1
|
Li D, Yuan G, Wang X, Zhuang J, Wang L, Liu Y, Liu X, Han L, Dou H, Li B, Hao C. Three Novel Mutations in TUBB8 Cause Female Infertility Due to Multiple Morphological Abnormalities of the Oocyte and Early Embryo. Reprod Sci 2025:10.1007/s43032-025-01844-4. [PMID: 40246784 DOI: 10.1007/s43032-025-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
Recent years have seen a global increase in infertility, affecting up to 17.5% of the population. For successful human reproduction, the proper development process of the oocyte, fertilization, and early embryo is required. Assisted reproductive technology (ART), which is the primary treatment for infertility, uses the morphology of oocytes and zygotes as parameters to predict ART outcomes. However, factors such as large perivitelline space (PVS), centrally located granular cytoplasm (CLGC), multi-pronuclei (MPN) formation, and final early embryonic development arrest often lead to repeated failure of ART treatment. Genetic analysis has identified various pathogenic genetic factors contributing to infertility, suggesting that genetic variation plays a significant role in recurrent ART treatment failure. However, maternal genes responsible for large PVS, CLGC, and MPN formation are rarely reported. In this study involving Whole Exome Sequencing (WES) and Sanger sequencing validation, three novel heterozygous missense mutations (p.M403V, p.R306H, p.H190Y) in TUBB8 were identified as being associated with large PVS, CLGC, MPN formation, and early embryonic development arrest. These mutant sites are evolutionarily conserved in different species. Additionally, in silico and in vitro experiments demonstrate that these variants disrupt the conformation, expression, and microtubule structures of the TUBB8 protein. Therefore, these findings contribute significantly to understanding TUBB8-related large PVS, CLGC, and MPN formation in the context of ARTs. This broadens our insight into the genetic connection in human reproduction and emphasizes the importance of comprehensive genetic screening and personalized intervention strategies for PVS, CLGC, and MPN formation.
Collapse
Affiliation(s)
- Duan Li
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guanghui Yuan
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Xiaoxiao Wang
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Jiao Zhuang
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Lie Wang
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Yingxue Liu
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Xiaowen Liu
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Linfang Han
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China.
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China.
- College of Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| | - Cuifang Hao
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China.
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China.
- College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Zhao X, Rong B, Dou Z, Dong R, Jiang N, Chen M, Feng W, Li H, Xia T. Kai Yu Zhong Yu recipe mitigates stress-induced accelerated follicle loss in mice by regulating the interplay between apoptosis and autophagy via the SIRT1/FOXO1/3 pathway. PHYTOMEDICINE PLUS 2024; 4:100623. [DOI: 10.1016/j.phyplu.2024.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
3
|
Wahl F, Huo J, Du S, Schoen J, Chen S. Maternal stress and the early embryonic microenvironment: investigating long-term cortisol effects on bovine oviductal epithelial cells using air-liquid interface culture. J Anim Sci Biotechnol 2024; 15:129. [PMID: 39358766 PMCID: PMC11447938 DOI: 10.1186/s40104-024-01087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/04/2024] [Indexed: 10/04/2024] Open
Abstract
The oviduct epithelium is the initial maternal contact site for embryos after fertilization, offering the microenvironment before implantation. This early gestation period is particularly sensitive to stress, which can cause reduced fertility and reproductive disorders in mammals. Nevertheless, the local impact of elevated stress hormones on the oviduct epithelium has received limited attention to date, except for a few reports on polyovulatory species like mice and pigs. In this study, we focused on the effects of chronic maternal stress on cattle, given its association with infertility issues in this monoovulatory species. Bovine oviduct epithelial cells (BOEC) differentiated at the air-liquid interface (ALI) were stimulated with 250 nmol/L cortisol for 1 or 3 weeks. Subsequently, they were assessed for morphology, bioelectrical properties, and gene expression related to oviduct function, glucocorticoid pathway, cortisol metabolism, inflammation, and apoptosis. Results revealed adverse effects of cortisol on epithelium structure, featured by deciliation, vacuole formation, and multilayering. Additionally, cortisol exposure led to an increase in transepithelial potential difference, downregulated mRNA expression of the major glucocorticoid receptor (NR3C1), upregulated the expression of cortisol-responsive genes (FKBP5, TSC22D3), and significant downregulation of oviductal glycoprotein 1 (OVGP1) and steroid receptors PGR and ESR1. The systematic comparison to a similar experiment previously performed by us in porcine oviduct epithelial cells, indicated that bovine cultures were more susceptible to elevated cortisol levels than porcine. The distinct responses between both species are likely linked to their divergence in the cortisol-induced expression changes of HSD11B2, an enzyme controlling the cellular capacity to metabolise cortisol. These findings provide insights into the species-specific reactions and reproductive consequences triggered by maternal stress.
Collapse
Affiliation(s)
- Fiona Wahl
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Jianchao Huo
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Shuaizhi Du
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jennifer Schoen
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
- Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Shuai Chen
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
4
|
Yang YQ, Zhang M, Hua Q, Ma RJ, Wang XY, Yuan HJ, Luo MJ, Tan JH. Role and action mechanisms of tPA in CRH-induced apoptosis of mouse oviductal epithelial and mural granulosa cells. J Reprod Dev 2024; 70:238-246. [PMID: 38910127 PMCID: PMC11310383 DOI: 10.1262/jrd.2024-028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.
Collapse
Affiliation(s)
- Yong-Qing Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Qi Hua
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Rui-Jie Ma
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Xiao-Yan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
5
|
Hua Q, Cheng H, Yang YQ, An JS, Zhang M, Gong S, Luo MJ, Tan JH. Role of tPA in Corticosterone-Induced Apoptosis of Mouse Mural Granulosa and Oviductal Epithelial Cells. Cells 2023; 12:cells12030455. [PMID: 36766799 PMCID: PMC9914103 DOI: 10.3390/cells12030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Although studies indicate that female stress-increased secretion of glucocorticoids impairs oocyte competence and embryo development, by inducing apoptosis of ovarian and oviductal cells, respectively, the mechanisms by which glucocorticoids induce apoptosis of ovarian and oviductal cells are largely unclear. Tissue plasminogen activator (tPA) has been involved in apoptosis of different cell types. However, while some studies indicate that tPA is proapoptotic, others demonstrate its antiapoptotic effects. This study has explored the role and action mechanisms of tPA in corticosterone-induced apoptosis of mouse mural granulosa cells (MGCs) and oviductal epithelial cells (OECs). The results demonstrate that culture with corticosterone significantly increased apoptosis, while decreasing levels of tPA (Plat) mRNA and tPA protein in both MGCs and OECs. Culture with tPA ameliorated corticosterone-induced apoptosis of MGCs and OECs. Furthermore, while tPA protected MGCs from corticosterone-induced apoptosis by interacting with low-density lipoprotein receptor-related protein 1 (LRP1), it protected OECs from the apoptosis by acting on Annexin 2 (ANXA2). In conclusion, tPA is antiapoptotic in both MGCs and OECs, and it protects MGCs and OECs from corticosterone-induced apoptosis by interacting with LRP1 and ANXA2, respectively, suggesting that tPA may use different receptors to inhibit apoptosis in different cell types.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Jiu Luo
- Correspondence: (M.-J.L.); (J.-H.T.); Tel.: +86-0538-8249616 (M.-J.L. & J.-H.T.); Fax: +86-0538-8241419 (M.-J.L. & J.-H.T.)
| | - Jing-He Tan
- Correspondence: (M.-J.L.); (J.-H.T.); Tel.: +86-0538-8249616 (M.-J.L. & J.-H.T.); Fax: +86-0538-8241419 (M.-J.L. & J.-H.T.)
| |
Collapse
|
6
|
An JS, Wang GL, Wang DM, Yang YQ, Wu JS, Zhao YQ, Gong S, Tan JH. Hypothalamic-Pituitary-Adrenal Hormones Impair Pig Fertilization and Preimplantation Embryo Development via Inducing Oviductal Epithelial Apoptosis: An In Vitro Study. Cells 2022; 11:cells11233891. [PMID: 36497149 PMCID: PMC9740987 DOI: 10.3390/cells11233891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Previous studies show that stressful events after ovulation in sows significantly impaired the embryo cleavage with a significant elevation of blood cortisol. However, the effects of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol on fertilization and embryo development remain to be specified, and whether they damage pig embryos directly or indirectly is unclear. This study demonstrated that embryo development was unaffected when pig parthenotes were cultured with different concentrations of CRH/ACTH/cortisol. However, embryo development was significantly impaired when the embryos were cocultured with pig oviductal epithelial cells (OECs) in the presence of CRH/cortisol or cultured in medium that was conditioned with CRH/cortisol-pretreated OECs (CRH/cortisol-CM). Fertilization in CRH/cortisol-CM significantly increased the rates of polyspermy. CRH and cortisol induced apoptosis of OECs through FAS and TNFα signaling. The apoptotic OECs produced less growth factors but more FASL and TNFα, which induced apoptosis in embryos. Pig embryos were not sensitive to CRH because they expressed no CRH receptor but the CRH-binding protein, and they were tolerant to cortisol because they expressed more 11-beta hydroxysteroid dehydrogenase 2 (HSD11B2) than HSD11B1. When used at a stress-induced physiological concentration, while culture with either CRH or cortisol alone showed no effect, culture with both significantly increased apoptosis in OECs. In conclusion, CRH and cortisol impair pig fertilization and preimplantation embryo development indirectly by inducing OEC apoptosis via the activation of the FAS and TNFα systems. ACTH did not show any detrimental effect on pig embryos, nor OECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuai Gong
- Correspondence: (S.G.); (J.-H.T.); Tel.: +86-0538-8249616 (S.G. & J.-H.T.); Fax: +86-0538-8241419 (S.G. & J.-H.T.)
| | - Jing-He Tan
- Correspondence: (S.G.); (J.-H.T.); Tel.: +86-0538-8249616 (S.G. & J.-H.T.); Fax: +86-0538-8241419 (S.G. & J.-H.T.)
| |
Collapse
|
7
|
Du S, Trakooljul N, Palma-Vera SE, Murani E, Schuler G, Schoen J, Chen S. Regulation of Porcine Oviduct Epithelium Functions via Progesterone and Estradiol Is Influenced by Cortisol. Endocrinology 2022; 164:6767905. [PMID: 36269722 DOI: 10.1210/endocr/bqac176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 01/16/2023]
Abstract
Preimplantation maternal stress, characterized by elevated glucocorticoids (GCs), has been linked to reproductive failures caused by impaired oviduct functionality, which is known to be predominantly regulated by the sex steroids, progesterone (P4) and (17)estradiol (E2). Although steroid receptors share analogous structures and binding preferences, the interaction between GCs and E2/P4 in the oviduct has attracted little attention. Using an air-liquid interface culture model, porcine oviduct epithelial cells were stimulated with single (cortisol, E2, P4) or hormone mixtures (cortisol/E2, cortisol/P4) for 12 hours and 72 hours. Cultures were subsequently assessed for epithelial morphometry, bioelectrical properties, and gene expression responses (steroid hormone signaling, oviductal function, immune response, and apoptosis). Results confirmed the suppressive role of P4 in regulating oviduct epithelium characteristics, which was partially opposed by E2. Besides increasing the ratio of ciliated cells, cortisol antagonized the effect of P4 on epithelial polarity and modified sex steroid-induced changes in transepithelial electrical properties. Both sex steroids affected the glucocorticoid receptor expression, while cortisol downregulated the expression of progesterone receptor. The overall gene expression pattern suggests that sex steroid dominates the cotreatment, but cortisol contributes by altering the gene responses to sex steroids. We conclude that besides its individual action, maternal cortisol interplays with sex steroids at phenotypic and molecular levels in the oviduct epithelium, thereby influencing the microenvironment of gametes and early embryos.
Collapse
Affiliation(s)
- Shuaizhi Du
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Sergio E Palma-Vera
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| | - Eduard Murani
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen 35392, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Shuai Chen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| |
Collapse
|
8
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Zhao C, Biondic S, Vandal K, Björklund ÅK, Hagemann-Jensen M, Sommer TM, Canizo J, Clark S, Raymond P, Zenklusen DR, Rivron N, Reik W, Petropoulos S. Single-cell multi-omics of human preimplantation embryos shows susceptibility to glucocorticoids. Genome Res 2022; 32:1627-1641. [PMID: 35948369 PMCID: PMC9528977 DOI: 10.1101/gr.276665.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
The preconceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of assisted reproductive technologies (ART; ∼25%), additives and adjuvants, such as glucocorticoids, are used to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and the ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study, we present a comprehensive single-cell transcriptome, methylome, and small RNA atlas in the day 7 human embryo. We show that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the trophectoderm (TE) lineage, and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sublineages, supported by the presence of extravillous trophoblast markers in the polar sublineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation-DNA methylation and microRNAs (miRNAs)-likely underlies the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Savana Biondic
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Katherine Vandal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden
| | | | - Theresa Maria Sommer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jesica Canizo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Stephen Clark
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Pascal Raymond
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Daniel R Zenklusen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Wellcome Sanger Institute, Cambridge CB10 1RQ, United Kingdom
- Center for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| |
Collapse
|
10
|
Zhang L, Zhou C, Jiang X, Huang S, Li Y, Su T, Wang G, Zhou Y, Liu M, Xu D. Circ0001470 Acts as a miR-140-3p Sponge to Facilitate the Progression of Embryonic Development through Regulating PTGFR Expression. Cells 2022; 11:cells11111746. [PMID: 35681442 PMCID: PMC9179393 DOI: 10.3390/cells11111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
Embryonic implantation and development are vital in early pregnancy and assisted reproduction. Circular RNAs (circRNAs) are involved in the two physiological processes and thus regulate animal reproduction. However, their specific regulatory functions and mechanisms remain unclear. Here, a novel circ0001470, originating from the porcine GRN gene, differentially expressed on day 18 versus day 32 of gestation in Meishan and Yorkshire pigs was screened. The circularization characteristic of circ0001470 was identified based on divergent primer amplification, Sanger sequencing, RNase digestion, and RNA nuclear-cytoplasmic fractionation. Functionally, circ0001470 can promote cell proliferation and cycle progression of endometrial epithelial cells (EECs) and also inhibit apoptosis of EECs using CCK-8 assays and flow cytometry analyses. Mechanistically, bioinformatics database prediction, luciferase screening, RNA immunoprecipitation (RIP), RNA-pull down, and FISH co-localization experiments revealed that the circ0001470 acted as a competing endogenous RNA (ceRNA) through sponging miR-140-3p to regulate downstream PTGFR expression. Moreover, in vivo assays revealed that mmu_circGRN promoted embryonic development by affecting the expression of PTGFR, which can activate the MAPK reproduction pathway and facilitate pregnancy maintenance. This study enriched our understanding of circRNAs in embryo implantation and development by deciding the fate of EECs.
Collapse
Affiliation(s)
- Long Zhang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changfan Zhou
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Jiang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuntao Huang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiheng Li
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
| | - Tao Su
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guowei Wang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - You Zhou
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
| | - Min Liu
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dequan Xu
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
11
|
Yuan HJ, Han X, Wang GL, Wu JS, He N, Zhang J, Kong QQ, Gong S, Luo MJ, Tan JH. Glucocorticoid Exposure of Preimplantation Embryos Increases Offspring Anxiety-Like Behavior by Upregulating miR-211-5p via Trpm1 Demethylation. Front Cell Dev Biol 2022; 10:874374. [PMID: 35433692 PMCID: PMC9011152 DOI: 10.3389/fcell.2022.874374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Most studies on mechanisms by which prenatal stress affects offspring behavior were conducted during late pregnancy using in vivo models; studies on the effect of preimplantation stress are rare. In vivo models do not allow accurate specification of the roles of different hormones and cells within the complicated living organism, and cannot verify whether hormones act directly on embryos or indirectly to alter progeny behavior. Furthermore, the number of anxiety-related miRNAs identified are limited. This study showed that both mouse embryculture with corticosterone (ECC) and maternal preimplantation restraint stress (PIRS) increased anxiety-like behavior (ALB) while decreasing hippocampal expression of glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) in offspring. ECC/PIRS downregulated GR and BDNF expression by increasing miR-211-5p expression via promoter demethylation of its host gene Trpm1, and this epigenetic cell fate determination was exclusively perpetuated during development into mature hippocampus. Transfection with miR-211-5p mimic/inhibitor in cultured hippocampal cell lines confirmed that miR-211-5p downregulated Gr and Bdnf. Intrahippocampal injection of miR-211-5p agomir/antagomir validated that miR-211-5p dose-dependently increased ALB while decreasing hippocampal GR/BDNF expression. In conclusion, preimplantation exposure to glucocorticoids increased ALB by upregulating miR-211-5p via Trpm1 demethylation, and miR-211-5p may be used as therapeutic targets and biomarkers for anxiety-related diseases.
Collapse
|
12
|
Insight on Polyunsaturated Fatty Acids in Endometrial Receptivity. Biomolecules 2021; 12:biom12010036. [PMID: 35053184 PMCID: PMC8773570 DOI: 10.3390/biom12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Endometrial receptivity plays a crucial role in fertilization as well as pregnancy outcome in patients faced with fertility challenges. The optimization of endometrial receptivity may help with normal implantation of the embryo, and endometrial receptivity may be affected by numerous factors. Recently, the role of lipids in pregnancy has been increasingly recognized. Fatty acids and their metabolites may be involved in all stages of pregnancy and play a role in supporting cell proliferation and development, participating in cell signaling and regulating cell function. Polyunsaturated fatty acids, in particular, are essential fatty acids for the human body that can affect the receptivity of the endometrium through in a variety of methods, such as producing prostaglandins, estrogen and progesterone, among others. Additionally, polyunsaturated fatty acids are also involved in immunity and the regulation of endometrial decidualization. Fatty acids are essential for fetal placental growth and development. The interrelationship of polyunsaturated fatty acids with these substances and how they may affect endometrial receptivity will be reviewed in this article.
Collapse
|
13
|
Zhao XY, Li ZB, Yuan HJ, Han X, Wu JS, Feng XY, Zhang M, Tan JH. Restraint stress and elevation of corticotrophin-releasing hormone in female mice impair oocyte competence through activation of the tumour necrosis factor α (TNF-α) system. Reprod Fertil Dev 2021; 32:862-872. [PMID: 32527376 DOI: 10.1071/rd20002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/09/2020] [Indexed: 02/04/2023] Open
Abstract
Studies have observed that restraint stress (RS) and the associated elevation in corticotrophin-releasing hormone (CRH) impair oocyte competence by triggering apoptosis of ovarian cells but the underlying mechanisms are largely unclear. Although one study demonstrated that RS and CRH elevation triggered apoptosis in ovarian cells and oocytes via activating Fas/FasL signalling, other studies suggested that RS might damage cells by activating other pathways as well as Fas signalling. The objective of this study was to test whether RS and CRH elevation impairs oocytes by activating tumour necrosis factor α (TNF-α) signalling. Our invivo experiments showed that RS applied during oocyte prematuration significantly increased expression of TNF-α and its receptor (TNFR1) while inducing apoptosis in both oocytes and mural granulosa cells (MGCs). Invitro treatment of MGCs with CRH significantly increased their apoptotic percentages and levels of TNF-α and TNFR1 expression. Invitro knockdown by interfering RNA, invivo knockout of the TNF-α gene or injection of TNF-α antagonist etanercept significantly relieved the adverse effects of RS and CRH on apoptosis of MGCs and/or the developmental potential and apoptosis of oocytes. The results suggest that RS and CRH elevation in females impair oocyte competence through activating TNF-α signalling and that a TNF-α antagonist might be adopted to ameliorate the adverse effects of psychological stress on oocytes.
Collapse
Affiliation(s)
- Xin-Yue Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Zhi-Bin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Xiao Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jia-Shun Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Xiu-Yun Feng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Min Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China; and Corresponding author.
| |
Collapse
|
14
|
ALKAN H, SATILMIS F, KARASAHIN T, DURSUN S, ERDEM H. Evaluation of the relationship between serum paraoxonase-1 activity and superovulation response/embryo yield in Holstein cows. J Vet Med Sci 2021; 83:535-541. [PMID: 33536396 PMCID: PMC8025417 DOI: 10.1292/jvms.20-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, the effect of serum paraoxonase-1 (PON-1) activity on superovulation response and embryo yield was evaluated. The study material comprised 50 Holstein cows aged 3-4 years on postpartum day 90-120 with a body condition score of 3-3.25. A progesterone-based estrus synchronization protocol was initially administered to the selected donors. For this purpose, progesterone source was inserted intravaginally (day 0) and gonadotropin-releasing hormone injection was performed (day 6). Seven days after the insertion of progesterone device, follicle-stimulating hormone injections (total dose of 500 µg in decreasing doses for 4 days) were administered for superovulation. On the morning of the ninth day, prostaglandin (PG) F2α was administered, and the progesterone device was removed from the vagina in the evening on the same day. Two days after PGF2α administration, fixed-time artificial insemination was performed in the morning and in the evening. On the day of artificial insemination, blood samples were taken from the donors to determine the serum PON-1 activity. Uterine flushing was performed seven days after insemination. The results revealed that the serum PON-1 activity (mean ± SD, 562.71 ± 140.23 U/l) of the cows that responded to superovulation (donors with total corpus luteum count of ≥3 in both ovaries) was higher than those (389.91 ± 80.51 U/l) that did not (P<0.05). On the day of insemination, a positive correlation was determined between serum PON-1 activity and the counts of total corpus luteum (r=0.398), total oocyte/embryo (r=0.468), transferable embryo (r=0.453), and Code I embryos (r=0.315, P<0.05). Unlike the Code I embryos, there was no significant correlation between serum PON-1 activity and the number of Code III embryos. Moreover, no significant difference in the number of Code III embryos between the two PON-1 groups was observed. However, embryo yield and quality were found to have increased with increased PON-1 activity. Therefore, it was concluded that serum PON-1 activity may be associated with superovulation response, embryo yield and quality in donor cows.
Collapse
Affiliation(s)
- Hasan ALKAN
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Selcuk University, Konya, 42250, Turkey
| | - Fatma SATILMIS
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Selcuk University, Konya, 42250, Turkey
| | - Tahir KARASAHIN
- Department of Physiology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, 68100, Turkey
| | - Sukru DURSUN
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, 68100, Turkey
| | - Huseyin ERDEM
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Selcuk University, Konya, 42250, Turkey
| |
Collapse
|
15
|
Karasahin T, Alkan H, Satilmis F, Dursun S, Ozturk C, Bulut G, Aksoy NH, Tekindal MA, Caglayan T, Yesilkaya OF, Erdem H. Relationship between total antioxidant/oxidant status, and oxidative stress index and superovulation response in donor cows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Zhao YQ, Chen RR, Kong QQ, An JS, Zhao XY, Gong S, Yuan HJ, Tan JH. Corticosterone induced apoptosis of mouse oviduct epithelial cells independent of the TNF-α system. J Reprod Dev 2020; 67:43-51. [PMID: 33310974 PMCID: PMC7902214 DOI: 10.1262/jrd.2020-122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
It has been reported in recent studies that restraint stress on pregnant mice during the preimplantation stage elevated corticotrophin-releasing hormone (CRH)
and glucocorticoid levels in the serum and oviducts; furthermore, CRH and corticosterone (CORT) impacted preimplantation embryos indirectly by triggering the
apoptosis of oviductal epithelial cells (OECs) through activation of the Fas system. However, it remains unclear whether TNF-α signaling is involved in CRH-
and/or glucocorticoid-induced apoptosis of OECs. In the present study, it was shown that culture with either CRH or CORT induced significant apoptosis of OECs.
The culture of OECs with CRH augmented both FasL expression and TNF-α expression. However, culture with CORT increased FasL, but decreased TNF-α, expression
significantly. Although knocking down/knocking out FasL expression in OECs significantly ameliorated the proapoptotic effects of both CRH and CORT, knocking
down/knocking out TNF-α expression relieved only the proapoptotic effect of CRH but not that of CORT. Taken together, our results demonstrated
that CRH-induced OEC apoptosis involved both Fas signaling and TNF-α signaling. Conversely, CORT-induced OEC apoptosis involved only the Fas, but not the TNF-α,
signaling pathway. The data obtained are crucial for our understanding of the mechanisms by which various categories of stress imposed on pregnant females
impair embryo development, as well as for the development of measures to protect the embryo from the adverse effects of stress.
Collapse
Affiliation(s)
- Ying-Qi Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Ren-Ren Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Qiao-Qiao Kong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jin-Song An
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Xin-Yue Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
17
|
Zhai QY, Wang JJ, Tian Y, Liu X, Song Z. Review of psychological stress on oocyte and early embryonic development in female mice. Reprod Biol Endocrinol 2020; 18:101. [PMID: 33050936 PMCID: PMC7552561 DOI: 10.1186/s12958-020-00657-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Psychological stress can cause adverse health effects in animals and humans. Accumulating evidence suggests that psychological stress in female mice is associated with ovarian developmental abnormalities accompanied by follicle and oocyte defects. Oocyte and early embryonic development are impaired in mice facing psychological stress, likely resulting from hormone signalling disorders, reactive oxygen species (ROS) accumulation and alterations in epigenetic modifications, which are primarily mediated by the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-ovarian (HPO) axes. The present evidence suggests that psychological stress is increasingly becoming the most common causative factor for female subfertility. Here, we review recent progress on the impact of psychological stress on female reproduction, particularly for oocyte and early embryonic development in female mice. This review highlights the connection between psychological stress and reproductive health and provides novel insight on human subfertility.
Collapse
Affiliation(s)
- Qiu-Yue Zhai
- grid.410645.20000 0001 0455 0905School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- grid.410645.20000 0001 0455 0905Qingdao Medical College, Qingdao University, Qingdao, 266071 China
| | - Jun-Jie Wang
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Yu Tian
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xiaofang Liu
- grid.43308.3c0000 0000 9413 3760Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Zhenhua Song
- grid.410645.20000 0001 0455 0905School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- grid.410645.20000 0001 0455 0905Qingdao Medical College, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
18
|
Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poult Sci 2020; 99:6084-6093. [PMID: 33142528 PMCID: PMC7647730 DOI: 10.1016/j.psj.2020.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
Heat stress (HS) causes significant economic losses in the poultry industry every year. However, the mechanisms for the adverse effects of HS on avian follicular development are largely unknown. The aim of this study was to test whether HS induces apoptosis of follicular cells and impairs egg production by activating the FasL/Fas and tumor necrosis factor (TNF)-α systems. To this end, Hy-Line Brown laying hens, at 32 wk of age, were either exposed to HS of 35°C to 37°C or maintained at 24°C to 26°C (control) for 5 D. At the end of the HS period, follicle numbers, apoptosis, FasL/Fas and TNF-α activation, oxidative stress, and hormone secretion were examined in ovarian follicles. Egg production was observed daily during both the stressed (day S1–S5) and the poststress recovery (day R1–R15) periods. The results demonstrated that HS on hens significantly 1) decreased laying rates from day S3 to R6; 2) reduced numbers of large yellow and hierarchical follicles; 3) triggered apoptosis while increasing the expression of FasL, Fas, TNF-α, and TNF-receptor 1 in small and large yellow follicles; and 4) increased levels of oxidative stress, corticotrophin-releasing hormone, and corticosterone while decreasing the estradiol/progesterone ratio in follicular fluid in small and large yellow follicles. Taken together, the results suggested that hen HS impaired egg production by reducing the number of follicles through inducing apoptosis and that it triggered apoptosis in follicular cells by activating the FasL/Fas and TNF-α systems.
Collapse
|
19
|
Čikoš Š, Babeľová J, Špirková A, Burkuš J, Kovaříková V, Šefčíková Z, Fabian D, Koppel J. Glucocorticoid receptor isoforms and effects of glucocorticoids in ovulated mouse oocytes and preimplantation embryos†. Biol Reprod 2020; 100:351-364. [PMID: 30188986 DOI: 10.1093/biolre/ioy196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/06/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
To investigate possible involvement of glucocorticoid receptor (GR) in mediating effects of maternal stress or therapeutically administered glucocorticoids on early embryo, we analyzed the expression of GR subtypes in ovulated mouse oocytes and preimplantation embryos. RT-PCR analysis results showed that GRα and GRγ transcripts are relatively highly expressed in mouse oocytes, and both transcripts are present at lower amounts in preimplantation embryos. We also detected low expression of two other splice variants, GRβ and a transcript orthologous to the human GR-P subtype, mainly at the blastocyst stage. Using western blot analysis, we detected several GR protein bands that differed in size between oocytes and preimplantation embryos. To compare the effects of corticosterone (a major endogenous glucocorticoid in rodents) and dexamethasone (a synthetic glucocorticoid) on early embryos, we cultured mouse preimplantation embryos in the presence of these glucocorticoids. Corticosterone showed a strong inhibitory effect on embryo development (starting from a 50 μM concentration), without a significant influence on apoptosis incidence. On the other hand, dexamethasone induced apoptosis in early embryo cells (starting from a 1.5 μM concentration), and its effect on embryo development was less detrimental than that found with the same dose of corticosterone. In summary, our results showed that different GR subtypes are expressed in ovulated mouse oocytes and preimplantation embryos and that the composition of GR subtypes changes during early embryo development. Moreover, we found significant differences in the effects of the two glucocorticoids on early embryo development, which might be associated with activation of different GR subtypes.
Collapse
Affiliation(s)
- Štefan Čikoš
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Janka Babeľová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Alexandra Špirková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Ján Burkuš
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Veronika Kovaříková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Juraj Koppel
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| |
Collapse
|
20
|
Does Maternal Stress Affect the Early Embryonic Microenvironment? Impact of Long-Term Cortisol Stimulation on the Oviduct Epithelium. Int J Mol Sci 2020; 21:ijms21020443. [PMID: 32284519 PMCID: PMC7014231 DOI: 10.3390/ijms21020443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Maternal stress before or during the sensitive preimplantation phase is associated with reproduction failure. Upon real or perceived threat, glucocorticoids (classic stress hormones) as cortisol are synthesized. The earliest “microenvironment” of the embryo consists of the oviduct epithelium and the oviductal fluid generated via the epithelial barrier. However, to date, the direct effects of cortisol on the oviduct are largely unknown. In the present study, we used a compartmentalized in vitro system to test the hypothesis that a prolonged stimulation with cortisol modifies the physiology of the oviduct epithelium. Porcine oviduct epithelial cells were differentiated at the air–liquid interface and basolaterally stimulated with physiological levels of cortisol representing moderate and severe stress for 21 days. Epithelium structure, transepithelial bioelectric properties, and gene expression were assessed. Furthermore, the distribution and metabolism of cortisol was examined. The polarized oviduct epithelium converted basolateral cortisol to cortisone and thereby reduced the amount of bioactive cortisol reaching the apical compartment. However, extended cortisol stimulation affected its barrier function and the expression of genes involved in hormone signaling and immune response. We conclude that continuing maternal stress with long-term elevated cortisol levels may alter the early embryonic environment by modification of basic oviductal functions.
Collapse
|
21
|
Li CY, Li ZB, Kong QQ, Han X, Xiao B, Li X, Chang ZL, Tan JH. Restraint-induced corticotrophin-releasing hormone elevation triggers apoptosis of ovarian cells and impairs oocyte competence via activation of the Fas/FasL system. Biol Reprod 2019; 99:828-837. [PMID: 29668880 DOI: 10.1093/biolre/ioy091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 11/14/2022] Open
Abstract
Mechanisms by which psychological stress damages oocytes are largely undetermined. Although a previous study showed that the stress-induced corticotrophin-releasing hormone (CRH) elevation impaired oocyte competence by triggering apoptosis of ovarian cells, how CRH causes apoptosis in ovarian cells and oocytes is unknown. In this study, we have examined the hypothesis that restraint stress (RS)-induced CRH elevation triggers apoptosis of ovarian cells and impairs oocyte competence through activating the Fas/FasL system. The results showed that RS of female mice impaired oocyte competence, enhanced expression of CRH and CRH receptor (CRH-R) in the ovary, and induced apoptosis while activating the Fas/FasL system in mural granulosa cells (MGCs) and oocytes. Injecting mice with CRH-R1 antagonist antalarmin significantly alleviated the adverse effect of RS on oocyte developmental potential. Treatment of cultured MGCs recapitulated the effects of CRH and antalarmin on apoptosis and Fas/FasL expression in MGCs. Silencing FasL gene by RNA interference in cultured MGCs further confirmed the involvement of the Fas/FasL system in the CRH triggered apoptosis of ovarian cells. It is concluded that the RS-induced CRH elevation triggers apoptosis of ovarian cells and impairs oocyte competence via activation of the Fas/FasL system.
Collapse
Affiliation(s)
- Chuan-Yong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Zhi-Bin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Qiao-Qiao Kong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Xiao Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Bin Xiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Xiao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Zhong-Le Chang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| |
Collapse
|
22
|
Salilew-Wondim D, Saeed-Zidane M, Hoelker M, Gebremedhn S, Poirier M, Pandey HO, Tholen E, Neuhoff C, Held E, Besenfelder U, Havlicek V, Rings F, Fournier E, Gagné D, Sirard MA, Robert C, Gad A, Schellander K, Tesfaye D. Genome-wide DNA methylation patterns of bovine blastocysts derived from in vivo embryos subjected to in vitro culture before, during or after embryonic genome activation. BMC Genomics 2018; 19:424. [PMID: 29859035 PMCID: PMC5984773 DOI: 10.1186/s12864-018-4826-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Aberrant DNA methylation patterns of genes required for development are common in in vitro produced embryos. In this regard, we previously identified altered DNA methylation patterns of in vivo developed blastocysts from embryos which spent different stages of development in vitro, indicating carryover effects of suboptimal culture conditions on epigenetic signatures of preimplantation embryos. However, epigenetic responses of in vivo originated embryos to suboptimal culture conditions are not fully understood. Therefore, here we investigated DNA methylation patterns of in vivo derived bovine embryos subjected to in vitro culture condition before, during or after major embryonic genome activation (EGA). For this, in vivo produced 2-, 8- and 16-cell stage embryos were cultured in vitro until the blastocyst stage and blastocysts were used for genome-wide DNA methylation analysis. Results The 2- and 8-cell flushed embryo groups showed lower blastocyst rates compared to the 16-cell flush group. This was further accompanied by increased numbers of differentially methylated genomic regions (DMRs) in blastocysts of the 2- and 8-cell flush groups compared to the complete in vivo control ones. Moreover, 1623 genomic loci including imprinted genes were hypermethylated in blastocyst of 2-, 8- and 16-cell flushed groups, indicating the presence of genomic regions which are sensitive to the in vitro culture at any stage of embryonic development. Furthermore, hypermethylated genomic loci outnumbered hypomethylated ones in blastocysts of 2- and 16-cell flushed embryo groups, but the opposite occurred in the 8-cell group. Moreover, DMRs which were unique to blastocysts of the 2-cell flushed group and inversely correlated with corresponding mRNA expression levels were involved in plasma membrane lactate transport, amino acid transport and phosphorus metabolic processes, whereas DMRs which were specific to the 8-cell group and inversely correlated with corresponding mRNA expression levels were involved in several biological processes including regulation of fatty acids and steroid biosynthesis processes. Conclusion In vivo embryos subjected to in vitro culture before and during major embryonic genome activation (EGA) are prone to changes in DNA methylation marks and exposure of in vivo embryos to in vitro culture during the time of EGA increased hypomethylated genomic loci in blastocysts. Electronic supplementary material The online version of this article (10.1186/s12864-018-4826-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany.
| | - Mohammed Saeed-Zidane
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Samuel Gebremedhn
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Mikhaël Poirier
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Hari Om Pandey
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Eva Held
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Urban Besenfelder
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria
| | - Vita Havlicek
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria
| | - Franca Rings
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Eric Fournier
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval, Québec, G1V 0A6, Canada
| | - Dominic Gagné
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval, Québec, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval, Québec, G1V 0A6, Canada
| | - Claude Robert
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval, Québec, G1V 0A6, Canada
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
23
|
Stress and the HPA Axis: Balancing Homeostasis and Fertility. Int J Mol Sci 2017; 18:ijms18102224. [PMID: 29064426 PMCID: PMC5666903 DOI: 10.3390/ijms18102224] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Abstract
An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development.
Collapse
|
24
|
García ML, Argente MJ. Exposure to high ambient temperatures alters embryology in rabbits. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1555-1560. [PMID: 28326508 DOI: 10.1007/s00484-017-1334-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
High ambient temperatures are a determining factor in the deterioration of embryo quality and survival in mammals. The aim of this study was to evaluate the effect of heat stress on embryo development, embryonic size and size of the embryonic coats in rabbits. A total of 310 embryos from 33 females in thermal comfort zone and 264 embryos of 28 females in heat stress conditions were used in the experiment. The traits studied were ovulation rate, percentage of total embryos, percentage of normal embryos, embryo area, zona pellucida thickness and mucin coat thickness. Traits were measured at 24 and 48 h post-coitum (hpc); mucin coat thickness was only measured at 48 hpc. The embryos were classified as zygotes or two-cell embryos at 24 hpc, and 16-cells or early morulae at 48 hpc. The ovulation rate was one oocyte lower in heat stress conditions than in thermal comfort. Percentage of normal embryos was lower in heat stress conditions at 24 hpc (17.2%) and 48 hpc (13.2%). No differences in percentage of zygotes or two-cell embryos were found at 24 hpc. The embryo development and area was affected by heat stress at 48 hpc (10% higher percentage of 16-cells and 883 μm2 smaller, respectively). Zona pellucida was thicker under thermal stress at 24 hpc (1.2 μm) and 48 hpc (1.5 μm). No differences in mucin coat thickness were found. In conclusion, heat stress appears to alter embryology in rabbits.
Collapse
Affiliation(s)
- M L García
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, Ctra de Beniel Km 3.2, 03312, Orihuela, Spain.
| | - M J Argente
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, Ctra de Beniel Km 3.2, 03312, Orihuela, Spain
| |
Collapse
|
25
|
Tan XW, Ji CL, Zheng LL, Zhang J, Yuan HJ, Gong S, Zhu J, Tan JH. Corticotrophin-releasing hormone and corticosterone impair development of preimplantation embryos by inducing oviductal cell apoptosis via activating the Fas system: an in vitro study. Hum Reprod 2017; 32:1583-1597. [DOI: 10.1093/humrep/dex217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Xiu-Wen Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Chang-Li Ji
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Liang-Liang Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Jiang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | | |
Collapse
|
26
|
Liang DY, Hou YQ, Lou XL. Effect of silencing decoy receptor 3 on biological features of hepatoma cells. Shijie Huaren Xiaohua Zazhi 2017; 25:234-240. [DOI: 10.11569/wcjd.v25.i3.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of decoy receptor 3 (DcR3) in hepatoma cells, and to investigate its role in the biological features of hepatoma cells.
METHODS Real-time PCR and Western blot were used to detect the expression of DcR3 mRNA and protein in human hepatoma cell lines HepG2 and Huh7 and normal hepatocytes (HL-7702 and Chang liver). ELISA was used to detect the level of DcR3 protein in the supernatant of these four cell lines. A lentiviral vector carrying shRNA against DcR3 (LV-shDcR3) was synthesized and used to infect HepG2 and Huh7 cells, with the empty lentiviral vector as a control. After infection, the interference effects were determined by Western blot, cell proliferation was assessed by CCK-8 assay and colony forming assay, cell apoptosis was examined by flow cytometry, and the expression of apoptosis related protein like PARP was detected by Western blot. The expression of TRAIL, FasL and LIGHT before and after infection was also detected by Western blot.
RESULTS The expression of DcR3 was significantly increased in hepatoma cell lines HepG2 and Huh7 both at the mRNA and protein levels compared with normal hepatocytes. The levels of DcR3 in the supernatants of HepG2 and Huh7 cells were also increased. Compared with the mock group and empty lentiviral vector infected group, the LV-shDcR3 infected group showed reduced expression of DcR3, lower cell viability rate, and higher cell apoptosis rate. The expression of TRAIL and FasL was increased after infection with LV-shDcR3 in HepG2 and Huh7 cells.
CONCLUSION The expression of DcR3 is elevated in hepatoma cells. Down-regulation of the expression of DcR3 inhibits cell proliferation and induces cell apoptosis in hepatoma cells, via mechanisms that may be related with the TRAIL and FasL apoptosis pathway.
Collapse
|