‐I axis have been identified in syndromes marked by growth failure. However, no pathogenic human mutations have been reported in the six high‐affinity IGF‐binding proteins (IGFBPs) or their regulators, such as the metalloproteinase pregnancy‐associated plasma protein A2 (PAPP‐A2) that is hypothesized to increase IGF‐I bioactivity by specific proteolytic cleavage of IGFBP‐3 and ‐5. Multiple members of two unrelated families presented with progressive growth failure, moderate microcephaly, thin long bones, mildly decreased bone density and elevated circulating total IGF‐I, IGFBP‐3, and ‐5, acid labile subunit, and IGF‐II concentrations. Two different homozygous mutations in PAPPA2, p.D643fs25* and p.Ala1033Val, were associated with this novel syndrome of growth failure. In vitro analysis of IGFBP cleavage demonstrated that both mutations cause a complete absence of PAPP‐A2 proteolytic activity. Size‐exclusion chromatography showed a significant increase in IGF‐I bound in its ternary complex. Free IGF‐I concentrations were decreased. These patients provide important insights into the regulation of longitudinal growth in humans, documenting the critical role of PAPP‐A2 in releasing IGF‐I from its BPs.
Collapse
Affiliation(s)
- Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - María T Muñoz-Calvo
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús Instituto de Investigación La Princesa Universidad Autónoma de Madrid, Madrid, Spain Program of Pediatric Obesity, CIBEROBN Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús Instituto de Investigación La Princesa Universidad Autónoma de Madrid, Madrid, Spain Program of Pediatric Obesity, CIBEROBN Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Soren Kloverpris
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Clara Serra-Juhé
- Genetics Unit, Universitat Pompeu Fabra Hospital del Mar Research Institute (IMIM) & CIBERER. Instituto de Salud Carlos III, Barcelona, Spain
| | - Vardhini Desikan
- Department of Pediatrics, Division of Pediatric Endocrinology, New York Medical College, Valhalla NY, USA
| | - Jesús Pozo
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús Instituto de Investigación La Princesa Universidad Autónoma de Madrid, Madrid, Spain Program of Pediatric Obesity, CIBEROBN Instituto de Salud Carlos III, Madrid, Spain
| | - Radhika Muzumdar
- Division of Endocrinology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriel Á Martos-Moreno
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús Instituto de Investigación La Princesa Universidad Autónoma de Madrid, Madrid, Spain Program of Pediatric Obesity, CIBEROBN Instituto de Salud Carlos III, Madrid, Spain
| | - Federico Hawkins
- Department of Endocrinology, Hospital Universitario 12 de Octubre Universidad Complutense de Madrid, Madrid, Spain
| | - Héctor G Jasper
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Julie A Chowen
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús Instituto de Investigación La Princesa Universidad Autónoma de Madrid, Madrid, Spain Program of Pediatric Obesity, CIBEROBN Instituto de Salud Carlos III, Madrid, Spain
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ron G Rosenfeld
- Oregon Health and Science University, Portland, OR, USA STAT5 LLC, Los Altos, CA, USA
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra Hospital del Mar Research Institute (IMIM) & CIBERER. Instituto de Salud Carlos III, Barcelona, Spain
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús Instituto de Investigación La Princesa Universidad Autónoma de Madrid, Madrid, Spain Program of Pediatric Obesity, CIBEROBN Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Steinbrecher A, Janke J, Poy MN, Oxvig C, Pischon T. Pregnancy-Associated Plasma Protein-A2 and Anthropometry, Lifestyle, and Biochemical Factors in a Human Adult Population. Sci Rep 2017; 7:10455. [PMID: 28874827 PMCID: PMC5585218 DOI: 10.1038/s41598-017-10629-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/10/2017] [Indexed: 01/31/2023] Open
Abstract
Pregnancy-associated plasma protein-A2 (PAPP-A2), a metalloproteinase purportedly related to pregnancy, foetal growth and development, has recently been described essential for pre-adult growth. Thus, we measured PAPP-A2 in plasma of a non-pregnant population and determined its associations with lifestyle, anthropometric or biochemical factors. In this cross-sectional study of 387 participants (20-70 years) randomly drawn from registration offices near Berlin, Germany, socio-economic and lifestyle factors were assessed by questionnaires, and anthropometric measures and blood samples were taken by trained personnel. Blood was analysed for standard clinical parameters. PAPP-A2 concentration was measured by ELISA. Generalized linear models were used to estimate associations with anthropometric and biochemical factors adjusted for age, sex, and weight. Adjusted mean PAPP-A2 concentration was slightly higher in women (283 pg/mL) than in men (261 pg/mL, p = 0.05) and positively correlated with age (r = 0.17, p = 0.001). PAPP-A2 concentration was inversely associated with body mass index (-2.7 pg/mL per kg/m2, p = 0.03) and weight (-1.0 pg/mL per kg, p = 0.01) and positively associated with γ-glutamyl transferase (13.6 pg/mL per SD, p = 0.02), aspartate transaminase (18.5 pg/mL per SD, p = 0.002) and lactate dehydrogenase (14.9 pg/mL per SD, p = 0.02). Our results support that PAPP-A2, beyond its established role in early growth and development is relevant in adult metabolisms.
Collapse
Affiliation(s)
- Astrid Steinbrecher
- Molecular Epidemiology Group, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Jürgen Janke
- Molecular Epidemiology Group, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Matthew N Poy
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Tobias Pischon
- Molecular Epidemiology Group, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany.,MDC/BIH Biobank, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| |
Collapse
|
19
|
Kalousová M, Dusilová-Sulková S, Kuběna AA, Zakiyanov O, Levová K, Bocková M, Gedeonová E, Song XC, Ermini ML, Špringer T, Homola J, Tesař V, Zima T. Pregnancy-Associated Plasma Protein A2 in Hemodialysis Patients: Significance for Prognosis. Kidney Blood Press Res 2017; 42:509-518. [PMID: 28854436 DOI: 10.1159/000479847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pregnancy-associated plasma protein A (PAPP-A) is associated with adverse outcome of long-term hemodialysis patients (HD). The aim of the study was to test whether its homolog pregnancy-associated plasma protein A2 (PAPP-A2) can be detected in serum of HD patients and to define its significance. METHODS The studied group consisted of 102 long-term HD patients and 25 healthy controls. HD patients were prospectively followed up for five years (2009-2014). PAPP-A2 was measured by surface plasmon resonance biosensor, PAPP-A by time resolved amplified cryptate emission. RESULTS PAPP-A2, similarly as PAPP-A, was significantly increased in HD patients (median (interquartile range)) PAPP-A2: 6.2 (2.6-10.8) ng/mL, vs. 3.0 (0.7-5.9) ng/mL, p=0.006; PAPP-A: 18.9 (14.3-23.4) mIU/L, vs. 9.5 (8.4-10.5) mIU/L, p<0.001). In HD patients, PAPP-A2 correlated weakly but significantly with PAPP-A (τ=0.193, p=0.004). Unlike PAPP-A, PAPP-A2 was not significant for prognosis of HD patients when tested alone. There was a significant interaction between PAPP-A and PAPP-A2 on the mortality due to infection of HD patients (p=0.008). If PAPP-A was below median, mortality due to infection was significantly higher for patients with PAPP-A2 values above median than for patients with low PAPP-A2 levels (p=0.011). CONCLUSION PAPP-A2 is increased in HD patients and interacts with PAPP-A on patients´ prognosis.
Collapse
Affiliation(s)
- Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Aleš A Kuběna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Oskar Zakiyanov
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kateřina Levová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Markéta Bocková
- Institute of Photonics and Electronics of the CAS, Prague, Czech Republic
| | - Erika Gedeonová
- Institute of Photonics and Electronics of the CAS, Prague, Czech Republic
| | - Xue Chadtová Song
- Institute of Photonics and Electronics of the CAS, Prague, Czech Republic
| | - Maria Laura Ermini
- Institute of Photonics and Electronics of the CAS, Prague, Czech Republic
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the CAS, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics of the CAS, Prague, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
20
|
Hansen YB, Myrhøj V, Jørgensen FS, Oxvig C, Sørensen S. First trimester PAPP-A2, PAPP-A and hCGβ in small-for-gestational-age pregnancies. Clin Chem Lab Med 2016; 54:117-23. [PMID: 26544105 DOI: 10.1515/cclm-2015-0230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/04/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pregnancy-associated plasma protein-A2 (PAPP-A2) is a recently discovered protease that cleaves a subset of insulin-like growth factor binding proteins (IGFBP). The molecular function suggests its involvement in the IGF system that is vital for fetal growth and development. Our objectives were to establish first trimester median curves of PAPP-A2, PAPP-A and hCGβ for singleton normal pregnancies and to investigate whether an altered level of one or more of the biomarkers is associated with small-for-gestational-age (SGA) neonates before and after stratification according to maternal hypertension and/or proteinuria. METHODS This was a case-control study based on 985 pregnant women delivering normal-weighted neonates and 170 pregnant women delivering SGA neonates. PAPP-A2 was measured by ELISA. PAPP-A and hCGβ were measured by an automatic analyzer. Median curves from 8+1 to 14+0 were established and all concentration values were converted to multiples of the median (MoM) values. RESULTS Before stratification the SGA cases had unaffected PAPP-A2 MoM and hCGβ MoM levels but lower PAPP-A MoM compared with normal controls. After stratification the SGA normotensive subgroup had lower PAPP-A2 MoM and PAPP-A MoM levels than the normal normotensive subgroup. Severe preeclamptic women delivering SGA neonates had higher PAPP-A2 MoM compared to the normotensive women delivering SGA neonates. CONCLUSIONS Pregnant women delivering SGA neonates did not have altered levels of PAPP-A2 or hCGβ but had lower PAPP-A level in the first trimester compared with pregnant women delivering normal-weighted neonates. Pregnancies complicated with severe preeclampsia and SGA may be associated with high PAPP-A2 level.
Collapse
|
21
|
Bocková M, Chadtová Song X, Gedeonová E, Levová K, Kalousová M, Zima T, Homola J. Surface plasmon resonance biosensor for detection of pregnancy associated plasma protein A2 in clinical samples. Anal Bioanal Chem 2016; 408:7265-9. [DOI: 10.1007/s00216-016-9664-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/21/2016] [Accepted: 05/23/2016] [Indexed: 11/29/2022]
|
22
|
Kramer AW, Lamale-Smith LM, Winn VD. Differential expression of human placental PAPP-A2 over gestation and in preeclampsia. Placenta 2015; 37:19-25. [PMID: 26748159 DOI: 10.1016/j.placenta.2015.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/09/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pregnancy Associated Plasma Protein A2 (PAPP-A2) is a pregnancy related insulin-like growth factor binding protein-5 (IGFBP-5) protease, known to be elevated in preeclampsia. As the insulin-like growth factors are important in human implantation and placentation, we sought to determine the expression pattern of PAPP-A2 over human gestation in normal and preeclamptic pregnancies to evaluate its role in placental development and the pathogenesis of preeclampsia. METHODS Placental basal plate and chorionic villi samples, maternal and fetal cord blood sera were obtained from preeclamptic and control pregnancies. Formalin-fixed tissue sections from across gestation were stained for cytokeratin-7, HLA-G, and PAPP-A2. PAPP-A2 immunoblot analysis was also performed on protein lysates and sera. RESULTS PAPP-A2 expression is predominately expressed by differentiated trophoblasts and fetal endothelium. Chorionic villi show strong expression in the first trimester, followed by a progressive decrease in the second trimester, which returns in the third trimester. PAPP-A2 expression is not impacted by labor. PAPP-A2 is increased in the basal plate, chorionic villi and maternal sera in preeclampsia compared to controls, but is not detectable in cord blood. DISCUSSION PAPP-A2 is differentially expressed in different trophoblast populations and shows strong down regulation in the mid second trimester in chorionic villous samples. Both maternal sera and placental tissue from pregnancies complicated by preeclampsia show increased levels of PAPP-A2. PAPP-A2 levels are not altered by labor. Additionally, PAPP-A2 cannot be detected in cord blood demonstrating that the alterations in maternal and placental PAPP-A2 are not recapitulated in the fetal circulation.
Collapse
Affiliation(s)
- Anita W Kramer
- University of Colorado School of Medicine, Department of Obstetrics and Gynecology, 12631 E. 17th Avenue, Aurora, CO, USA.
| | - Leah M Lamale-Smith
- University of Colorado School of Medicine, Department of Obstetrics and Gynecology, 12631 E. 17th Avenue, Aurora, CO, USA.
| | - Virginia D Winn
- University of Colorado School of Medicine, Department of Obstetrics and Gynecology, 12631 E. 17th Avenue, Aurora, CO, USA.
| |
Collapse
|
23
|
Norman JE, Tong S. MHR welcomes high-quality basic reproductive research around pregnancy. Mol Hum Reprod 2014; 19:709-10. [PMID: 24184807 DOI: 10.1093/molehr/gat072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J E Norman
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, Queen's Medical Research Centre, University of Edinburgh, Edinburgh EH16 4TY, UK
| | | |
Collapse
|