1
|
Schallmoser A, Emrich N, Einenkel R, Sänger N. Explorative 3-D culture of early secondary follicles in a time lapse system for up to 36 days gives valuable, but limited insights in follicular development. Placenta 2025; 164:50-63. [PMID: 40127611 DOI: 10.1016/j.placenta.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Cryopreservation of ovarian cortical tissue is an important option for female fertility preservation. This is particularly valuable for cancer patients who need to be treated urgently with chemotherapy, leaving no time for hormonal stimulation. The transfer of malignant cells in certain cancers remains as a potential risk after freezing, thawing and transplantation of ovarian tissue while isolation and in vitro growth (IVG) of follicles could be a safe alternate approach of female fertility protection. METHODS Ovarian cortex tissue was frozen, thawed and cultured for 8 days prior to isolating and embedding of early secondary follicles in a 3D matrix, suitable for time lapse monitoring for up to 36 days. Continuous growth of a theca-like cell layer and extrafollicular protrusions were visually evaluated with a permanent monitoring system facilitating real-time follicular development without deviations in the culture conditions. Occurrence of theca cell growth was visually characterized by extrafollicular formation of cells, beyond the outer follicle boundaries. To validate the results observed by time-lapse monitoring, live cell imaging was conducted and determined with immunofluorescence staining. RESULTS Individual follicles significantly increased in size over time. Time-lapse video monitoring revealed extending and retracting of filopodia-like structures in the outer follicular region adjacent to the 3D environment. Theca-like cells and actin components of filopodia-like structures were identified based on immunofluorescence staining. CONCLUSIONS Time lapse monitoring of 3-D cultured follicles is a promising explorative approach to obtain valuable visual insights regarding the many facets of follicular growth and to optimize follicular culture conditions towards a clinical application. As the study is limited by a lack of mechanistic insights into theca cell differentiation and filopodia function, additional studies are necessary to validate the preliminary results of this approach.
Collapse
Affiliation(s)
- Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| | - Norah Emrich
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| |
Collapse
|
2
|
Wang X, Huang R, Liu L, Wang X, Zhang X. Evaluation and preservation of fertility in patients with hematologic malignancies. Cancer Lett 2025; 616:217569. [PMID: 39983893 DOI: 10.1016/j.canlet.2025.217569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
For patients with hematologic malignancies, novel therapeutic strategies offer the potential to achieve a complete clinical response and long-term survival. However, declining fertility has become a significant concern, impacting long-term quality of life. Conventional high-dose chemotherapy and radiotherapy are known to reduce fertility or cause sterility. Moreover, limited clinical data are available on the effects of newer therapies, such as targeted treatments and chimeric antigen receptor (CAR)-T cell therapy, on fertility. Additionally, there is no standard method for preserving fertility in these patients. Male patients can opt for sperm cryopreservation, whereas female patients may preserve fertility through embryo, oocyte, or ovarian tissue cryopreservation. However, preserving fertility in prepubescent patients remains particularly challenging. Therefore, hematologists must educate patients about the potential gonadal toxicity of cancer treatments and offer the most appropriate fertility preservation options.
Collapse
Affiliation(s)
- Xiang Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Lei Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 400037, China.
| |
Collapse
|
3
|
Rodgers RJ, Kerr JB. Accuracy and errors about the human ovary; the good, bad and the ugly. Reprod Fertil Dev 2025; 37:RD25023. [PMID: 40168278 DOI: 10.1071/rd25023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
This collection is dedicated to the memory of Professor Ken McNatty and Professor Rex Scaramuzzi, both of whom made outstanding contributions to the understanding of reproductive, and particularly ovarian, biology. In fact, the impetus for this commentary began when the authors questioned why some textbooks continued to print an earlier theory of ovarian development by Haward Sawyer and Ken McNatty (Sawyer et al . 2002 ), when important additional findings were published in 2013 (Hummitzsch et al . 2013 ). The authors question why textbooks, websites and YouTube videos continue to present misinformation about the ovary with statements and illustrations that are patently inaccurate or incorrect. We are aware that medical and science textbook publishers may take no responsibility for the accuracy of content by printing a disclaimer to this effect. Webpages and YouTube videos, in the main, exist with no such caveat. Do authors of textbooks accept responsibility to publish up-to-date factual material and avoid demonstrably incorrect information? In some cases, apparently not. Here we will show examples from the ovarian biology that we encounter regularly, that authors often do not check nor update content for the multiple book editions published over decades. If original sources are not consulted by authors, where are they getting their information? Erroneous statements and dogma continue to be represented in scientific literature as established facts. Textbooks, in particular, are supposed to be reliable sources of information. Unfortunately, too many mislead students and scholars and promulgate misinformation. If the contributions of Professor Ken McNatty, Professor Rex Scaramuzzi and others are to be truly valuable, then knowledge amplified by textbooks and the web must at least be accurate.
Collapse
Affiliation(s)
- Raymond J Rodgers
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jeffrey B Kerr
- School of Chemistry, Faculty of Science, Monash University, Clayton, Vic 3800, Australia
| |
Collapse
|
4
|
Del Valle JS, Van Helden RW, Moustakas I, Wei F, Asseler JD, Metzemaekers J, Pilgram GSK, Mummery CL, van der Westerlaken LAJ, van Mello NM, Chuva de Sousa Lopes SM. Ex vivo removal of pro-fibrotic collagen and rescue of metabolic function in human ovarian fibrosis. iScience 2025; 28:112020. [PMID: 40104066 PMCID: PMC11914289 DOI: 10.1016/j.isci.2025.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Tissue fibrosis, with the excessive accumulation of extracellular matrix, leads to organ dysfunction. The ovary shows signs of fibrosis from an early age, creating a permissive environment for ovarian cancer. A robust culture-platform to study human ovarian fibrosis would enable screens for antifibrotic drugs to prevent or even reverse this process. Based on previous results showing that androgen therapy can induce ovarian fibrosis, we characterized the fibrotic state of ovaries from transmasculine donors of reproductive age. Anti-inflammatory and antioxidant drugs, such as Pirfenidone, Metformin, and Mitoquinone, could reduce and revert the excess collagen content of the ovarian cortical tissue during culture. We demonstrated that Metformin exerts an antioxidant role and prevents a glycolytic metabolic shift in non-immune ovarian stromal cells in the human ovary, while promoting early folliculogenesis during culture. These results may contribute to develop strategies to manage pro-tumorigenic fibrotic ovarian stroma in advanced age and metabolic disorders.
Collapse
Affiliation(s)
- Julieta S Del Valle
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ruben W Van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Fu Wei
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Joyce D Asseler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Amsterdam 1105 AZ, the Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam 1081 HV, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam 1081 HV, the Netherlands
| | - Jeroen Metzemaekers
- Department of Gynecology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Gonneke S K Pilgram
- Department of Gynecology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | | | - Norah M van Mello
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Amsterdam 1105 AZ, the Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam 1081 HV, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam 1081 HV, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
- Ghent-Fertility and Stem Cell Team (G-FAST), Department of Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Khalili MA, Aflatoonian B, Mirzaei MR, Izadi M, Karimabad MN, Asadi F, Vatanparast M. Evaluation of the effect of human testicular cell conditioned media on the in vitro development of follicles from cryopreserved human ovarian cortical pieces. A potential approach for fertility preservation for cancer patients. Cryobiology 2025; 119:105218. [PMID: 40086302 DOI: 10.1016/j.cryobiol.2025.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
If in vitro culture conditions could be improved, in vitro growth of cryopreserved ovarian tissue and isolated follicles could become an alternative to ovarian tissue transplantation. This study evaluated two cryopreservation methods, slow cooling and vitrification, and two in vitro culture methods, to determine their effect on the in vitro growth of human ovarian follicles. After warming, the OT pieces (1 × 10 × 3 mm) were cultured in either routine culture medium (DMEM), or DMEM supplemented 50:50 with media previously used for human testicular cell culture (hTCCM) to serve as a source of growth factors. Several parameters were evaluated during culture including follicle recruitment, growth, morphology, diameter, hormone production, and gene expressions (PTEN, BMP-15, PDGF, GDF-9, and GAPDH). The follicular morphology and hormonal secretion were comparable for both cryopreservation methods and both culture methods (P > 0.05). Follicle recruitment was accelerated in the vitrified group, in the presence of hTCCM (P > 0.05). After 7 days of culture, the follicle diameter was greater in the slow/hTCCM compared to the vitrification DMEM group. Similarly only one gene expression profile, BMP-15, in the slow/hTCCM differed significantly from another treatment group (Vit DMEM). At the end of culture (over 21 days), three immature, low-quality oocytes were the achievement. In conclusion, a very quick and easy vitrification protocol gave comparable results to the slow cooling method. We also established that the laboriously prepared hTCCM supplement did not benefit the outcomes. Further work is needed before in vitro maturation of cryopreserved ovarian cortical pieces can be used clinically.
Collapse
Affiliation(s)
- Mohammad Ali Khalili
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Reza Mirzaei
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
6
|
Vasse J, Fiscus J, Fraison E, Salle B, David L, Labrune E. Biomechanical properties of ovarian tissue and their impact on the activation of follicular growth: a narrative review. Reprod Biomed Online 2025; 50:104450. [PMID: 39919556 DOI: 10.1016/j.rbmo.2024.104450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 02/09/2025]
Abstract
Follicular recruitment is tightly regulated to ensure long-term balance between the pools of dormant and growing follicles. While the growth of secondary to antral follicles is well understood, the initiation of folliculogenesis remains elusive. Several processes have been described, and a new approach is mechanotransduction. The aim of this review is to present the latest findings on the biomechanical properties of the ovary, and their role during the initiation of folliculogenesis. A search of PubMed using keywords related to the biomechanical properties of ovarian tissue and ovarian mechanobiology identified 114 manuscripts, and 74 were included in this review. The investigation of mechanical properties of the ovary has revealed the existence of an elastic modulus gradient from the cortex to the medulla, which is essential for balancing the preservation of a pool of quiescent follicles and supporting folliculogenesis. Growing follicles subjected to different mechanical environments respond through mechanotransduction, leading to the activation or inhibition of folliculogenesis. The application of findings on ovarian mechanoreactivity revealed that stretching cortical tissue fragments may activate in-vitro folliculogenesis. Although these results require confirmation by larger studies, a comprehensive understanding of normal and pathological ovarian biomechanical functions offers new possibilities for managing patient infertility.
Collapse
Affiliation(s)
- Joséphine Vasse
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France
| | - Julie Fiscus
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France
| | - Eloïse Fraison
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France
| | - Bruno Salle
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France
| | - Laurent David
- Universite Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223 Ingénierie des Matériaux Polymères, France
| | - Elsa Labrune
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France.
| |
Collapse
|
7
|
Bundschu K, Aleksandrova-Yankulovska S, Denzer C, Dornbrach T, Eberhart S, Glisic L, Barata AG, Gündel H, Hönig K, Janni W, Khinda K, Rafensteiner L, Siebert R, Steger F, Stilgenbauer S, Wabitsch M, Wiesmüller L, Wilhelm M, Wojak B, Hancke K. Future perspectives of fertility protection. J Reprod Immunol 2025; 168:104455. [PMID: 39970616 DOI: 10.1016/j.jri.2025.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Reproductive health is of major importance for individuals, for the society and for the health of future generations. This includes physical and medical dimensions as well as psychosocial and ethical ones. Whenever the possibility of starting a family is compromised, either due to an oncological cytotoxic treatment or due to transgender hormone medication with the aim to align their secondary sexual characteristics or other medical or social conditions, one key aspect of reproductive health is fertility protection. However, as a very young field in medicine, there are still many research questions that need to be clarified to provide the best possible treatment for affected people. These include the optimization and safety of cryopreservation processes of germ cells in women, men, transgender people, adolescents and children. Another focus is on psychological care as well as ethical, economic and legal issues. The establishment and development of the center for fertility protection Ulm (FePro-Ulm) will focus on a detailed molecular biological and (epi)genetic understanding of the underlying processes in ovarian tissue, oocytes and sperm to improve and develop new diagnostic and therapeutic approaches. The individual needs of affected people, their partners and families will be evaluated by an interdisciplinary approach. The collaborations within FePro-Ulm will develop preventative and helpful interventions for affected people. In addition, a better awareness of this important topic of reproductive health and fertility protection will be addressed by including participation representatives and strengthen public relation works.
Collapse
Affiliation(s)
- Karin Bundschu
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany.
| | - Silviya Aleksandrova-Yankulovska
- Institute of the History, Philosophy and Ethics of Medicine, Ulm University, Barbara Mez-Starck-Haus Oberberghof 7, Ulm 89081, Germany
| | - Christian Denzer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, Ulm 89075, Germany
| | - Tana Dornbrach
- University Hospital Ulm, Department of Psychosomatic Medicine and Psychotherapy, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Sabine Eberhart
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Lazar Glisic
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Ana Gomes Barata
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Harald Gündel
- University Hospital Ulm, Department of Psychosomatic Medicine and Psychotherapy, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Klaus Hönig
- University Hospital Ulm, Department of Psychosomatic Medicine and Psychotherapy, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Karamdeep Khinda
- University Hospital Ulm, Department of Psychosomatic Medicine and Psychotherapy, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Laura Rafensteiner
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Ulm
| | - Florian Steger
- Institute of the History, Philosophy and Ethics of Medicine, Ulm University, Barbara Mez-Starck-Haus Oberberghof 7, Ulm 89081, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Ulm
| | - Stephan Stilgenbauer
- University Hospital Ulm, Department of Internal Medicine III, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, Ulm 89075, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Ulm
| | - Lisa Wiesmüller
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Miriam Wilhelm
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, Ulm 89075, Germany
| | - Birgit Wojak
- University Hospital Ulm, Department of Internal Medicine III, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Katharina Hancke
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| |
Collapse
|
8
|
Podda A, Dujíčková L, Ariu F, Leoni GG, Izquierdo D, Paramio MT, Bogliolo L. Effect of Liquid Marble 3D Culture System on In Vitro Maturation and Embryo Development of Prepubertal Goat Oocytes. Animals (Basel) 2025; 15:188. [PMID: 39858188 PMCID: PMC11758309 DOI: 10.3390/ani15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Suboptimal culture conditions during in vitro maturation (IVM) affect oocyte developmental competence and the viability of the resulting embryo. Three-dimensional (3D) culture systems provide a more biologically appropriate environment compared to traditional two-dimensional (2D) cultures. The aim of this study was to evaluate the effect of liquid marble (LM) microbioreactors as a 3D culture system on IVM and the subsequent embryo development of prepubertal goat oocytes. The cumulus-oocyte complexes (COCs) recovered from prepubertal goat ovaries underwent IVM in drops under oil (the 2D system and the control group) and in the 3D LM system (the LM group). After IVM, oocytes were parthenogenetically activated and cultured until the blastocyst stage. The control and LM groups showed similar rates of nuclear maturation (52.17% and 44.12%) and blastocyst formation (10.64% and 10.10%). Reactive oxygen species and glutathione levels and the density of transzonal projections (TZPs) in oocytes did not differ between groups. The LM system increased mitochondrial activity and modified the organization of these organelles in the oocyte cytoplasm compared to the control group. The LM microbioreactor demonstrated the ability to improve the mitochondrial status of the oocytes and was not harmful for oocyte IVM and subsequent embryo development. Therefore, LM could be used as a 3D cost-effective culture system for the IVM of prepubertal goat oocytes.
Collapse
Affiliation(s)
- Andrea Podda
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy; (A.P.); (L.D.); (F.A.)
| | - Linda Dujíčková
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy; (A.P.); (L.D.); (F.A.)
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy; (A.P.); (L.D.); (F.A.)
| | | | - Dolors Izquierdo
- Department of Animal and Food Science, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (D.I.); (M.-T.P.)
| | - Maria-Teresa Paramio
- Department of Animal and Food Science, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (D.I.); (M.-T.P.)
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy; (A.P.); (L.D.); (F.A.)
| |
Collapse
|
9
|
Tanaka Y, Hanada T, Amano T, Takahashi A, Deguchi M, Yamanaka H, Tsuji S, Murakami T. Optimizing treatment efficacy and fertility preservation in patients undergoing hematopoietic stem cell transplantation: A narrative review of ovarian shielding with total-body irradiation or treosulfan-based conditioning regimens. Reprod Med Biol 2025; 24:e12648. [PMID: 40255903 PMCID: PMC12006034 DOI: 10.1002/rmb2.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Background Pediatric and adolescent/young adult (AYA) patients with hematologic malignancies often require hematopoietic stem cell transplantation (HSCT) using conditioning regimens that pose high risks for gonadal toxicity. Traditional protocols, including total body irradiation (TBI) and busulfan-based regimens, can impair fertility. This review explores the potential of gonadal shielding during TBI and treosulfan-based conditioning as strategies to optimize treatment efficacy while preserving fertility. Methods A PubMed search up to February 2025 was performed for English, peer-reviewed articles on hematologic malignancies, HSCT, shielding, and treosulfan. Studies on oncologic outcomes and fertility in pediatric and AYA patients were included. Main Findings Ovarian shielding during myeloablative conditioning with TBI effectively reduces ovarian radiation exposure, resulting in improved menstrual recovery and hormone profiles. A treosulfan-based regimen demonstrated higher antitumor activity than a reduced-intensity busulfan-based regimen in randomized controlled trials. In a retrospective analysis, the treosulfan-based regimen exhibited lower gonadal toxicity than the busulfan-based regimen, although careful attention must be paid to dosing settings of the regimens. Conclusion Ovarian shielding during TBI and a treosulfan-based regimen hold the potential to preserve the reproductive capacity of patients undergoing HSCT. Future clinical studies that appropriately assess both oncological outcomes and fertility are needed to validate these findings.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Obstetrics and GynaecologyShiga University of Medical ScienceOtsuShigaJapan
| | - Tetsuro Hanada
- Department of Obstetrics and GynaecologyShiga University of Medical ScienceOtsuShigaJapan
| | - Tsukuru Amano
- Department of Obstetrics and GynaecologyShiga University of Medical ScienceOtsuShigaJapan
| | - Akimasa Takahashi
- Department of Obstetrics and GynaecologyShiga University of Medical ScienceOtsuShigaJapan
| | - Mari Deguchi
- Department of Obstetrics and GynaecologyShiga University of Medical ScienceOtsuShigaJapan
| | - Hiroyuki Yamanaka
- Department of Obstetrics and GynaecologyShiga University of Medical ScienceOtsuShigaJapan
| | - Shunichiro Tsuji
- Department of Obstetrics and GynaecologyShiga University of Medical ScienceOtsuShigaJapan
| | - Takashi Murakami
- Department of Obstetrics and GynaecologyShiga University of Medical ScienceOtsuShigaJapan
| |
Collapse
|
10
|
Cheng H, Wei F, Del Valle JS, Stolk THR, Huirne JA, Asseler JD, Pilgram GSK, Van Der Westerlaken LAJ, Van Mello NM, Chuva De Sousa Lopes SM. In vitro growth of secondary follicles from cryopreserved-thawed ovarian cortex. Hum Reprod 2024; 39:2743-2753. [PMID: 39435626 PMCID: PMC11630006 DOI: 10.1093/humrep/deae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Indexed: 10/23/2024] Open
Abstract
STUDY QUESTION Can secondary follicles be obtained from cultured cryopreserved-thawed human ovarian cortical tissue? SUMMARY ANSWER We obtained high-quality secondary follicles from cultured cryopreserved-thawed human ovarian cortical tissue from cis female donors (cOVA), but not from trans masculine donors (tOVA) in the same culture conditions. WHAT IS KNOWN ALREADY The in vitro growth of oocytes present in unilaminar follicles into metaphase II stage (MII) oocytes has been previously achieved starting from freshly obtained ovarian cortical tissue from adult cis female donors. This involved a multi-step culture protocol and the first step included the transition from unilaminar follicles to multilayered secondary follicles. Given that the ovarian cortex (from both cis female and trans masculine donors) used for fertility preservation is cryopreserved, it is crucial to investigate the potential of unilaminar follicles from cryopreserved-thawed ovarian cortex to grow in culture. STUDY DESIGN, SIZE, DURATION Cryopreserved-thawed ovarian cortical tissue from adult trans masculine donors (n = 3) and adult cis female donors (n = 3) was used for in vitro culture following the first culture step described in two published culture protocols (7-8 days and 21 days) and compared to freshly isolated ovarian cortex from trans masculine donors (n = 3) and to ovarian cortex prior to culture. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian cortical tissue was obtained from adult trans masculine donors undergoing gender-affirming surgery while using testosterone, and from adult cis female donors undergoing oophorectomy for fertility preservation purposes before chemotherapy. The ovarian cortex was fixed either prior (day 0) or after the culture period. Follicular survival, growth, and morphology were assessed through histology and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE We quantified the different stages of follicular development (primordial, primary, secondary, and atretic) after culture and observed an increase in the percentage of secondary follicles as well as an increase in COLIV deposition in the stromal compartment regardless of the culture media used. The quality of the secondary follicles obtained from cOVA was comparable to those prior to culture. However, in the same culture conditions, the secondary follicles from tOVA (fresh and cryo) showed low-quality secondary follicles, containing oocytes with small diameter, granulosa cells that expressed abnormal levels of KRT19 and steroidogenic-marker STAR and lacked ACTA2+ theca cells, when compared to tOVA secondary follicles prior to culture. LIMITATIONS, REASONS FOR CAUTION The number of different donors used was limited. WIDER IMPLICATIONS OF THE FINDINGS Our study revealed that cryopreserved-thawed cOVA can be used to generate high-quality secondary follicles after culture and those can now be further tested to evaluate their potential to generate functional MII oocytes that could be used in the clinic. However, using the same culture protocol on tOVA (fresh and cryo) did not yield high-quality secondary follicles, suggesting that either the testosterone treatment affects follicular quality or adapted culture protocols are necessary to obtain high-quality secondary follicles from tOVA. Importantly, caution must be taken when using tOVA to optimize folliculogenesis in vitro. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the European Research Council Consolidator Grant OVOGROWTH (ERC-CoG-2016-725722 to J.S.D.V. and S.M.C.D.S.L.), the Novo Nordisk Foundation (reNEW NNF21CC0073729 to H.C., F.W., J.S.D.V., S.M.C.D.S.L.), and China Scholarship Council (CSC 202008320362 and CSC 202008450034 to H.C. and F.W.), respectively. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Fu Wei
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Julieta S Del Valle
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa H R Stolk
- Department of Obstetrics and Gynecology, Amsterdam UMC Location Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Judith A Huirne
- Department of Obstetrics and Gynecology, Amsterdam UMC Location Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Joyce D Asseler
- Department of Obstetrics and Gynecology, Amsterdam UMC Location Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Gonneke S K Pilgram
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Norah M Van Mello
- Department of Obstetrics and Gynecology, Amsterdam UMC Location Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Ghent-Fertility and Stem Cell Team (G-FAST), Department of Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. A spotlight on factors influencing the in vitro folliculogenesis of isolated preantral follicles. J Assist Reprod Genet 2024; 41:3287-3300. [PMID: 39373807 PMCID: PMC11707212 DOI: 10.1007/s10815-024-03277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Female fertility preservation via complete in vitro folliculogenesis is still chimerical. Due to many factors affecting the efficiency of isolation and culture of preantral follicles, the improvement of techniques geared to fertility preservation in higher mammals seems to be at an impasse. We need an objective view of the current stand to understand how to progress further. As such, a survey was conducted to analyze the relative distribution of studies performed in ten mammalian species on preantral follicle culture available on PubMed. Using the bovine as a reference model, we explore some factors influencing data variation that contribute to the difficulty in reproducing studies. While years of research have enabled the recapitulation of folliculogenesis from as modest as the early antral follicle stage ex vivo, in vitro preantral folliculogenesis remains elusive. Herein, we revisit the classical evidence that laid the foundations for understanding preantral folliculogenesis and review the length, breadth, and depth of information that the era of big data has currently levied. Moving forward, we recognize the urgency of synthesizing the multi-disciplinary approaches to mimic folliculogenesis in vitro to achieve a translational landscape of infertility at individual and large-scale conservation levels.
Collapse
Affiliation(s)
- Pritha Dey
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ludovica Donadini
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
12
|
McElhinney KL, Orr S, Gelarden IA, Laronda MM, Rowell EE. Is Routine Pathology Evaluation of Tissue Removed for Fertility Preservation Necessary? J Pediatr Surg 2024; 59:161632. [PMID: 39117537 PMCID: PMC11546292 DOI: 10.1016/j.jpedsurg.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND For all fertility preservation (FP) cases at our institution, a biopsy is performed for routine pathology from all gonadal tissue removed. This is not standard at all centers. We reviewed our experience with biopsy for pathological evaluation of ovarian and testicular specimens in FP cases to determine clinical utility. METHODS The medical records of individuals who underwent ovarian tissue cryopreservation (OTC) or testicular tissue cryopreservation (TTC) between 2011 and 2023 were retrospectively reviewed under an IRB-approved study at a free-standing tertiary care children's hospital. Patient demographics, diagnosis, operative characteristics, and pathology results were collected. RESULTS One-hundred and eighty-three patients underwent OTC, and 134 patients underwent TTC. All patients had their gonadal tissue biopsied for routine pathology. Malignancy was identified in the biopsies of 4 OTC patients (2.2%) and 2 TTC patients (1.5%). Two OTC patients (1.1%) and 2 TTC patients (1.5%) did not have germ cells identified in their biopsy. All OTC and TTC patients and families elected to continue storing tissue for FP after discussion of pathology findings. CONCLUSIONS Pathology results provide another data point to help inform patients and their families when making decisions on ovarian or testicular tissue storage and on how tissue may be utilized in the future to restore fertility and/or hormones. There is a low rate of identifying malignancy in gonadal tissue biopsies taken from FP specimens even in patients with known malignancy. However, when malignancy was identified, it could be unexpected and alter the diagnosis and treatment plan significantly for patients. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Kathryn L McElhinney
- Fertility & Hormone Preservation & Restoration Program, Division of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Sierra Orr
- Fertility & Hormone Preservation & Restoration Program, Division of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ian A Gelarden
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Monica M Laronda
- Fertility & Hormone Preservation & Restoration Program, Division of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erin E Rowell
- Fertility & Hormone Preservation & Restoration Program, Division of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Di Berardino C, Peserico A, Camerano Spelta Rapini C, Liverani L, Capacchietti G, Russo V, Berardinelli P, Unalan I, Damian-Buda AI, Boccaccini AR, Barboni B. Bioengineered 3D ovarian model for long-term multiple development of preantral follicle: bridging the gap for poly(ε-caprolactone) (PCL)-based scaffold reproductive applications. Reprod Biol Endocrinol 2024; 22:95. [PMID: 39095895 PMCID: PMC11295475 DOI: 10.1186/s12958-024-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
- DGS SpA, Via Paolo di Dono 73, 00142, Rome, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
14
|
Vitale F, Cacciottola L, Camboni A, Houeis L, Donnez J, Dolmans MM. Assessing the effect of adipose-tissue-derived stem cell conditioned medium on follicles and stromal cells in bovine ovarian tissue culture. Reprod Biomed Online 2024; 49:103938. [PMID: 38759499 DOI: 10.1016/j.rbmo.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 05/19/2024]
Abstract
RESEARCH QUESTION Does adipose-tissue-derived stem cell conditioned medium (ASC-CM) supplementation enhance follicle and stromal cell outcomes in vitro? DESIGN Bovine ovaries (n = 8) were sectioned and cultured in vitro for 8 days in two different groups: (i) standard culture (OT Ctrl D8); and (ii) culture with ASC-CM supplementation (OT + CM D8). Half of the culture medium was replaced every other day, and stored to measure the production of oestradiol. Follicle classification was established using haematoxylin and eosin staining. Follicle and stromal cell DNA fragmentation was assessed by TUNEL assays, while growth differentiation factor-9 (GDF-9) staining served as a marker of follicle quality. Additionally, three factors, namely vascular endothelial growth factor (VEGF), interleukin 6 (IL-6) and transforming growth factor beta 1 (TGF-β1), were evaluated in ASC-CM in order to appraise the potential underlying mechanisms of action of ASC. RESULTS The OT + CM D8 group showed a significantly higher proportion of secondary follicles (P = 0.02) compared with the OT Ctrl D8 group. The OT + CM D8 group also demonstrated significantly lower percentages of TUNEL-positive follicles (P = 0.014) and stromal cells (P = 0.001) compared with the OT Ctrl D8 group. Furthermore, follicles in the OT + CM D8 group exhibited a significant increase (P = 0.002) in expression of GDF-9 compared with those in the OT Ctrl D8 group, and oestradiol production was significantly higher (P = 0.04) in the OT + CM D8 group. All studied factors were found to be present in ASC-CM. VEGF and IL-6 were the most widely expressed factors, while TGF-β1 showed the lowest expression. CONCLUSIONS Addition of ASC-CM to culture medium enhances follicle survival, development and oestradiol production, and promotes the viability of stromal cells. VEGF, IL-6 and TGF-β1 could be paracrine mediators underlying the beneficial effects.
Collapse
Affiliation(s)
- Francisco Vitale
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luciana Cacciottola
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Pathology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lara Houeis
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium; Professor Em, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynaecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
15
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
16
|
Hao J, Li T, Heinzelmann M, Moussaud-Lamodière E, Lebre F, Krjutškov K, Damdimopoulos A, Arnelo C, Pettersson K, Alfaro-Moreno E, Lindskog C, van Duursen M, Damdimopoulou P. Effects of chemical in vitro activation versus fragmentation on human ovarian tissue and follicle growth in culture. Hum Reprod Open 2024; 2024:hoae028. [PMID: 38803550 PMCID: PMC11128059 DOI: 10.1093/hropen/hoae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
STUDY QUESTION What is the effect of the chemical in vitro activation (cIVA) protocol compared with fragmentation only (Frag, also known as mechanical IVA) on gene expression, follicle activation and growth in human ovarian tissue in vitro? SUMMARY ANSWER Although histological assessment shows that cIVA significantly increases follicle survival and growth compared to Frag, both protocols stimulate extensive and nearly identical transcriptomic changes in cultured tissue compared to freshly collected ovarian tissue, including marked changes in energy metabolism and inflammatory responses. WHAT IS KNOWN ALREADY Treatments based on cIVA of the phosphatase and tensin homolog (PTEN)-phosphatidylinositol 3-kinase (PI3K) pathway in ovarian tissue followed by auto-transplantation have been administered to patients with refractory premature ovarian insufficiency (POI) and resulted in live births. However, comparable effects with mere tissue fragmentation have been shown, questioning the added value of chemical stimulation that could potentially activate oncogenic responses. STUDY DESIGN SIZE DURATION Fifty-nine ovarian cortical biopsies were obtained from consenting women undergoing elective caesarean section (C-section). The samples were fragmented for culture studies. Half of the fragments were exposed to bpV (HOpic)+740Y-P (Frag+cIVA group) during the first 24 h of culture, while the other half were cultured with medium only (Frag group). Subsequently, both groups were cultured with medium only for an additional 6 days. Tissue and media samples were collected for histological, transcriptomic, steroid hormone, and cytokine/chemokine analyses at various time points. PARTICIPANTS/MATERIALS SETTING METHODS Effects on follicles were evaluated by counting and scoring serial sections stained with hematoxylin and eosin before and after the 7-day culture. Follicle function was assessed by quantification of steroids by ultra-performance liquid chromatography tandem-mass spectrometry at different time points. Cytokines and chemokines were measured by multiplex assay. Transcriptomic effects were measured by RNA-sequencing (RNA-seq) of the tissue after the initial 24-h culture. Selected differentially expressed genes (DEGs) were validated by quantitative PCR and immunofluorescence in cultured ovarian tissue as well as in KGN cell (human ovarian granulosa-like tumor cell line) culture experiments. MAIN RESULTS AND THE ROLE OF CHANCE Compared to the Frag group, the Frag+cIVA group exhibited a significantly higher follicle survival rate, increased numbers of secondary follicles, and larger follicle sizes. Additionally, the tissue in the Frag+cIVA group produced less dehydroepiandrosterone compared to Frag. Cytokine measurement showed a strong inflammatory response at the start of the culture in both groups. The RNA-seq data revealed modest differences between the Frag+cIVA and Frag groups, with only 164 DEGs identified using a relaxed cut-off of false discovery rate (FDR) <0.1. Apart from the expected PI3K-protein kinase B (Akt) pathway, cIVA also regulated pathways related to hypoxia, cytokines, and inflammation. In comparison to freshly collected ovarian tissue, gene expression in general was markedly affected in both the Frag+cIVA and Frag groups, with a total of 3119 and 2900 DEGs identified (FDR < 0.001), respectively. The top enriched gene sets in both groups included several pathways known to modulate follicle growth such as mammalian target of rapamycin (mTOR)C1 signaling. Significant changes compared to fresh tissue were also observed in the expression of genes encoding for steroidogenesis enzymes and classical granulosa cell markers in both groups. Intriguingly, we discovered a profound upregulation of genes related to glycolysis and its upstream regulator in both Frag and Frag+cIVA groups, and these changes were further boosted by the cIVA treatment. Cell culture experiments confirmed glycolysis-related genes as direct targets of the cIVA drugs. In conclusion, cIVA enhances follicle growth, as expected, but the mechanisms may be more complex than PI3K-Akt-mTOR alone, and the impact on function and quality of the follicles after the culture period remains an open question. LARGE SCALE DATA Data were deposited in the GEO data base, accession number GSE234765. The code for sequencing analysis can be found in https://github.com/tialiv/IVA_project. LIMITATIONS REASONS FOR CAUTION Similar to the published IVA protocols, the first steps in our study were performed in an in vitro culture model where the ovarian tissue was isolated from the regulation of hypothalamic-pituitary-ovarian axis. Further in vivo experiments will be needed, for example in xeno-transplantation models, to explore the long-term impacts of the discovered effects. The tissue collected from patients undergoing C-section may not be comparable to tissue of patients with POI. WIDER IMPLICATIONS OF THE FINDINGS The general impact of fragmentation and short (24 h) in vitro culture on gene expression in ovarian tissue far exceeded the effects of cIVA. Yet, follicle growth was stimulated by cIVA, which may suggest effects on specific cell populations that may be diluted in bulk RNA-seq. Nevertheless, we confirmed the impact of cIVA on glycolysis using a cell culture model, suggesting impacts on cellular signaling beyond the PI3K pathway. The profound changes in inflammation and glycolysis following fragmentation and culture could contribute to follicle activation and loss in ovarian tissue culture, as well as in clinical applications, such as fertility preservation by ovarian tissue auto-transplantation. STUDY FUNDING/COMPETING INTERESTS This study was funded by research grants from European Union's Horizon 2020 Research and Innovation Programme (Project ERIN No. 952516, FREIA No. 825100), Swedish Research Council VR (2020-02132), StratRegen funding from Karolinska Institutet, KI-China Scholarship Council (CSC) Programme and the Natural Science Foundation of Hunan (2022JJ40782). International Iberian Nanotechnology Laboratory Research was funded by the European Union's H2020 Project Sinfonia (857253) and SbDToolBox (NORTE-01-0145-FEDER-000047), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund. No competing interests are declared.
Collapse
Affiliation(s)
- Jie Hao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Tianyi Li
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Heinzelmann
- Department of Environment and Health, Amsterdam Institute for Life and Environment, Amsterdam, The Netherlands
| | - Elisabeth Moussaud-Lamodière
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filipa Lebre
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Kaarel Krjutškov
- Faculty of Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Catarina Arnelo
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Pettersson
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Research Program, Uppsala University, Uppsala, Sweden
| | - Majorie van Duursen
- Department of Environment and Health, Amsterdam Institute for Life and Environment, Amsterdam, The Netherlands
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Silber SJ, Goldsmith S, Castleman L, Hayashi K. In Vitro Maturation, In Vitro Oogenesis, and Ovarian Longevity. Reprod Sci 2024; 31:1234-1245. [PMID: 38160209 PMCID: PMC11090930 DOI: 10.1007/s43032-023-01427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
This paper will review a remarkable new approach to in vitro maturation "IVM" of oocytes from ovarian tissue, based on our results with in vitro oogenesis from somatic cells. As an aside benefit we also have derived a better understanding of ovarian longevity from ovary transplant. We have found that primordial follicle recruitment is triggered by tissue pressure gradients. Increased pressure holds the follicle in meiotic arrest and prevents recruitment. Therefore recruitment occurs first in the least dense inner tissue of the cortico-medullary junction. Many oocytes can be obtained from human ovarian tissue and mature to metaphase 2 in vitro with no need for ovarian stimulation. Ovarian stimulation may only be necessary for removing the oocyte from the ovary, but this can also be accomplished by simple dissection at the time of ovary tissue cryopreservation. By using surgical dissection of the removed ovary, rather than a needle stick, we can obtain many oocytes from very small follicles not visible with ultrasound. A clearer understanding of ovarian function has come from in vitro oogenesis experiments, and that explains why IVM has now become so simple and robust. Tissue pressure (and just a few "core genes" in the mouse) direct primordial follicle recruitment and development to mature oocyte, and therefore also control ovarian longevity. There are three distinct phases to oocyte development both in vitro and in vivo: in vitro differentiation "IVD" which is not gonadotropin sensitive (the longest phase), in vitro gonadotropin sensitivity "IVG" which is the phase of gonadotropin stimulation to prepare for meiotic competence, and IVM to metaphase II. On any given day 35% of GVs in ovarian tissue have already undergone "IVD" and "IVG" in vivo, and therefore are ready for IVM.
Collapse
Affiliation(s)
- Sherman J Silber
- Infertility Center of St. Louis at St. Luke's Hospital, St. Louis, MO, 63017, USA.
| | - Sierra Goldsmith
- Infertility Center of St. Louis at St. Luke's Hospital, St. Louis, MO, 63017, USA.
| | - Leilani Castleman
- Infertility Center of St. Louis at St. Luke's Hospital, St. Louis, MO, 63017, USA
| | - Katsuhiko Hayashi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Li J, Fan H, Liu W, Zhang J, Xiao Y, Peng Y, Yang W, Liu W, He Y, Qin L, Ma X, Li J. Mesenchymal stem cells promote ovarian reconstruction in mice. Stem Cell Res Ther 2024; 15:115. [PMID: 38650029 PMCID: PMC11036642 DOI: 10.1186/s13287-024-03718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.
Collapse
Affiliation(s)
- Jiazhao Li
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Scientific Research Department, Wannan Medical College, 241002, Wuhu, China
| | - Haonan Fan
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Yue Xiao
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Pathology Department, Nanjing Kingmed Medical Laboratory Co.,Ltd., 210032, Nanjing, China
| | - Weijie Yang
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 21003, Nanjing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
- Prenatal Diagnosis Department, First Affiliated Hospital, Nanjing Medical University, 210029, Nanjing, China.
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
19
|
Silvestris E, D’Oronzo S, Petracca EA, D’Addario C, Cormio G, Loizzi V, Canosa S, Corrado G. Fertility Preservation in the Era of Immuno-Oncology: Lights and Shadows. J Pers Med 2024; 14:431. [PMID: 38673058 PMCID: PMC11050999 DOI: 10.3390/jpm14040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, immuno-oncology has revolutionized the cancer treatment field by harnessing the immune system's power to counteract cancer cells. While this innovative approach holds great promise for improving cancer outcomes, it also raises important considerations related to fertility and reproductive toxicity. In fact, most young females receiving gonadotoxic anti-cancer treatments undergo iatrogenic ovarian exhaustion, resulting in a permanent illness that precludes the vocation of motherhood as a natural female sexual identity. Although commonly used, oocyte cryopreservation for future in vitro fertilization and even ovarian cortex transplantation are considered unsafe procedures in cancer patients due to their oncogenic risks; whereas, ovarian stem cells might support neo-oogenesis, providing a novel stemness model of regenerative medicine for future fertility preservation programs in oncology. Recent scientific evidence has postulated that immune checkpoint inhibitors (ICIs) might in some way reduce fertility by inducing either primary or secondary hypogonadism, whose incidence and mechanisms are not yet known. Therefore, considering the lack of data, it is currently not possible to define the most suitable FP procedure for young patients who are candidates for ICIs. In this report, we will investigate the few available data concerning the molecular regulation of ICI therapy and their resulting gonadal toxicity, to hypothesize the most suitable fertility preservation strategy for patients receiving these drugs.
Collapse
Affiliation(s)
- Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (E.A.P.); (G.C.); (V.L.)
| | - Stella D’Oronzo
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy;
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy
| | - Easter Anna Petracca
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (E.A.P.); (G.C.); (V.L.)
| | - Claudia D’Addario
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy;
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (E.A.P.); (G.C.); (V.L.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (E.A.P.); (G.C.); (V.L.)
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Stefano Canosa
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy;
| | - Giacomo Corrado
- Gynecologic Oncology Unit, Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00136 Roma, Italy;
| |
Collapse
|
20
|
Martin JH, Bernstein IR, Lyons JM, Brady AR, Mabotuwana NS, Stanger SJ, De Oliveira CS, Damyanova KB, Nixon B, Lord T. EPAS1 expression contributes to maintenance of the primordial follicle pool in the mouse ovary. Sci Rep 2024; 14:8770. [PMID: 38627575 PMCID: PMC11021563 DOI: 10.1038/s41598-024-59382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Oxygen availability can have profound effects on cell fate decisions and survival, in part by regulating expression of hypoxia-inducible factors (HIFs). In the ovary, HIF expression has been characterised in granulosa cells, however, any requirement in oocytes remains relatively undefined. Here we developed a Hif2a/Epas1 germline-specific knockout mouse line in which females were fertile, however produced 40% fewer pups than controls. No defects in follicle development were detected, and quality of MII oocytes was normal, as per assessments of viability, intracellular reactive oxygen species, and spindle parameters. However, a significant diminishment of the primordial follicle pool was evident in cKO females that was attributed to accelerated follicle loss from postnatal day 6 onwards, potentially via disruption of the autophagy pathway. These data demonstrate the importance of HIF signalling in oocytes, particularly at the primordial follicle stage, and lend to the importance of controlling oxygen tension in the development of in vitro growth and maturation approaches for assisted reproduction.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Program, New Lambton Heights, NSW, 2305, Australia
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jess M Lyons
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ariel R Brady
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nishani S Mabotuwana
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Camila Salum De Oliveira
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Katerina B Damyanova
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Program, New Lambton Heights, NSW, 2305, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Program, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
21
|
Tsui EL, McDowell HB, Laronda MM. Restoring Ovarian Fertility and Hormone Function: Recent Advancements, Ongoing Efforts and Future Applications. J Endocr Soc 2024; 8:bvae073. [PMID: 38698870 PMCID: PMC11065362 DOI: 10.1210/jendso/bvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 05/05/2024] Open
Abstract
The last 20 years have seen substantial improvements in fertility and hormone preservation and restoration technologies for a growing number of cancer survivors. However, further advancements are required to fill the gaps for those who cannot use current technologies or to improve the efficacy and longevity of current fertility and hormone restoration technologies. Ovarian tissue cryopreservation (OTC) followed by ovarian tissue transplantation (OTT) offers those unable to undergo ovarian stimulation for egg retrieval and cryopreservation an option that restores both fertility and hormone function. However, those with metastatic disease in their ovaries are unable to transplant this tissue. Therefore, new technologies to produce good-quality eggs and restore long-term cyclic ovarian function are being investigated and developed to expand options for a variety of patients. This mini-review describes current and near future technologies including in vitro maturation, in vitro follicle growth and maturation, bioprosthetic ovaries, and stem cell applications in fertility restoration research by their proximity to clinical application.
Collapse
Affiliation(s)
- Elizabeth L Tsui
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Hannah B McDowell
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Monica M Laronda
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Vitale F, Dolmans MM. Comprehensive Review of In Vitro Human Follicle Development for Fertility Restoration: Recent Achievements, Current Challenges, and Future Optimization Strategies. J Clin Med 2024; 13:1791. [PMID: 38542015 PMCID: PMC10970962 DOI: 10.3390/jcm13061791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 11/11/2024] Open
Abstract
Ovarian tissue cryopreservation (OTC) and subsequent transplantation (OTT) is a fertility preservation technique widely offered to prepubertal girls and young fertile women who need to undergo oncological treatment but are at a high risk of infertility. However, OTT is not considered safe in patients with certain diseases like leukemia, Burkitt's lymphoma, and ovarian cancer because of the associated risk of malignant cell reintroduction. In vitro follicle development has therefore emerged as a promising means of obtaining mature metaphase II (MII) oocytes from the primordial follicle (PMF) pool contained within cryopreserved ovarian tissue, without the need for transplantation. Despite its significant potential, this novel approach remains highly challenging, as it requires replication of the intricate process of intraovarian folliculogenesis. Recent advances in multi-step in vitro culture (IVC) systems, tailored to the specific needs of each follicle stage, have demonstrated the feasibility of generating mature oocytes (MII) from early-stage human follicles. While significant progress has been made, there is still room for improvement in terms of efficiency and productivity, and a long way to go before this IVC approach can be implemented in a clinical setting. This comprehensive review outlines the most significant improvements in recent years, current limitations, and future optimization strategies.
Collapse
Affiliation(s)
- Francisco Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium;
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium;
- Gynecology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
23
|
Subiran Adrados C, Cadenas J, Polat SL, Tjäder AS, Blanche P, Kristensen SG. Exploring the potential use of platelet rich plasma (PRP) from adult and umbilical cord blood in murine follicle culture. Reprod Biol 2024; 24:100851. [PMID: 38237503 DOI: 10.1016/j.repbio.2023.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 04/02/2024]
Abstract
Ovarian follicle culture is a powerful tool to study follicular physiology and has potential applications in clinical and commercial settings. Despite remarkable progress, recreating folliculogenesis in vitro remains challenging for many mammalian species. This study investigates the impact of platelet-rich plasma (PRP) derived from adult blood (human platelet lysate, hPL) and umbilical cord blood (Umbilical cord plasma, UCP) on murine pre-antral follicle culture and oocyte maturation. Pre-antral follicles were cultured individually for 10 days with fetal bovine serum (FBS) serving as the control and two PRP sources (hPL and UCP) and their activated forms (Ac-hPL and Ac-UCP). The results suggest that neither hPL nor UCP, regardless of activation status, improved follicle culture outcomes compared to FBS. Interestingly, activation did not significantly impact the main functional outcomes such as maturation rates, survival, and growth. Oestradiol secretion and oocyte diameter, often considered hallmarks of follicle quality, did not show significant differences between matured and non-matured oocytes across the treatment groups. However, gene expression analysis revealed a significant upregulation of Gdf-9 and Bmp-15 mRNA levels in oocytes from the Ac-UCP group, regardless of maturation stage, suggesting that the accumulation of the mRNA could be due to potential challenges in translation in the Ac-UCP group. In conclusion, this study challenges the hypothesis that PRP, as a serum source, could improve follicle culture outcomes compared to FBS, the gold standard in murine follicle culture. Further research is needed to understand the species-specific effects of PRP and explore other potential factors affecting follicle culture and oocyte quality.
Collapse
Affiliation(s)
- Cristina Subiran Adrados
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Sofie Lund Polat
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anna Sanderhage Tjäder
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Paul Blanche
- Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, Entrance B, 2nd floor, 1014 Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| |
Collapse
|
24
|
Christodoulaki A, He H, Zhou M, De Roo C, Baetens M, De Pretre T, Fakhar-I-Adil M, Menten B, Van Soom A, Stoop D, Boel A, Heindryckx B. Pronuclear transfer rescues poor embryo development of in vitro-grown secondary mouse follicles. Hum Reprod Open 2024; 2024:hoae009. [PMID: 38425578 PMCID: PMC10904147 DOI: 10.1093/hropen/hoae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
STUDY QUESTION Is pronuclear transfer (PNT) capable of restoring embryo developmental arrest caused by cytoplasmic inferiority of in vitro-grown (IVG) mouse oocytes? SUMMARY ANSWER PNT to in vivo matured cytoplasm significantly improved embryo development of IVG mouse oocytes, leading to living, fertile offspring. WHAT IS KNOWN ALREADY In vitro follicle culture has been considered as a fertility preservation option for cancer patients. Studies describing the culture of human follicles remain scarce, owing to low availability of tissue. Mouse models have extensively been used to study and optimize follicle culture. Although important achievements have been accomplished, including the production of healthy offspring in mice, IVG oocytes are of inferior quality when compared to in vivo-grown oocytes, likely because of cytoplasmic incompetence. STUDY DESIGN SIZE DURATION The study was carried out from September 2020 to February 2022. In total, 120 15-day-old B6D2 mice were used to perform secondary follicle culture and assess the quality of IVG oocytes. In vivo-grown control oocytes were obtained from 85 8- to 12-week-old B6D2 mice, following ovarian stimulation. For sperm collection, four B6D2 males between 10 and 14 weeks old were used. For embryo transfer, 14 8- to 12-week-old CD1 females served as surrogate mothers and 10 CD1 vasectomized males 10-24 weeks old were used to generate pseudo-pregnant females. Finally, for mating, four B6D2 female mice aged 8-10 weeks and two B6D2 male mice aged 10 weeks old were used to confirm the fertility of nuclear transfer (NT)-derived pups. PARTICIPANTS/MATERIALS SETTING METHODS Secondary follicles from 15-day-old B6D2 mice were isolated from the ovaries and cultured for 9 days, before a maturation stimulus was given. Following 16-18 h of maturation, oocytes were collected and evaluated on maturation rate, oocyte diameter, activation rate, spindle morphology, calcium-releasing ability, and mitochondrial membrane potential. For every experiment, in vivo-grown oocytes were used as a control for comparison. When cytoplasmic immaturity and poor embryo development were confirmed in IVG oocytes, PNT was performed. For this, the pronuclei from IVG oocytes, created following parthenogenetic activation and IVF, were transferred to the cytoplasm of fertilized, in vivo-grown oocytes. Genetic analysis and embryo transfer of the generated embryos were implemented to confirm the safety of the technique. MAIN RESULTS AND THE ROLE OF CHANCE Following 9 days of follicle culture, 703 oocytes were collected, of which 76% showed maturation to the metaphase II stage. Oocyte diameters were significantly lower in IVG oocytes, measuring 67.4 μm versus 73.1 μm in controls (P < 0.001). Spindle morphology did not differ significantly between IVG and control oocytes, but calcium-releasing ability was compromised in the IVG group. An average calcium release of 1.62 arbitrary units was observed in IVG oocytes, significantly lower than 5.74 in control oocytes (P < 0.001). Finally, mitochondrial membrane potential was inferior in IVG compared to the control group, reaching an average value of 0.95 versus 2.27 (P < 0.001). Developmental potential of IVG oocytes was assessed following parthenogenetic activation with strontium chloride (SrCl2). Only 59.4% of IVG oocytes cleaved to two cells and 36.3% reached the blastocyst stage, significantly lower than 89.5% and 88.2% in control oocytes, respectively (P < 0.001 and 0.001). Both PNT and spindle transfer (ST) were explored in pilot experiments with parthenogenetically activated oocytes, as a means to overcome poor embryo development. After the added value of NT was confirmed, we continued with the generation of biparental embryos by PNT. For this purpose, IVG and control oocytes first underwent IVF. Only 15.5% of IVG oocytes were normally fertilized, in contrast to 45.5% in controls (P < 0.001), with resulting failure of blastocyst formation in the IVG group (0 versus 86.2%, P < 0.001). When the pronuclei of IVG zygotes were transferred to the cytoplasm of control zygotes, the blastocyst rate was restored to 86.9%, a similar level as the control. Genetic analysis of PNT embryos revealed a normal chromosomal profile, to a rate of 80%. Finally, the generation of living, fertile offspring from PNT was possible following embryo transfer to surrogate mothers. LARGE-SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Genetic profiles of analysed embryos from PNT originate from groups that are too small to draw concrete conclusions, whilst ST, which would be the preferred NT approach, could not be used for the generation of biparental embryos owing to technical limitations. Even though promising, the use of PNT should be considered as experimental. Furthermore, results were acquired in a mouse model, so validation of the technique in human IVG oocytes needs to be performed to evaluate the clinical relevance of the technology. The genetic profiles from IVG oocytes, which would be the ultimate characterization for chromosomal abnormalities, were not analysed owing to limitations in the reliable analysis of single cells. WIDER IMPLICATIONS OF THE FINDINGS PNT has the ability to overcome the poor cytoplasmic quality of IVG mouse oocytes. Considering the low maturation efficiency of human IVG oocytes and potential detrimental effects following long-term in vitro culture, NT could be applied to rescue embryo development and could lead to an increased availability of good quality embryos for transfer. STUDY FUNDING/COMPETING INTERESTS A.C. is a holder of FWO (Fonds voor Wetenschappelijk Onderzoek) grants (1S80220N and 1S80222N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) 2018000504 (GOA030-18 BOF) funding. B.H. has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.
Collapse
Affiliation(s)
- Antonia Christodoulaki
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Haitang He
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Chloë De Roo
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Machteld Baetens
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Tine De Pretre
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Muhammad Fakhar-I-Adil
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Faculty of Veterinary Medicine, Department of Reproduction, Obstetrics and Herd Health, University of Ghent, Merelbeke, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
25
|
Einenkel R, Schallmoser A, Sänger N. High FSH levels impair VEGF secretion of human, frozen-thawed ovarian cortical tissue in vitro. Sci Rep 2024; 14:3287. [PMID: 38332226 PMCID: PMC10853201 DOI: 10.1038/s41598-024-53402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Cryopreservation and reimplantation of human ovarian tissue restore the ovarian hormonal function and fertility due to the preservation of follicles. As the success depends on proper angiogenesis, different approaches aim to support this process. In mice, pretreatment of ovarian tissue with FSH shows increased follicular numbers probably due to the supported angiogenesis by an increased vascular endothelial factor (VEGF) expression. However, in human tissue it remains completely unclear, which effect the hormonal status of the patient has at the time point of reimplantation. Frozen-thawed human ovarian cortical tissue was cultured for 48 h with 0, 1 or 10 ng/mL recombinant human FSH. VEGF-A expression was assessed by ELISA and immunohistofluorescence (IHF) analysis. By IHF, HIF-1α and FSHR expression dependency on culture and FSH concentration was analyzed. Follicles at all stages expressed VEGF-A, which increases during folliculogenesis. Frozen-thawed human ovarian cortical tissue secreted a not statistically different amount of VEGF-A, when cultured in presence of 1 ng/mL FSH (17.5 mIU/mL). However, the presence of 10 ng/mL FSH (175 mIU/mL) significantly decreased VEGF-A expression and secretion. The high FSH concentration increased especially the VEGF-A expression of already growing follicles. The presence of pre-menopausal concentrations of FSH had no significant effect on VEGF-A expression, whereas the presence of elevated FSH levels decreased cortical VEGF-A expression. A hormonal pre-treatment of women with elevated FSH concentrations prior to reimplantation might be considered to support angiogenesis. Here, we show that VEGF-A expression by follicles is affected by FSH dependent on the concentration.
Collapse
Affiliation(s)
- Rebekka Einenkel
- Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Andreas Schallmoser
- Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nicole Sänger
- Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
26
|
Fragomeni G, De Napoli L, De Gregorio V, Genovese V, Barbato V, Serratore G, Morrone G, Travaglione A, Candela A, Gualtieri R, Talevi R, Catapano G. Enhanced solute transport and steady mechanical stimulation in a novel dynamic perifusion bioreactor increase the efficiency of the in vitro culture of ovarian cortical tissue strips. Front Bioeng Biotechnol 2024; 12:1310696. [PMID: 38390358 PMCID: PMC10882273 DOI: 10.3389/fbioe.2024.1310696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction: We report the development and preliminary evaluation of a novel dynamic bioreactor to culture ovarian cortical tissue strips that leverages tissue response to enhanced oxygen transport and adequate mechanical stimulation. In vitro multistep ovarian tissue static culture followed by mature oocyte generation, fertilization, and embryo transfer promises to use the reserve of dormant follicles. Unfortunately, static in vitro culture of ovarian tissue does not promote development of primordial to secondary follicles or sustain follicle viability and thereby limits the number of obtainable mature oocytes. Enhancing oxygen transport to and exerting mechanical stimulation on ovarian tissue in a dynamic bioreactor may more closely mimic the physiological microenvironment and thus promote follicle activation, development, and viability. Materials and Methods: The most transport-effective dynamic bioreactor design was modified using 3D models of medium and oxygen transport to maximize strip perifusion and apply tissue fluid dynamic shear stresses and direct compressive strains to elicit tissue response. Prototypes of the final bioreactor design were manufactured with materials of varying cytocompatibility and assessed by testing the effect of leachables on sperm motility. Effectiveness of the bioreactor culture was characterized against static controls by culturing fresh bovine ovarian tissue strips for 7 days at 4.8 × 10-5 m/s medium filtration flux in air at -15% maximal total compressive strain and by assessing follicle development, health, and viability. Results and Conclusions: Culture in dynamic bioreactors promoted effective oxygen transport to tissues and stimulated tissues with strains and fluid dynamic shear stresses that, although non-uniform, significantly influenced tissue metabolism. Tissue strip culture in bioreactors made of cytocompatible polypropylene preserved follicle viability and promoted follicle development better than static culture, less so in bioreactors made of cytotoxic ABS-like resin.
Collapse
Affiliation(s)
- Gionata Fragomeni
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luigi De Napoli
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Vincenza De Gregorio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Vincenzo Genovese
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Vincenza Barbato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Giuseppe Serratore
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Giuseppe Morrone
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Angela Travaglione
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Andrea Candela
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Roberto Gualtieri
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Riccardo Talevi
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Gerardo Catapano
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| |
Collapse
|
27
|
Frost ER, Gilchrist RB. Making human eggs in a dish: are we close? Trends Biotechnol 2024; 42:168-178. [PMID: 37625913 DOI: 10.1016/j.tibtech.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
In the space of 50 years, we have seen incredible achievements in human reproductive medicine. With these leaps forward, it is no wonder that there is a major interest in women's reproductive health research, including extension of reproductive lifespan. Substantial effort is currently being made to address this challenge, including from the commercial sector. In vitro gametogenesis (IVG) in mice is a spectacular breakthrough and has the potential to offer hope to women with intractable infertility. However, with such lofty goals, some reflection may be called for: mastering all of the techniques required for complete and safe IVG in women is likely to be extraordinarily difficult.
Collapse
Affiliation(s)
- Emily R Frost
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
28
|
Rosario R, Stewart HL, Spears N, Telfer EE, Anderson RA. Anti-Mullerian hormone attenuates both cyclophosphamide-induced damage and PI3K signalling activation, while rapamycin attenuates only PI3K signalling activation, in human ovarian cortex in vitro. Hum Reprod 2024; 39:382-392. [PMID: 38070496 PMCID: PMC10833070 DOI: 10.1093/humrep/dead255] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/13/2023] [Indexed: 02/02/2024] Open
Abstract
STUDY QUESTION What are the effects of cyclophosphamide exposure on the human ovary and can anti-Mullerian hormone (AMH) and rapamycin protect against these? SUMMARY ANSWER Exposure to cyclophosphamide compromises the health of primordial and transitional follicles in the human ovarian cortex and upregulates PI3K signalling, indicating both direct damage and increased follicular activation; AMH attenuates both of these chemotherapy-induced effects, while rapamycin attenuates only PI3K signalling upregulation. WHAT IS KNOWN ALREADY Studies primarily in rodents demonstrate that cyclophosphamide causes direct damage to primordial follicles or that the primordial follicle pool is depleted primarily through excessive initiation of follicle growth. This increased follicular activation is mediated via upregulated PI3K signalling and/or reduced local levels of AMH production due to lost growing follicles. Furthermore, while rodent data show promise regarding the potential benefits of inhibitors/protectants alongside chemotherapy treatment to preserve female fertility, there is no information about the potential for this in humans. STUDY DESIGN, SIZE, DURATION Fresh ovarian cortical biopsies were obtained from 17 healthy women aged 21-41 years (mean ± SD: 31.8 ± 4.9 years) at elective caesarean section. Biopsies were cut into small fragments and cultured for 24 h with either vehicle alone (DMSO), the active cyclophosphamide metabolite 4-hydroperoxycyclophosphamide (4-HC) alone, 4-HC + rapamycin or 4-HC+AMH. Two doses of 4-HC were investigated, 0.2 and 2 μM in separate experiments, using biopsies from seven women (aged 27-41) and six women (aged 21-34), respectively. Biopsies from four women (aged 28-38) were used to investigate the effect of rapamycin or AMH only. PARTICIPANTS/MATERIALS, SETTING, METHODS Histological analysis of ovarian tissue was undertaken for follicle staging and health assessment. Western blotting and immunostaining were used to assess activation of PI3K signalling by measuring phosphorylation of AKT and phosphorylated FOXO3A staining intensity, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Exposure to either dose of 4-HC caused an increase in the proportion of unhealthy primordial (P < 0.0001, both doses) and transitional follicles (P < 0.01 for low dose and P < 0.01 for high dose) compared to vehicle. AMH significantly reduced follicle damage by approximately half in both of the investigated doses of 4-HC (P < 0.0001), while rapamycin had no protective effect on the health of the follicles. Culture with AMH or rapamycin alone had no effect on follicle health. Activation of PI3K signalling following 4-HC exposure was demonstrated by both Western blotting data showing that 4-HC increased in AKT phosphorylation and immunostaining showing increased phosphorylated FOXO3A staining of non-growing oocytes. Treatment with rapamycin reduced the activation of PI3K signalling in experiments with low doses of 4-HC while culture with AMH reduced PI3K activation (both AKT phosphorylation and phosphorylated FOXO3A staining intensity) across both doses investigated. LIMITATIONS, REASONS FOR CAUTION These in vitro studies may not replicate in vivo exposures. Furthermore, longer experiment durations are needed to determine whether the effects observed translate into irreparable deficits of ovarian follicles. WIDER IMPLICATIONS OF THE FINDINGS These data provide a solid foundation on which to explore the efficacy of AMH in protecting non-growing ovarian follicles from gonadotoxic chemotherapies. Future work will require consideration of the sustained effects of chemotherapy treatment and potential protectants to ensure these agents do not impair the developmental competence of oocytes or lead to the survival of oocytes with accumulated DNA damage, which could have adverse consequences for potential offspring. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from TENOVUS Scotland, the Academy of Medical Sciences (to R.R.), the Medical Research Council (G1100357 to R.A.A., MR/N022556/1 to the MRC Centre for Reproductive Health), and Merck Serono UK (to R.A.A.). R.R., H.L.S., N.S., and E.E.T. declare no conflicts of interest. R.A.A. reports grants and personal fees from Roche Diagnostics and Ferring Pharmaceuticals, and personal fees from IBSA and Merck outside the submitted work. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Roseanne Rosario
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Hazel L Stewart
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Norah Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Evelyn E Telfer
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Guo Y, Jia L, Zeng H, Sun P, Su W, Li T, Liang X, Fang C. Neurotrophin-4 promotes in vitro development and maturation of human secondary follicles yielding metaphase II oocytes and successful blastocyst formation. Hum Reprod Open 2024; 2024:hoae005. [PMID: 38371224 PMCID: PMC10873269 DOI: 10.1093/hropen/hoae005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/14/2023] [Indexed: 02/20/2024] Open
Abstract
STUDY QUESTION Does a matrix-free culture system supplemented with neurotrophic factor 4 (NT4) improve human in vitro follicular development and meiotic maturation, ultimately resulting in fertilizable oocytes? SUMMARY ANSWER NT4 supplementation of in vitro culture significantly enhances the growth, steroid hormone production, and maturity potential of human secondary follicles derived from fresh ovarian medulla (from post- and pre-pubertal patients), thereby yielding fertilizable oocytes. WHAT IS KNOWN ALREADY Reconstituting folliculogenesis in vitro is of paramount importance in the realms of fertility preservation, reproductive biology research, and reproductive toxicity assessments. However, the efficiency of in vitro culture systems remains suboptimal, as the attainment of fertilizable oocytes from in vitro growth (IVG) of human follicles remains unachieved, with the data being particularly scant regarding follicles from prepubertal girls. We have previously found that mouse oocytes from secondary follicles derived from IVG are deficient in neuroendocrine regulation. NT4 and its corresponding receptor have been identified in human follicles. Significantly, the addition of NT4 during the IVG process markedly enhances both follicle growth and oocyte maturation rates in mice. STUDY DESIGN SIZE DURATION Fresh medulla tissue obtained during tissue preparation for ovarian tissue cryopreservation (OTC) were collected from 10 patients aged from 6 to 21 years old, all of whom had undergone unilateral oophorectomy as a means of fertility preservation. Isolated secondary follicles were individually cultured in vitro with or without NT4 in a matrix-free system. PARTICIPANTS/MATERIALS SETTING METHODS Secondary follicles, extracted via enzymatic digestion and mechanical disruption from each patient, were randomly allocated to either a control group or an NT4-supplemented group (100 ng/ml), followed by individual culture on an ultra-low attachment plate. Follicle growth and viability were assessed by microscopy. Levels of anti-Müllerian hormone (AMH), estradiol, and progesterone in the medium were quantified. An oocyte-specific marker was identified using confocal fluorescence microscopy following DEAD box polypeptide 4 (DDX4) staining. The competence of individual oocytes for maturation and fertilization were assessed after IVM and ICSI with donated sperm samples. MAIN RESULTS AND THE ROLE OF CHANCE Overall, isolated follicles from both groups survived up to 6 weeks with increasing diameters over the duration (P < 0.05), reaching terminal diameters of almost 1 mm with confirmed steroidogenesis and expression of oocyte marker (DDX4), and producing morphologically normal MII oocytes. When compared with the control group, the NT4 group had a similar initial follicular diameter (206 ± 61.3 vs 184 ± 93.4 μm) but exhibited a significant increase in follicular diameter from the ninth day of culture onwards (P < 0.05). From Week 3, estradiol and progesterone production were significantly increased in the NT4 group, while no significant difference was observed in AMH production between groups. The proportion of 'fast-growth' follicles in the NT4 group was significantly higher than that in the control group (13/23 vs 6/24, P < 0.05). An increased efficiency of MII oocyte maturation per live follicle in the NT4 group was also observed (control group vs NT4 group, 4/24 vs 10/23, P < 0.05). It is noteworthy that an MII oocyte obtained from the control group exhibited abnormal fertilization after ICSI. In contrast, an MII oocyte acquired from the NT4 group progressed to the blastocyst stage and showed potential for transfer. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The cohort examined in this study was all patients diagnosed with beta-thalassemia major. Whether this culture system is effective for patients with other diseases remains unknown. Since the chosen dose of NT4 was established based on dose finding in mice, the optimal dose for use in a human IVG system needs further confirmation. The oocytes and embryos procured from this study have not been quantified for ploidy status or epigenetic signatures. WIDER IMPLICATIONS OF THE FINDINGS Fresh medulla tissue obtained during tissue preparation for OTC may serve as a precious source of fertilizable oocytes for female fertility preservation, even for pre-pubertal girls, without the threat of tumour reintroduction. After further characterization and optimization of the system, this culture system holds the potential to provide a powerful future research tool, for the comprehensive exploration of human follicular development mechanisms and for conducting reproductive toxicity evaluations. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Key R&D Program of China (grant number 2022YFC2703000) and National Natural Science Foundation of China (grant numbers 82271651 and 81871214). The medium used in human follicle in vitro culture in this study has been applied for a national invention patent in China (No. 202211330660.7). The inventors of the patent, in order, are: Y.G., C.F., and X.L.
Collapse
Affiliation(s)
- Yingchun Guo
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Haitao Zeng
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Peng Sun
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Wenlong Su
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Tingting Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| | - Cong Fang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangdong, Guangzhou, China
| |
Collapse
|
30
|
Malo C, Oliván S, Ochoa I, Shikanov A. In Vitro Growth of Human Follicles: Current and Future Perspectives. Int J Mol Sci 2024; 25:1510. [PMID: 38338788 PMCID: PMC10855051 DOI: 10.3390/ijms25031510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Ovarian tissue cryopreservation is gaining importance as a successful method to restore fertility to girls and young women at high risk of sterility. However, there are concerns regarding the safety of transplantation after ovarian tissue cryopreservation due to the high risk of reintroducing cancer cells and causing disease recurrence. In these cases, the development of culture systems that support oocyte development from the primordial follicle stage is required. Notable achievements have been reached in human follicle in vitro growth in the past decade. Currently, systems for the in vitro culture of ovarian tissue are based on two-dimensional substrates that do not support the survival of follicles or recapitulate the mechanical heterogenicity in the mammalian ovary. Recognition of the importance of special arrangements between cells has spurred research in three-dimensional culture systems, and the provision of a precise culture system that maximizes the diffusion of nutrients and gases through the follicles has raised interest in advanced biomimetic models. The current review critically examines various culture systems employed for the in vitro development of follicles, with a particular focus on solutions utilizing Organ-on-a-Chip (OOC) technology. The emphasis on OOC technology underscores its role as a promising avenue in ensuring the successful cultivation and maintenance of follicular structures during the culture period.
Collapse
Affiliation(s)
- Clara Malo
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (S.O.); (I.O.)
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Sara Oliván
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (S.O.); (I.O.)
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (S.O.); (I.O.)
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 50018 Zaragoza, Spain
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
Affiliation(s)
- Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Michel De Vos
- Brussels IVF, UZ Brussel, Brussels, Belgium
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Flor Sanchez
- Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva, Lima, Peru
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
- Centro de Fertilidad y Reproducción Asistida, Lima, Peru
| | - William L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
- City Fertility, Global CHA IVF Partners, Sydney, NSW, Australia
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
32
|
Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. Method of Isolation and In Vitro Culture of Primordial Follicles in Bovine Animal Model. Methods Mol Biol 2024; 2770:171-182. [PMID: 38351454 DOI: 10.1007/978-1-0716-3698-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The mammalian ovary is a substantial source of oocytes arranged into follicles at various stages of folliculogenesis, from the primordial to the ovulatory ones. Primordial follicles constitute the most abundant source of gametes inside the mammalian ovary at any given time.The isolation of a high number of primordial follicles, together with the development of protocols for in vitro follicle growth, would provide a powerful tool to fully exploit the female reproductive potential and boost the rescue and restoration of fertility in assisted reproduction technologies in human medicine, animal breeding, and preservation of threatened species. However, the most significant limitation is the lack of efficient methods for isolating a healthy and homogeneous population of viable primordial follicles suitable for in vitro culture. Here, we provide a fast and high-yield strategy for the mechanical isolation of primordial follicles from limited portions of the ovarian cortex in the bovine animal model.
Collapse
Affiliation(s)
- Pritha Dey
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ludovica Donadini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
33
|
Albamonte MI, Vitullo AD. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J Assist Reprod Genet 2023; 40:2755-2767. [PMID: 37770817 PMCID: PMC10656407 DOI: 10.1007/s10815-023-02945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treatments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient's future fertility. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreservation/grafting of immature testicular tissue and testicular organoids.
Collapse
Affiliation(s)
- María Itatí Albamonte
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
34
|
Khunmanee S, Yoo J, Lee JR, Lee J, Park H. Thiol-yne click crosslink hyaluronic acid/chitosan hydrogel for three-dimensional in vitro follicle development. Mater Today Bio 2023; 23:100867. [PMID: 38179228 PMCID: PMC10765241 DOI: 10.1016/j.mtbio.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
There is a great deal of potential for in vitro follicle growth to provide an alternative approach to fertility preservation. This strategy reduces the possibility of cancer cells re-exposure after transplantation, and it does not require hormone stimulation. Adopting a three-dimensional (3D) culture method helps preserve the architecture of the follicle and promotes the maturity of oocytes. In order to maintain follicle morphology, enhance the quality of mature oocytes, and facilitate meiotic spindle assembly, the current work aimed to develop the 3D in vitro preantral mouse follicle culture method. Thiolated chitosan-co-thiolated hyaluronic (CSHS) hydrogel was designed to evaluate the effects of biomaterials on ovarian follicle development. Isolated follicles from mouse ovaries were randomly divided into alginate (Alg) as a 3D control, thiolated hyaluronic acid (HASH), and CSHS groups. Single follicle was encapsulated in each hydrogel, and performed for 10 days and subsequently ovulated to retrieve mature oocytes on day 11. CSHS hydrogel promoted follicle survival and oocyte viability with maintained spherical morphology of follicle. Matured oocytes with normal appearance of meiotic spindle and chromosome alignment were higher in the CSHS group compared with those in the Alg and HASH groups. Furthermore, CSHS increased expression level of folliculogenesis genes (TGFβ-1, GDF-9) and endocrine-related genes (LHCGR, and FSHR). With various experimental setups and clinical applications, this platform could be applied as an alternative method to in vitro follicle culture with different experimental designs and clinical applications in the long-term period.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jungyoung Yoo
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do, 13135, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do, 13135, Republic of Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
35
|
Richard S, Anderson NJ, Zhou Y, Pankhurst MW. Mouse primary follicles experience slow growth rates after activation and progressive increases that influence the duration of the primary follicle phase†. Biol Reprod 2023; 109:684-692. [PMID: 37552056 PMCID: PMC10651066 DOI: 10.1093/biolre/ioad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/04/2023] [Accepted: 08/06/2023] [Indexed: 08/09/2023] Open
Abstract
There are conflicting estimates of the duration of mouse primary follicle development. An accurate determination is needed for studies examining preantral follicle survival and mathematical modeling of folliculogenesis. Primary follicle granulosa cell proliferation rates are low and variable, which may explain the variation in duration estimates. In the present study, female C57Bl6/J mice were exposed to bromodeoxyuridine for 48 hours, to label the proliferating granulosa cells in a large proportion of primary follicles. The bromodeoxyuridine-containing water was then withdrawn and replaced with drug-free water and the mice were euthanized at 0, 1, 3, 6, 10, or 13 days post-bromodeoxyuridine withdrawal. Granulosa cells were bromodeoxyuridine labeled in 48% of primary follicles at day 0, but this decreased to 5% over the 13-day period, as the labeled primary follicles progressed to the secondary follicle stage. Curve-fitting estimated that the last of the bromodeoxyuridine-labeled primary follicles would progress to the secondary stage by 13.7 days. Mathematical models that assumed constant rates of primary follicle proliferation were fitted to the data, but the observed pattern of bromodeoxyuridine-labeled primary follicle disappearance could not be replicated. The level of immunoreactivity for bromodeoxyuridine and proliferating-cell nuclear antigen in primary follicles revealed follicles with no granulosa cell proliferation during the 48-h bromodeoxyuridine-exposure period had resumed proliferation 1 or 3 days later. Therefore, primary follicle granulosa cells proliferate after follicle activation, but proliferation rates gradually increase as the follicle develops. Prior estimates of primary follicle duration are inaccurate due to the assumption that follicles develop at a constant rate.
Collapse
Affiliation(s)
- Sharon Richard
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Nicholas J Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yiran Zhou
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Subiran Adrados C, Cadenas J, Zheng M, Lund S, Larsen EC, Tanvig MH, Greve VH, Blanche P, Andersen CY, Kristensen SG. Human platelet lysate improves the growth and survival of cultured human pre-antral follicles. Reprod Biomed Online 2023; 47:103256. [PMID: 37690342 DOI: 10.1016/j.rbmo.2023.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 09/12/2023]
Abstract
RESEARCH QUESTION How do platelet-rich plasma products like human platelet lysate (HPL) and umbilical cord plasma (UCP) affect the growth and survival of isolated human pre-antral follicles in vitro? DESIGN Human pre-antral follicles (n = 724; mean diameter: 75 µm; range: 46-237 µm) were isolated from ovarian medulla donated by 14 patients undergoing unilateral oophorectomy for ovarian tissue cryopreservation. Follicles were encapsulated in 0.5% alginate and cultured for 8 days in media supplemented with 5% fetal bovine serum (FBS) (n = 171), 2.5% human serum albumin (HSA) (n = 159), 5% HPL (n = 223) or 5% UCP (n = 171). RESULTS The survival probability was significantly higher in the group supplemented with HPL (80%) compared with the other three groups: FBS (54%, P < 0.001); HSA (63%, P = 0.004) and UCP (29%, P < 0.001). Surviving follicles in the UCP group had less defined follicular membranes and decompacted granulosa cell layers. The median growth of surviving follicles was significantly (P < 0.001) larger in the HPL group (73 µm) compared with any of the other three groups: HSA (43 μm); FBS (40 μm) UCP (54 μm). A descriptive analysis of follicular secretion of anti-Müllerian hormone and oestradiol did not reveal any difference between the groups. The detectability of follicular genes was high for AR (100%), AMHR2 (100%) and FSHR (76%), whereas few follicles expressed LHR (20%). CONCLUSION Human platelet lysate significantly improved survival and growth of cultured human pre-antral follicles compared with FBS, HSA and UCP. The use of HPL is a valuable improvement to culture human pre-antral follicles but further studies will have to prove whether the superiority of HPL translates into better quality oocytes.
Collapse
Affiliation(s)
- Cristina Subiran Adrados
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Mengxue Zheng
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Lund
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Elisabeth Clare Larsen
- The Fertility Clinic, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mette Honnens Tanvig
- The Fertility Clinic, Department of Obstetrics and Gynecology, Odense University Hospital, Odense, Denmark
| | - Vinnie Hornshøj Greve
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 82, DK-8200, Aarhus N, Denmark
| | - Paul Blanche
- Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, Entrance B, 2nd floor, 1014 Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; The Fertility Clinic, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
37
|
Torkzadeh T, Asadi Z, Jafari Atrabi M, Eivazkhani F, Khodadi M, Hajiaghalou S, Akbarinejad V, Fathi R. Optimisation of hormonal treatment to improve follicular development in one-day-old mice ovaries cultured under in vitro condition. Reprod Fertil Dev 2023; 35:733-749. [PMID: 37995332 DOI: 10.1071/rd23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
CONTEXT Base medium containing knock-out serum replacement (KSR) has been found to support formation and maintenance of follicles in one-day-old mice ovaries, but has not been shown to properly support activation and growth of primordial follicles. AIMS The present study was conducted to tailor the hormonal content of base medium containing KSR to enhance development of primordial follicles in neonatal ovaries. METHODS One-day-old mice ovaries were initially cultured with base medium for four days, and then, different hormonal treatments were added to the culture media and the culture was proceeded for four additional days until day eight. Ovaries were collected for histological and molecular assessments on days four and eight. KEY RESULTS In experiment I, the main and interactive effects of FSH and testosterone were investigated and FSH promoted activation of primordial follicles and development of primary and preantral follicles, and upregulated genes of phosphoinositide 3-kinase (Pi3k ), KIT ligand (Kitl ), growth differentiation factor 9 (Gdf9 ) and follicle stimulating hormone receptor (Fshr ) (P Bmp15 ), Connexin-43 (Cx43 ) and luteinising hormone and choriogonadotropin receptor (Lhcgr ) (P P Lhcgr (P P >0.05). CONCLUSIONS Supplementation of culture medium containing KSR with gonadotropins, particularly hMG, could improve follicular growth and expression of factors regulating follicular development. IMPLICATIONS This study was a step forward in formulating an optimal medium for development of follicles in cultured one-day-old mice ovaries.
Collapse
Affiliation(s)
- Tahoura Torkzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Asadi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; and Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Mohammad Jafari Atrabi
- Institute of Pharmacology and Toxicology, University Medical Center, Georg August University, Göttingen, Germany; and Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research (DPZ), Göttingen, Germany
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Khodadi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Samira Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
38
|
Cacciottola L, Vitale F, Donnez J, Dolmans MM. Use of mesenchymal stem cells to enhance or restore fertility potential: a systematic review of available experimental strategies. Hum Reprod Open 2023; 2023:hoad040. [PMID: 37954935 PMCID: PMC10637864 DOI: 10.1093/hropen/hoad040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future clinical application? SUMMARY ANSWER Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings. WHAT IS KNOWN ALREADY Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a number of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites (homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities. STUDY DESIGN SIZE DURATION Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses, we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords: 'mesenchymal stem cells' AND 'ovarian follicles' OR 'ovarian tissue culture' OR 'ovarian follicle culture' OR 'cumulus oocyte complex'. Only peer-reviewed published articles written in English were included. PARTICIPANTS/MATERIALS SETTING METHODS The primary outcome for the experimental strategies was evaluation of the ovarian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels, oocyte growth and maturation rates, and of course pregnancy outcomes. MAIN RESULTS AND THE ROLE OF CHANCE Preclinical studies exploring MSCs from different animal origins and tissue sources in specific conditions were selected (n = 112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles; ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline. Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian tissue in experimental animal models. LIMITATIONS REASONS FOR CAUTION While preclinical results look promising in terms of protecting the ovarian reserve in different experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models), there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS All gathered data on the one hand show that regenerative medicine techniques are quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive medicine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively used in different clinical applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0077.14, FNRS-CDR J.0063.20, and grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, and the Fondation St Luc. None of the authors have any competing interest to disclose. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
39
|
Amin R, Bukulmez O, Woodruff JB. Visualization of Balbiani Body disassembly during human primordial follicle activation. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000989. [PMID: 37920272 PMCID: PMC10618801 DOI: 10.17912/micropub.biology.000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Dormant human oocytes contain a perinuclear super-organelle, called the Balbiani Body, which is not present in mature oocytes. Here, we use confocal imaging to visualize two Balbiani Body markers-mitochondria and the DEAD-box helicase DDX4-in preantral follicles isolated from a 20-year-old female patient. In primordial follicles, mitochondria were concentrated in a ring near the oocyte nucleus, while DDX4 formed adjacent micron-scale spherical condensates. In primary and secondary follicles, the mitochondria were dispersed throughout the oocyte cytoplasm, and large DDX4 condensates were not visible. Our data suggest that the Balbiani Body breaks down during the primordial to primary follicle transition, thus releasing mitochondria and soluble DDX4 protein into the oocyte cytoplasm.
Collapse
Affiliation(s)
- Ruchi Amin
- Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Orhan Bukulmez
- Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jeffrey B. Woodruff
- Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
40
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
41
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
42
|
Grubliauskaite M, van der Perk MEM, Bos AME, Meijer AJM, Gudleviciene Z, van den Heuvel-Eibrink MM, Rascon J. Minimal Infiltrative Disease Identification in Cryopreserved Ovarian Tissue of Girls with Cancer for Future Use: A Systematic Review. Cancers (Basel) 2023; 15:4199. [PMID: 37686475 PMCID: PMC10486797 DOI: 10.3390/cancers15174199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ovarian tissue cryopreservation and transplantation are the only available fertility techniques for prepubertal girls with cancer. Though autotransplantation carries a risk of reintroducing malignant cells, it can be avoided by identifying minimal infiltrative disease (MID) within ovarian tissue. METHODS A broad search for peer-reviewed articles in the PubMed database was conducted in accordance with PRISMA guidelines up to March 2023. Search terms included 'minimal residual disease', 'cryopreservation', 'ovarian', 'cancer' and synonyms. RESULTS Out of 542 identified records, 17 were included. Ovarian tissues of at least 115 girls were evaluated and categorized as: hematological malignancies (n = 56; 48.7%), solid tumors (n = 42; 36.5%) and tumors of the central nervous system (n = 17; 14.8%). In ovarian tissue of 25 patients (21.7%), MID was detected using RT-qPCR, FISH or multicolor flow cytometry: 16 of them (64%) being ALL (IgH rearrangements with/without TRG, BCL-ABL1, EA2-PBX1, TEL-AML1 fusion transcripts), 3 (12%) Ewing sarcoma (EWS-FLI1 fusion transcript, EWSR1 rearrangements), 3 (12%) CML (BCR-ABL1 fusion transcript, FLT3) and 3 (12%) AML (leukemia-associated immunophenotypes, BCR-ABL1 fusion transcript) patients. CONCLUSION While the majority of malignancies were found to have a low risk of containing malignant cells in ovarian tissue, further studies are needed to ensure safe implementation of future fertility restoration in clinical practice.
Collapse
Affiliation(s)
- Monika Grubliauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
- Department of Biobank, National Cancer Institute, Santariskiu Str. 1, LT-08406 Vilnius, Lithuania
| | | | - Annelies M. E. Bos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Reproductive Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Zivile Gudleviciene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division of Child Health, UMCU-Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
43
|
Barbato V, Genovese V, De Gregorio V, Di Nardo M, Travaglione A, De Napoli L, Fragomeni G, Zanetti EM, Adiga SK, Mondrone G, D'Hooghe T, Zheng W, Longobardi S, Catapano G, Gualtieri R, Talevi R. Dynamic in vitro culture of bovine and human ovarian tissue enhances follicle progression and health. Sci Rep 2023; 13:11773. [PMID: 37479791 PMCID: PMC10361967 DOI: 10.1038/s41598-023-37086-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023] Open
Abstract
In vitro ovarian cortical tissue culture, followed by culture of isolated secondary follicles, is a promising future option for production of mature oocytes. Although efforts have been made to improve the culture outcome by changing the medium composition, so far, most studies used static culture systems. Here we describe the outcome of 7 days cultures of bovine and human ovarian cortical tissue in a dynamic system using a novel perifusion bioreactor in comparison to static culture in conventional and/or gas permeable dishes. Findings show that dynamic culture significantly improves follicle quality and viability, percentage and health of secondary follicles, overall tissue health, and steroid secretion in both species. Model predictions suggest that such amelioration can be mediated by an enhanced oxygen availability and/or by fluid-mechanical shear stresses and solid compressive strains exerted on the tissue.
Collapse
Affiliation(s)
- Vincenza Barbato
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
| | - Vincenzo Genovese
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
- IVF Research, Education, Development S.R.L., Via Josemaria Escrivà, 68, 81100, Caserta, Italy
| | - Vincenza De Gregorio
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
| | - Maddalena Di Nardo
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
- Institute for Biomedical Technologies ITB, National Research Council CNR, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Angela Travaglione
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
| | - Luigi De Napoli
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Via P. Bucci, 87030, Rende, CS, Italy
| | - Gionata Fragomeni
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa - Loc. Germaneto, 88100, Catanzaro, Italy
| | | | - Satish K Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Giuseppe Mondrone
- IVF Research, Education, Development S.R.L., Via Josemaria Escrivà, 68, 81100, Caserta, Italy
| | - Thomas D'Hooghe
- Global Medical Unit Fertility, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven (Leuven University), Gasthuisberg Campus, Herestraat 49, 3000, Leuven, Belgium
| | - Wengijng Zheng
- Global Medical Unit Fertility, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Salvatore Longobardi
- Global Medical Unit Fertility, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Gerardo Catapano
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Via P. Bucci, 87030, Rende, CS, Italy
| | - Roberto Gualtieri
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
| | - Riccardo Talevi
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
44
|
Del Valle JS, Chuva de Sousa Lopes SM. Bioengineered 3D Ovarian Models as Paramount Technology for Female Health Management and Reproduction. Bioengineering (Basel) 2023; 10:832. [PMID: 37508859 PMCID: PMC10376580 DOI: 10.3390/bioengineering10070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Ovarian dysfunction poses significant threats to the health of female individuals. Ovarian failure can lead to infertility due to the lack or inefficient production of fertilizable eggs. In addition, the ovary produces hormones, such as estrogen and progesterone, that play crucial roles not only during pregnancy, but also in maintaining cardiovascular, bone, and cognitive health. Decline in estrogen and progesterone production due to ovarian dysfunction can result in menopausal-associated syndromes and lead to conditions, such as osteoporosis, cardiovascular disease, and Alzheimer's disease. Recent advances in the design of bioengineered three-dimensional (3D) ovarian models, such as ovarian organoids or artificial ovaries, have made it possible to mimic aspects of the cellular heterogeneity and functional characteristics of the ovary in vitro. These novel technologies are emerging as valuable tools for studying ovarian physiology and pathology and may provide alternatives for fertility preservation. Moreover, they may have the potential to restore aspects of ovarian function, improving the quality of life of the (aging) female population. This review focuses on the state of the art of 3D ovarian platforms, including the latest advances modeling female reproduction, female physiology, ovarian cancer, and drug screening.
Collapse
Affiliation(s)
- Julieta S Del Valle
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Trapphoff T, Dieterle S. Cryopreservation of Ovarian and Testicular Tissue and the Influence on Epigenetic Pattern. Int J Mol Sci 2023; 24:11061. [PMID: 37446239 DOI: 10.3390/ijms241311061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian tissue cryopreservation (OTC) or testicular tissue cryopreservation (TTC) are effective and often the only options for fertility preservation in female or male patients due to oncological, medical, or social aspects. While TTC and resumption of spermatogenesis, either in vivo or in vitro, has still be considered an experimental approach in humans, OTC and autotransplantation has been applied increasingly to preserve fertility, with more than 200 live births worldwide. However, the cryopreservation of reproductive cells followed by the resumption of gametogenesis, either in vivo or in vitro, may interfere with sensitive and highly regulated cellular processes. In particular, the epigenetic profile, which includes not just reversible modifications of the DNA itself but also post-translational histone modifications, small non-coding RNAs, gene expression and availability, and storage of related proteins or transcripts, have to be considered in this context. Due to complex reprogramming and maintenance mechanisms of the epigenome in germ cells, growing embryos, and offspring, OTC and TTC are carried out at very critical moments early in the life cycle. Given this background, the safety of OTC and TTC, taking into account the epigenetic profile, has to be clarified. Cryopreservation of mature germ cells (including metaphase II oocytes and mature spermatozoa collected via ejaculation or more invasively after testicular biopsy) or embryos has been used successfully for many years in medically assisted reproduction (MAR). However, tissue freezing followed by in vitro or in vivo gametogenesis has become more attractive in the past, while few human studies have analysed the epigenetic effects, with most data deriving from animal studies. In this review, we highlight the potential influence of the cryopreservation of immature germ cells and subsequent in vivo or in vitro growth and differentiation on the epigenetic profile (including DNA methylation, post-translational histone modifications, and the abundance and availability of relevant transcripts and proteins) in humans and animals.
Collapse
Affiliation(s)
| | - Stefan Dieterle
- Dortmund Fertility Centre, 44135 Dortmund, Germany
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Witten/Herdecke University, 44135 Dortmund, Germany
| |
Collapse
|
46
|
Dalman A, Adib S, Amorim CA, Pirjani R, Totonchi M, Valojerdi MR. Co-culture of human cryopreserved fragmented ovarian tissue with theca progenitor cells derived from theca stem cells. J Assist Reprod Genet 2023; 40:1611-1622. [PMID: 37079226 PMCID: PMC10352475 DOI: 10.1007/s10815-023-02799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Despite the significant advances in the in vitro development of human primordial follicles, it is still a challenging approach with great potential for improvements. Therefore, the present study aimed to investigate the effect of a feeder layer of human theca progenitor cells (hTPCs) on the development of primordial follicles embedded in human ovarian tissue. METHODS Fragments of frozen-thawed ovarian tissue were activated using the vanadate-derivative dipotassium bisperoxo (5-hydroxy-pyridine-2-carboxylic) oxovanadate (V) and kit ligand for 24 h. Then, the specimens were divided into the co-culture and mono-culture groups and were cultured with and without a hTPC feeder layer for 6 days, respectively. Afterward, the follicles were counted and classified, and the hormone levels and expression levels of apoptosis- and folliculogenesis-related genes were assessed. RESULTS Both culture groups showed significant follicle growth (P < 0.05). However, the co-culture group had a significantly higher number of growing follicles compared to the other group (P < 0.05). Moreover, the expression levels of ZP1, ZP2, ZP3, BMP-7, AMH, and GDF9 were significantly higher in the co-culture group compared to the other group (P < 0.05), while the expression levels of P53 and CASP3 were significantly lower (P < 0.05). Also, the concentrations of estradiol, progesterone, testosterone, and androstenedione were significantly higher in the co-culture group compared to the other group (P < 0.05). CONCLUSION The present study results provided novel evidence on the direct role of hTPCs in the growth and development of human primordial follicles. However, there is a need for future studies to illustrate the underlying mechanisms. Schematic summary of the results. According to our results, the expression of ZP1, ZP2, ZP3, and GDF9 in the oocytes, AMH in the granulosa cells, and BMP4 in the theca cells of the co-culture group were significantly higher than those of the mono-culture and non-culture groups, while the expression of apoptotic genes (BAX, CASP3, and P53) was significantly lower. Moreover, the co-culture group showed significantly increased levels of estradiol, progesterone, testosterone, and androstenedione in its culture media compared to the mono-culture groups.
Collapse
Affiliation(s)
- Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem Avenue, Resalat Highway, PO Box 19395- 4644, Tehran, Iran.
| | - Samane Adib
- Faculty of Medicine, Department of Anatomical Sciences & Cognitive Neuroscience, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, Bte. B1.55.03, 1200, Bruxelles, Belgique
| | - Reihaneh Pirjani
- Department of Obstetrics and Gynecology, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Street, P.O.Box:14115-111, Tehran, Iran.
| |
Collapse
|
47
|
Vitale F, Cacciottola L, Yu FS, Barretta M, Hossay C, Donnez J, Dolmans MM. Importance of oxygen tension in human ovarian tissue in vitro culture. Hum Reprod 2023:7194693. [PMID: 37308325 DOI: 10.1093/humrep/dead122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
STUDY QUESTION Is there any difference between 20% and 5% oxygen (O2) tension in vitro culture (IVC) on the viability and quality of human follicles contained in cultured ovarian cortex? SUMMARY ANSWER An O2 tension of 5% yields higher follicle viability and quality than does 20% O2 tension after 6 days of IVC. WHAT IS KNOWN ALREADY The primordial follicle (PMF) pool resides within the ovarian cortex, where the in vivo O2 tension ranges between 2% and 8%. Some studies suggest that lowering O2 tension to physiological levels may improve in vitro follicle quality rates. STUDY DESIGN, SIZE, DURATION This prospective experimental study included frozen-thawed ovarian cortex from six adult patients (mean age: 28.5 years; age range: 26-31 years) who were undergoing laparoscopic surgery for non-ovarian diseases. Ovarian cortical fragments were cultured for 6 days at (i) 20% O2 with 5% CO2 and (ii) 5% O2 with 5% CO2. Non-cultured fragments served as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Cortical fragments were used for the following analyses: hematoxylin and eosin staining for follicle count and classification; Ki67 staining to evaluate PMF proliferation; cleaved caspase-3 immunostaining to identify follicle apoptosis; 8-hydroxy-2-deoxyguanosine and gamma-H2AX (γH2AX) immunolabeling to detect oxidative stress damage and DNA double-strand breaks (DSBs) in oocytes and granulosa cells (GCs); and β-galactosidase staining to assess follicle senescence. Droplet digital PCR was also performed to further explore the gene expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 4 (GPX4) from the antioxidant defense system and cyclin-dependent kinase inhibitors (p21 and p16) as tissue senescence-related genes. MAIN RESULTS AND THE ROLE OF CHANCE Apoptosis (P = 0.002) and follicle senescence (P < 0.001) rates were significantly lower in the 5% O2 group than in the 20% O2 group. Moreover, GCs in follicles in the 20% O2 group exhibited significantly (P < 0.001) higher oxidative stress damage rates than those in the 5% O2 group. DNA DSB damage rates in GCs of follicles were also significantly higher (P = 0.001) in the 20% O2 group than in the 5% O2 group. SOD2 expression was significantly greater in the 5% O2 group compared to the 20% O2 group (P = 0.04) and the non-cultured group (P = 0.002). Expression of p21 was significantly increased in both the 20% O2 (P = 0.03) and 5% O2 (P = 0.008) groups compared to the non-cultured group. Moreover, the 20% O2 group showed significantly greater p16 expression (P = 0.04) than the non-cultured group, while no significant variation was observed between the 5% O2 and no culture groups. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study focuses on improving follicle outcomes during the first step of ovarian tissue IVC, where follicles remain in situ within the tissue. The impact of O2 tension in further steps, such as secondary follicle isolation and maturation, was not investigated here. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that 5% O2 tension culture is a promising step toward potentially solving the problem of poor follicle viability after IVC. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0064.22, CDR J.0063.20 and grant 5/4/150/5 awarded to M.M.D.). The authors have nothing to disclose.
Collapse
Affiliation(s)
- F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F S Yu
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - M Barretta
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - C Hossay
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
48
|
Reckhow J, Kula H, Babayev S. Fertility preservation options for transgender and nonbinary individuals. Ther Adv Endocrinol Metab 2023; 14:20420188231178371. [PMID: 37323161 PMCID: PMC10265329 DOI: 10.1177/20420188231178371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Transgender and nonbinary individuals are historically underserved by healthcare systems. A crucial area for improvement is fertility preservation counseling and service delivery, as gender-affirming hormone therapy and gender-affirming surgery may negatively affect future fertility. The methods available for fertility preservation depend on the patient's pubertal status and utilization of gender-affirming therapies, and counseling and delivery of these services are complex and require a multidisciplinary approach. Further research is needed to identify pertinent stakeholders in managing the care of these patients, as well as to better understand the optimal frameworks for delivering integrated and comprehensive care to this patient population. Fertility preservation is an active and exciting area of scientific discovery and offers a wealth of opportunities to improve the care of transgender and nonbinary individuals.
Collapse
Affiliation(s)
| | - Hakan Kula
- Obstetrics & Gynecology, Dokuz Eylul University, Izmir, Turkey
| | - Samir Babayev
- Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
49
|
Lucia Dos Santos Silva R, de Sousa Barberino R, Tavares de Matos MH. Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: A review. Theriogenology 2023; 207:110-122. [PMID: 37290274 DOI: 10.1016/j.theriogenology.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The in vitro culture systems of ovarian preantral follicles have been developed for studying follicular and oocyte growth, for future use of immature oocytes as sources of fertilizable oocytes and for screening ovarian toxic substances. One of the key limitations of the in vitro culture of preantral follicles is the oxidative stress by accumulation of reactive oxygen species (ROS), which can impair follicular development and oocyte quality. Several factors are associated with oxidative stress in vitro, which implies the need for a rigorous control of the conditions as well as addition of antioxidant agents to the culture medium. Antioxidant supplementation can minimize or eliminate the damage caused by ROS, supporting follicular survival and development and producing mature oocytes competent for fertilization. This review focuses on the use of antioxidants and their role in preventing follicular damage caused by oxidative stress in the in vitro culture of preantral follicles.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil.
| |
Collapse
|
50
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|