1
|
Ali S, Tyagi A, Park S, Bae H. Understanding the mechanobiology of phytoacoustics through molecular Lens: Mechanisms and future perspectives. J Adv Res 2024; 65:47-72. [PMID: 38101748 PMCID: PMC11518948 DOI: 10.1016/j.jare.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
Kaur A, Madhu, Sharma A, Singh K, Upadhyay SK. Investigation of two-pore K + (TPK) channels in Triticum aestivum L. suggests their role in stress response. Heliyon 2024; 10:e27814. [PMID: 38533012 PMCID: PMC10963239 DOI: 10.1016/j.heliyon.2024.e27814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Two-pore K+ (TPK) channels are voltage-independent and involved in stress response in plants. Herein, we identified 12 TaTPK genes located on nine chromosomes in the Triticum aestivum genome. The majority of TaTPK genes comprised two exons. Each TaTPK channel comprised four transmembrane (TM) helices, N- and C-terminal ion-channel domains, two EF-hand domains and one 14-3-3 binding site. Additionally, highly conserved 'GYGD' motif responsible for K+ ion specificity, was found in between the TMs in both the ion-channel domains. Nine TaTPK channels were predicted to be localised at the plasma membrane, while three were vacuolar. The protein-protein and protein-chemical interactions indicated the coordinated functioning of the TaTPK channels with the other K+ transporters and their possible interaction with the Ca2+-signaling pathway. Expression studies suggested their importance in both vegetative and reproductive tissues development. Significantly modulated expression of various TaTPK genes during heat, drought, combined heat and drought and salt stresses, and after fungal infestation, depicted their function in stress responses. The miRNAs and transcription factors interaction analyses suggested their role in the hormone, light, growth and development-related, and stress-responsive signaling cascades. The current study suggested vital functions of various TaTPK genes, especially in stress response, and would provide an opportunity for their detailed characterization in future studies.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh, India, 160014
| | - Madhu
- Department of Botany, Panjab University, Chandigarh, India, 160014
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, India, 160014
- Regional Ayurveda Research Institute, Gwalior, Madhya Pradesh, 474001, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | |
Collapse
|
3
|
Dabravolski SA, Isayenkov SV. Recent updates on the physiology and evolution of plant TPK/KCO channels. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:17-28. [PMID: 36220140 DOI: 10.1071/fp22117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plant vacuoles are the main cellular reservoirs to store K+ . The vacuolar K+ channels play a pivotal role in K+ exchange between cytosol and vacuolar sap. Among vacuolar K+ transporters, the Two Pore Potassium Channels (TPKs) are highly selective K+ channels present in most or all plant vacuoles and could be involved in various plant stress responses and developmental processes. Although the majority of TPK members have a vacuolar specialisation, some TPKs display different membrane localisation including the plasma membrane, tonoplast of protein storage vacuoles and probably chloroplast membranes. The functional properties as well as physiological roles of TPKs remains largely unexplored. In this review, we have collected recent data about the physiology, structure, functionality and evolution of TPK/KCO3 channels. We also critically evaluate the latest findings on the biological role, physiological functions, and regulation of TPK/KCO3 channels in relation to their structure and phylogenetic position. The possible role of TPK/KCO3 channels in plant tolerance to various abiotic stresses is summarised, and the future priority directions for TPK/KCO3 studies are addressed.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Stanislav V Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China; and Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells 2022; 11:cells11060921. [PMID: 35326372 PMCID: PMC8946281 DOI: 10.3390/cells11060921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023] Open
Abstract
A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.
Collapse
|
5
|
Liu C, Liao W. Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:110-121. [PMID: 35123248 DOI: 10.1016/j.plaphy.2022.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Potassium ion (K+) has been regarded as an essential signaling in plant growth and development. K+ transporters and channels at transcription and protein levels have been made great progress. K+ can enhance plant abiotic stress resistance. Meanwhile, it is now clear that calcium (Ca2+), reactive oxygen species (ROS), and reactive nitrogen species (RNS) act as signaling molecules in plants. They regulate plant growth and development and mediate K+ transport. However, the interaction of K+ with these signaling molecules remains unclear. K+ may crosstalk with Ca2+ and ROS/RNS in abiotic stress responses in plants. Also, there are interactions among K+, Ca2+, and ROS/RNS signaling pathways in plant growth, development, and abiotic stress responses. They regulate ion homeostasis, antioxidant system, and stress resistance-related gene expression in plants. Future work needs to focus on the deeper understanding of molecular mechanism of crosstalk among K+, Ca2+, and ROS/RNS under abiotic stress.
Collapse
Affiliation(s)
- Chan Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| |
Collapse
|
6
|
Chen J, Zeng H, Zhang X. Integrative transcriptomic and metabolomic analysis of D-leaf of seven pineapple varieties differing in N-P-K% contents. BMC PLANT BIOLOGY 2021; 21:550. [PMID: 34809576 PMCID: PMC8607640 DOI: 10.1186/s12870-021-03291-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Pineapple (Ananas comosus L. Merr.) is the third most important tropical fruit in China. In other crops, farmers can easily judge the nutritional requirements from leaf color. However, concerning pineapple, it is difficult due to the variation in leaf color of the cultivated pineapple varieties. A detailed understanding of the mechanisms of nutrient transport, accumulation, and assimilation was targeted in this study. We explored the D-leaf nitrogen (N), phosphorus (P), and potassium (K) contents, transcriptome, and metabolome of seven pineapple varieties. RESULTS Significantly higher N, P, and K% contents were observed in Bali, Caine, and Golden pineapple. The transcriptome sequencing of 21 libraries resulted in the identification of 14,310 differentially expressed genes in the D-leaves of seven pineapple varieties. Genes associated with N transport and assimilation in D-leaves of pineapple was possibly regulated by nitrate and ammonium transporters, and glutamate dehydrogenases play roles in N assimilation in arginine biosynthesis pathways. Photosynthesis and photosynthesis-antenna proteins pathways were also significantly regulated between the studied genotypes. Phosphate transporters and mitochondrial phosphate transporters were differentially regulated regarding inorganic P transport. WRKY, MYB, and bHLH transcription factors were possibly regulating the phosphate transporters. The observed varying contents of K% in the D-leaves was associated to the regulation of K+ transporters and channels under the influence of Ca2+ signaling. The UPLC-MS/MS analysis detected 873 metabolites which were mainly classified as flavonoids, lipids, and phenolic acids. CONCLUSIONS These findings provide a detailed insight into the N, P, K% contents in pineapple D-leaf and their transcriptomic and metabolomic signatures.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, 524091, China.
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China.
| | - Hui Zeng
- Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, 524091, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - Xiumei Zhang
- Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, 524091, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| |
Collapse
|
7
|
Dabravolski SA, Isayenkov SV. New Insights into Plant TPK Ion Channel Evolution. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112328. [PMID: 34834689 PMCID: PMC8619664 DOI: 10.3390/plants10112328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 05/14/2023]
Abstract
Potassium (K) is a crucial element of plant nutrition, involved in many physiological and molecular processes. K+ membrane transporters are playing a pivotal role in K+ transport and tissue distribution as well as in various plant stress responses and developmental processes. Two-pore K+-channels (TPKs) are essential to maintain plant K+ homeostasis and are mainly involved in potassium transport from the vacuoles to the cytosol. Besides vacuolar specialization, some TPK members display different membrane localization including plasma membrane, protein storage vacuole membrane, and probably the organelles. In this manuscript, we elucidate the evolution of the voltage-independent TPK (two-pore K+-channels) family, which could be represented in some species by one pore, K+-inward rectifier (Kir)-like channels. A comprehensive investigation of existing databases and application of modern bioinformatic tools allowed us to make a detailed phylogenetic inventory of TPK/KCO3 (KCO: potassium channel, outward rectifying) channels through many taxa and gain insight into the evolutionary origin of TPK family proteins. Our results reveal the fundamental evolutional difference between the first and second pores, traced throughout multiple taxa variations in the ion selection filter motif, presence of thansposon, and methylation site in the proximity of some KCO members and suggest virus-mediated horizontal transfer of a KCO3-like ancestor by viruses. Additionally, we suggest several interconnected hypotheses to explain the obtained results and provide a theoretical background for future experimental validation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 21002 Vitebsk, Belarus;
| | - Stanislav V. Isayenkov
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, 04123 Kyiv, Ukraine
- Correspondence:
| |
Collapse
|
8
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
9
|
Abstract
Our knowledge of plant ion channels was significantly enhanced by the first application of the patch-clamp technique to isolated guard cell protoplasts over 35 years ago. Since then, research has demonstrated the importance of ion channels in the control of gas exchange in guard cells, their role in nutrient uptake in roots, and the participation of calcium-permeable cation channels in the regulation of cell signaling affected by the intracellular concentrations of this second messenger. In recent years, through the employment of reverse genetics, mutant proteins, and heterologous expression systems, research on ion channels has identified mechanisms that modify their activity through protein-protein interactions or that result in activation and/or deactivation of ion channels through posttranslational modifications. Additional and confirmatory information on ion channel functioning has been derived from the crystallization and molecular modeling of plant proteins that, together with functional analyses, have helped to increase our knowledge of the functioning of these important membrane proteins that may eventually help to improve crop yield. Here, an update on the advances obtained in plant ion channel function during the last few years is presented.
Collapse
Affiliation(s)
- Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México;
| |
Collapse
|
10
|
Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. Biochem J 2020; 476:2725-2741. [PMID: 31654058 PMCID: PMC6792033 DOI: 10.1042/bcj20190134] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
In nature, light availability for photosynthesis can undergo massive changes on a very short timescale. Photosynthesis in such dynamic light environments requires that plants can respond swiftly. Expanding our knowledge of the rapid responses that underlie dynamic photosynthesis is an important endeavor: it provides insights into nature's design of a highly dynamic energy conversion system and hereby can open up new strategies for improving photosynthesis in the field. The present review focuses on three processes that have previously been identified as promising engineering targets for enhancing crop yield by accelerating dynamic photosynthesis, all three of them involving or being linked to processes in the chloroplast, i.e. relaxation of non-photochemical quenching, Calvin–Benson–Bassham cycle enzyme activation/deactivation and dynamics of stomatal conductance. We dissect these three processes on the functional and molecular level to reveal gaps in our understanding and critically discuss current strategies to improve photosynthesis in the field.
Collapse
|
11
|
Isner JC, Begum A, Nuehse T, Hetherington AM, Maathuis FJ. KIN7 Kinase Regulates the Vacuolar TPK1 K+ Channel during Stomatal Closure. Curr Biol 2018; 28:466-472.e4. [DOI: 10.1016/j.cub.2017.12.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 10/19/2017] [Accepted: 12/20/2017] [Indexed: 01/18/2023]
|
12
|
Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:28-46. [PMID: 32291019 DOI: 10.1071/fp16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 05/26/2023]
Abstract
Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.
Collapse
Affiliation(s)
- Vadim Demidchik
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| |
Collapse
|
13
|
Luan M, Tang RJ, Tang Y, Tian W, Hou C, Zhao F, Lan W, Luan S. Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3091-3105. [PMID: 27965362 DOI: 10.1093/jxb/erw444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Potassium (K) and phosphate (Pi) are both macronutrients essential for plant growth and crop production, but the unrenewable resources of phosphorus rock and potash have become limiting factors for food security. One critical measure to help solve this problem is to improve nutrient use efficiency (NUE) in plants by understanding and engineering genetic networks for ion uptake, translocation, and storage. Plants have evolved multiple systems to adapt to various nutrient conditions for growth and production. Within the NUE networks, transport proteins and their regulators are the primary players for maintaining nutrient homeostasis and could be utilized to engineer high NUE traits in crop plants. A large number of publications have detailed K+ and Pi transport proteins in plants over the past three decades. Meanwhile, the discovery and validation of their regulatory mechanisms are fast-track topics for research. Here, we provide an overview of K+ and Pi transport proteins and their regulatory mechanisms, which participate in the uptake, translocation, storage, and recycling of these nutrients in plants.
Collapse
Affiliation(s)
- Mingda Luan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yumei Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Wang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Congong Hou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Fugeng Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Wenzhi Lan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Dual-targeting of Arabidopsis DMP1 isoforms to the tonoplast and the plasma membrane. PLoS One 2017; 12:e0174062. [PMID: 28384172 PMCID: PMC5383025 DOI: 10.1371/journal.pone.0174062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
The reports of dual-targeted proteins in plants have steadily increased over the past years. The vast majority of these proteins are soluble proteins distributed between compartments of the non-secretory pathway, predominantly chloroplasts and mitochondria. In contrast, dual-targeted transmembrane proteins, especially of the secretory pathway, are rare and the mechanisms leading to their differential targeting remain largely unknown. Here, we report dual-targeting of the Arabidopsis DUF679 Membrane Protein 1 (DMP1) to the tonoplast (TP) and the plasma membrane (PM). In Arabidopsis and tobacco two equally abundant DMP1 isoforms are synthesized by alternative translation initiation: a full length protein, DMP1.1, and a truncated one, DMP1.2, which lacks the N-terminal 19 amino acids including a TP-targeting dileucine motif. Accumulation of DMP1.1 and DMP1.2 in the TP and the PM, respectively, is Brefeldin A-sensitive, indicating transit via the Golgi. However, DMP1.2 interacts with DMP1.1, leading to extensive rerouting of DMP1.2 to the TP and “eclipsed” localization of DMP1.2 in the PM where it is barely visible by confocal laser scanning microscopy but clearly detectable by membrane fractionation. It is demonstrated that eGFP fusion to either DMP1 terminus can cause mistargeting artifacts: C-terminal fusion to DMP1.1 or DMP1.2 results in altered ER export and N-terminal fusion to DMP1.1 causes mistargeting to the PM, presumably by masking of the TP targeting signal. These results illustrate how the interplay of alternative translation initiation, presence or absence of targeting information and rerouting due to protein-protein interaction determines the ultimate distribution of a transmembrane protein between two membranes.
Collapse
|
15
|
Nieves-Cordones M, Al Shiblawi FR, Sentenac H. Roles and Transport of Sodium and Potassium in Plants. Met Ions Life Sci 2016; 16:291-324. [PMID: 26860305 DOI: 10.1007/978-3-319-21756-7_9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The two alkali cations Na(+) and K(+) have similar relative abundances in the earth crust but display very different distributions in the biosphere. In all living organisms, K(+) is the major inorganic cation in the cytoplasm, where its concentration (ca. 0.1 M) is usually several times higher than that of Na(+). Accumulation of Na(+) at high concentrations in the cytoplasm results in deleterious effects on cell metabolism, e.g., on photosynthetic activity in plants. Thus, Na(+) is compartmentalized outside the cytoplasm. In plants, it can be accumulated at high concentrations in vacuoles, where it is used as osmoticum. Na(+) is not an essential element in most plants, except in some halophytes. On the other hand, it can be a beneficial element, by replacing K(+) as vacuolar osmoticum for instance. In contrast, K(+) is an essential element. It is involved in electrical neutralization of inorganic and organic anions and macromolecules, pH homeostasis, control of membrane electrical potential, and the regulation of cell osmotic pressure. Through the latter function in plants, it plays a role in turgor-driven cell and organ movements. It is also involved in the activation of enzymes, protein synthesis, cell metabolism, and photosynthesis. Thus, plant growth requires large quantities of K(+) ions that are taken up by roots from the soil solution, and then distributed throughout the plant. The availability of K(+) ions in the soil solution, slowly released by soil particles and clays, is often limiting for optimal growth in most natural ecosystems. In contrast, due to natural salinity or irrigation with poor quality water, detrimental Na(+) concentrations, toxic for all crop species, are present in many soils, representing 6 % to 10 % of the earth's land area. Three families of ion channels (Shaker, TPK/KCO, and TPC) and 3 families of transporters (HAK, HKT, and CPA) have been identified so far as contributing to K(+) and Na(+) transport across the plasmalemma and internal membranes, with high or low ionic selectivity. In the model plant Arabidopsis thaliana, these families gather at least 70 members. Coordination of the activities of these systems, at the cell and whole plant levels, ensures plant K(+) nutrition, use of Na(+) as a beneficial element, and adaptation to saline conditions.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France
| | - Fouad Razzaq Al Shiblawi
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France
| | - Hervé Sentenac
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France.
| |
Collapse
|
16
|
Kleist TJ, Luan S. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment. PLANT, CELL & ENVIRONMENT 2016; 39:467-481. [PMID: 26139029 DOI: 10.1111/pce.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses.
Collapse
Affiliation(s)
- Thomas J Kleist
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| | - Sheng Luan
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| |
Collapse
|
17
|
Hedrich R, Sauer N, Neuhaus HE. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:63-70. [PMID: 26000864 DOI: 10.1016/j.pbi.2015.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 05/06/2023]
Abstract
The ability of higher plants to store sugars is of crucial importance for plant development, adaption to endogenous or environmental cues and for the economic value of crop species. Sugar storage and accumulation, and its homeostasis in plant cells are managed by the vacuole. Although transport of sugars across the vacuolar membrane has been monitored for about four decades, the molecular entities of the transporters involved have been identified in the last 10 years only. Thus, it is just recently that our pictures of the transporters that channel the sugar load across the tonoplast have gained real shape. Here we describe the molecular nature and regulation of an important group of tonoplast sugar transporter (TST) allowing accumulation of sugars against large concentration gradients. In addition, we report on proton-driven tonoplast sugar exporters and on facilitators, which are also involved in balancing cytosolic and vacuolar sugar levels.
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, University of Würzburg, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nuremberg, Germany
| | | |
Collapse
|
18
|
Chevalier AS, Chaumont F. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals. PLANT & CELL PHYSIOLOGY 2015; 56:819-29. [PMID: 25520405 PMCID: PMC7107115 DOI: 10.1093/pcp/pcu203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Rosas-Santiago P, Lagunas-Gómez D, Barkla BJ, Vera-Estrella R, Lalonde S, Jones A, Frommer WB, Zimmermannova O, Sychrová H, Pantoja O. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2733-48. [PMID: 25750424 PMCID: PMC4986874 DOI: 10.1093/jxb/erv069] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Membrane proteins are synthesized and folded in the endoplasmic reticulum (ER), and continue their path to their site of residence along the secretory pathway. The COPII system has been identified as a key player for selecting and directing the fate of membrane and secretory cargo proteins. Selection of cargo proteins within the COPII vesicles is achieved by cargo receptors. The cornichon cargo receptor belongs to a conserved protein family found in eukaryotes that has been demonstrated to participate in the selection of integral membrane proteins as cargo for their correct targeting. Here it is demonstrated at the cellular level that rice cornichon OsCNIH1 interacts with OsHKT1;3 and, in yeast cells, enables the expression of the sodium transporter to the Golgi apparatus. Physical and functional HKT-cornichon interactions are confirmed by the mating-based split ubiquitin system, bimolecular fluorescence complementation, and Xenopus oocyte and yeast expression systems. The interaction between the two proteins occurs in the ER of plant cells and their co-expression in oocytes leads to the sequestration of the transporter in the ER. In the yeast cornichon mutant erv14, OsHKT1;3 is mistargeted, preventing the toxic effects of sodium transport in the cell observed in wild-type cells or in the erv14 mutant that co-expressed OsHKT1;3 with either OsCNIH1 or Erv14p. Identification and characterization of rice cornichon as a possible cargo receptor opens up the opportunity to improve our knowledge on membrane protein targeting in plant cells.
Collapse
Affiliation(s)
- Paul Rosas-Santiago
- Instituto de Biotecnología, Universidad Nacional de Autónoma de México, Cuernavaca, Morelos 62250, México Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Daniel Lagunas-Gómez
- Instituto de Biotecnología, Universidad Nacional de Autónoma de México, Cuernavaca, Morelos 62250, México
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional de Autónoma de México, Cuernavaca, Morelos 62250, México
| | - Sylvie Lalonde
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Alexander Jones
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Olga Zimmermannova
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., 142 20 Prague 4, Czech Republic
| | - Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional de Autónoma de México, Cuernavaca, Morelos 62250, México
| |
Collapse
|
20
|
Isayenkov SV, Maathuis FJM. The expression of rice vacuolar TPK channels genes restores potassium uptake in E. coli mutant strain LB2003. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
K₂p channels in plants and animals. Pflugers Arch 2014; 467:1091-104. [PMID: 25369776 DOI: 10.1007/s00424-014-1638-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Two-pore domain potassium (K2P) channels are membrane proteins widely identified in mammals, plants, and other organisms. A functional channel is a dimer with each subunit comprising two pore-forming loops and four transmembrane domains. The genome of the model plant Arabidopsis thaliana harbors five genes coding for K2P channels. Homologs of Arabidopsis K2P channels have been found in all higher plants sequenced so far. As with the K2P channels in mammals, plant K2P channels are targets of external and internal stimuli, which fine-tune the electrical properties of the membrane for specialized transport and/or signaling tasks. Plant K2P channels are modulated by signaling molecules such as intracellular H(+) and calcium and physical factors like temperature and pressure. In this review, we ask the following: What are the similarities and differences between K2P channels in plants and animals in terms of their physiology? What is the nature of the last common ancestor (LCA) of these two groups of proteins? To answer these questions, we present physiological, structural, and phylogenetic evidence that discards the hypothesis proposing that the duplication and fusion that gave rise to the K2P channels occurred in a prokaryote LCA. Conversely, we argue that the K2P LCA was most likely a eukaryote organism. Consideration of plant and animal K2P channels in the same study is novel and likely to stimulate further exchange of ideas between students of these fields.
Collapse
|
22
|
Liu SL, Pan AQ, Adams KL. Protein subcellular relocalization of duplicated genes in Arabidopsis. Genome Biol Evol 2014; 6:2501-15. [PMID: 25193306 PMCID: PMC4202327 DOI: 10.1093/gbe/evu191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene duplications during eukaroytic evolution, by successive rounds of polyploidy and by smaller scale duplications, have provided an enormous reservoir of new genes for the evolution of new functions. Preservation of many duplicated genes can be ascribed to changes in sequences, expression patterns, and functions. Protein subcellular relocalization (protein targeting to a new location within the cell) is another way that duplicated genes can diverge. We studied subcellular relocalization of gene pairs duplicated during the evolution of the Brassicaceae including gene pairs from the alpha whole genome duplication that occurred at the base of the family. We analyzed experimental localization data from green fluorescent protein experiments for 128 duplicate pairs in Arabidopsis thaliana, revealing 19 pairs with subcellular relocalization. Many more of the duplicate pairs with relocalization than with the same localization showed an accelerated rate of amino acid sequence evolution in one duplicate, and one gene showed evidence for positive selection. We studied six duplicate gene pairs in more detail. We used gene family analysis with several pairs to infer which gene shows relocalization. We identified potential sequence mutations through comparative analysis that likely result in relocalization of two duplicated gene products. We show that four cases of relocalization have new expression patterns, compared with orthologs in outgroup species, including two with novel expression in pollen. This study provides insights into subcellular relocalization of evolutionarily recent gene duplicates and features of genes whose products have been relocalized.
Collapse
Affiliation(s)
- Shao-Lun Liu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Present address: Department of Life Science, Tunghai University, Taichung, Taiwan
| | - An Qi Pan
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Present address: Mintec Inc., Vancouver, BC, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:696-707. [PMID: 24685330 DOI: 10.1016/j.jplph.2014.01.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Potassium is the most abundant macronutrient, which is involved in a multitude of physiological processes. Potassium uptake in roots is crucial for plants; however, K(+) efflux can also occur and has important functions. Potassium efflux from roots is mainly induced by stresses, such as pathogens, salinity, freezing, oxidants and heavy metals. Reactive oxygen species (ROS) and exogenous purines also cause this reaction. The depolarisation and activation of cation channels are required for K(+) efflux from plant roots. Potassium channels and nonselective cation channels (NSCCs) are involved in this process. Some of them are 'constitutive', while the others require a chemical agent for activation. In Arabidopsis, there are 77 genes that can potentially encode K(+)-permeable channels. Potassium-selective channel genes include 9 Shaker and 6 Tandem-Pore K(+) channels. Genes of NSCCs are more abundant and present by 20 cyclic nucleotide gated channels, 20 ionotropic glutamate receptors, 1 two-pore channel, 10 mechanosensitive-like channels, 2 mechanosensitive 'Mid1-Complementing Activity' channels, 1 mechanosensitive Piezo channel, and 8 annexins. Two Shakers (SKOR and GORK) and several NSCCs are expressed in root cell plasma membranes. SKOR mediates K(+) efflux from xylem parenchyma cells to xylem vessels while GORK is expressed in the epidermis and functions in K(+) release. Both these channels are activated by ROS. The GORK channel activity is stimulated by hydroxyl radicals that are generated in a Ca(2+)-dependent manner in stress conditions, such as salinity or pathogen attack, resulting in dramatic K(+) efflux from root cells. Potassium loss simulates cytosolic proteases and endonucleases, leading to programmed cell death. Other physiological functions of K(+) efflux channels include repolarisation of the plasma membrane during action potentials and the 'hypothetical' function of a metabolic switch, which provides inhibition of energy-consuming biosyntheses and releasing energy for defence and reparation needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, Minsk 220030, Belarus.
| |
Collapse
|
24
|
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:670-87. [PMID: 24635902 DOI: 10.1016/j.jplph.2014.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 05/18/2023]
Abstract
Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.
Collapse
Affiliation(s)
- Uta Anschütz
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany
| | - Dirk Becker
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany.
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
25
|
Yang H, Krebs M, Stierhof YD, Ludewig U. Characterization of the putative amino acid transporter genes AtCAT2, 3 &4: the tonoplast localized AtCAT2 regulates soluble leaf amino acids. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:594-601. [PMID: 24709150 DOI: 10.1016/j.jplph.2013.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 05/03/2023]
Abstract
The plant vacuole constitutes a large transient storage compartment for nutrients, proteins and metabolites, and is a major cellular sink for toxic waste compounds. Amino acids can cross the vacuolar membrane via specific transport proteins, which are molecularly not well characterized. Two members of a small subfamily of the cationic amino acid transporters, AtCAT2 and AtCAT4, were primarily localized at the tonoplast when tagged with GFP. The closely related AtCAT3, by contrast, was detected in the endoplasmic reticulum membrane. The exchange of a di-acidic motif at the carboxy-tail affected their sub-cellular localization, with larger effects visible in transiently transformed protoplasts compared to stably expressing plant lines. The genes have broad, partially overlapping tissue expression, with CAT2 dominating in most tissues. Loss-of-function mutants of individual CATs showed no visible phenotype under various conditions, but the overall tissue concentration of amino acids was increased in soil-grown cat2 mutants. The data suggest that CAT2 is a critical target of leaf amino acid concentrations and manipulation of this tonoplast transporter can significantly alter total tissue amino acid concentrations.
Collapse
Affiliation(s)
- Huaiyu Yang
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany; Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Melanie Krebs
- Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany; Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany.
| |
Collapse
|
26
|
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1259-70. [PMID: 24520019 DOI: 10.1093/jxb/eru004] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrolyte leakage accompanies plant response to stresses, such as salinity, pathogen attack, drought, heavy metals, hyperthermia, and hypothermia; however, the mechanism and physiological role of this phenomenon have only recently been clarified. Accumulating evidence shows that electrolyte leakage is mainly related to K(+) efflux from plant cells, which is mediated by plasma membrane cation conductances. Recent studies have demonstrated that these conductances include components with different kinetics of activation and cation selectivity. Most probably they are encoded by GORK, SKOR, and annexin genes. Hypothetically, cyclic nucleotide-gated channels and ionotropic glutamate receptors can also be involved. The stress-induced electrolyte leakage is usually accompanied by accumulation of reactive oxygen species (ROS) and often results in programmed cell death (PCD). Recent data strongly suggest that these reactions are linked to each other. ROS have been shown to activate GORK, SKOR, and annexins. ROS-activated K(+) efflux through GORK channels results in dramatic K(+) loss from plant cells, which stimulates proteases and endonucleases, and promotes PCD. This mechanism is likely to trigger plant PCD under severe stress. However, in moderate stress conditions, K(+) efflux could play an essential role as a 'metabolic switch' in anabolic reactions, stimulating catabolic processes and saving 'metabolic' energy for adaptation and repair needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, 220030, Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
27
|
Dadacz-Narloch B, Kimura S, Kurusu T, Farmer EE, Becker D, Kuchitsu K, Hedrich R. On the cellular site of two-pore channel TPC1 action in the Poaceae. THE NEW PHYTOLOGIST 2013; 200:663-674. [PMID: 23845012 DOI: 10.1111/nph.12402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function.
Collapse
Affiliation(s)
- Beata Dadacz-Narloch
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Sachie Kimura
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
28
|
Rojas-Pierce M. Targeting of tonoplast proteins to the vacuole. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:132-136. [PMID: 23987818 DOI: 10.1016/j.plantsci.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
Vacuoles are essential for plant growth and development, and are dynamic compartments that require constant deposition of integral membrane proteins. These membrane proteins carry out many critical functions of the vacuole such as transporting ions and metabolites for vacuolar storage. Understanding the mechanisms for targeting proteins to the vacuolar membrane, or tonoplast, is important for developing novel applications for biotechnology. The mechanisms to target tonoplast proteins to the vacuole are quite complex. Multiple routes, including both Golgi-dependent and Golgi-independent mechanisms, have been implicated in tonoplast protein trafficking. A few endomembrane proteins that regulate this traffic at the level of the endoplasmic reticulum, the pre-vacuolar compartment and the tonoplast are now known. Recent reports indicate that the Golgi-dependent and independent pathways may merge at the level of the pre-vacuolar compartment. Finally, the small GTP-binding protein Rab7 and the SNARE protein SYP21 have been implicated in the traffic of tonoplast proteins from the pre-vacuolar compartment to the tonoplast. With multiple cargo proteins being analyzed under a variety of experimental systems, a clearer picture for targeting mechanisms for tonoplast proteins is starting to emerge.
Collapse
Affiliation(s)
- Marcela Rojas-Pierce
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
29
|
Carraretto L, Formentin E, Teardo E, Checchetto V, Tomizioli M, Morosinotto T, Giacometti GM, Finazzi G, Szabó I. A Thylakoid-Located Two-Pore K+ Channel Controls Photosynthetic Light Utilization in Plants. Science 2013; 342:114-8. [DOI: 10.1126/science.1242113] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The size of the light-induced proton motive force (pmf) across the thylakoid membrane of chloroplasts is regulated in response to environmental stimuli. Here, we describe a component of the thylakoid membrane, the two-pore potassium (K+) channel TPK3, which modulates the composition of the pmf through ion counterbalancing. Recombinant TPK3 exhibited potassium-selective channel activity sensitive to Ca2+ and H+. In Arabidopsis plants, the channel is found in the thylakoid stromal lamellae. Arabidopsis plants silenced for the TPK3 gene display reduced growth and altered thylakoid membrane organization. This phenotype reflects an impaired capacity to generate a normal pmf, which results in reduced CO2 assimilation and deficient nonphotochemical dissipation of excess absorbed light. Thus, the TPK3 channel manages the pmf necessary to convert photochemical energy into physiological functions.
Collapse
|
30
|
Function and evolution of channels and transporters in photosynthetic membranes. Cell Mol Life Sci 2013; 71:979-98. [PMID: 23835835 PMCID: PMC3928508 DOI: 10.1007/s00018-013-1412-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/28/2013] [Accepted: 06/18/2013] [Indexed: 01/21/2023]
Abstract
Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants.
Collapse
|
31
|
Isayenkov S, Maathuis FJM. Arabidopsis thaliana vacuolar TPK channels form functional K⁺ uptake pathways in Escherichia coli. PLANT SIGNALING & BEHAVIOR 2013; 8:e24665. [PMID: 23656881 PMCID: PMC3909031 DOI: 10.4161/psb.24665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 05/20/2023]
Abstract
Very few vacuolar two pore potassium channels (TPKs) have been functionally characterized. In this paper we have used complementation of K(+) uptake deficient Escherichia coli mutant LB2003 to analyze the functional properties of Arabidopsis thaliana TPK family members. The four isoforms of AtTPKs were cloned and expressed in LB2003 E. coli background.The expression of channels in bacteria was analyzed by RT-PCR. Our results show that AtTPK1, AtTPK2 and AtTPK5 are restoring the LB2003 growth on low K(+) media. The analysis of potassium uptake exhibited elevated level of K(+) uptake in the same three types of AtTPKs transformants.
Collapse
|
32
|
Tapken D, Anschütz U, Liu LH, Huelsken T, Seebohm G, Becker D, Hollmann M. A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci Signal 2013; 6:ra47. [PMID: 23757024 DOI: 10.1126/scisignal.2003762] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that mediate neurotransmission in animal nervous systems. Homologous proteins in plants have been implicated in root development, ion transport, and several metabolic and signaling pathways. AtGLR3.4, a plant iGluR homolog from Arabidopsis thaliana, has ion channel activity and is gated by asparagine, serine, and glycine. Using heterologous expression in Xenopus oocytes, we found that another Arabidopsis iGluR homolog, AtGLR1.4, functioned as a ligand-gated, nonselective, Ca(2+)-permeable cation channel that responded to an even broader range of amino acids, none of which are agonists of animal iGluRs. Seven of the 20 standard amino acids--mainly hydrophobic ones--acted as agonists, with methionine being most effective and most potent. Nine amino acids were antagonists, and four, including glutamate and glycine, had no effect on channel activity. We constructed a model of this previously uncharacterized ligand specificity and used knockout mutants to show that AtGLR1.4 accounts for methionine-induced membrane depolarization in Arabidopsis leaves.
Collapse
Affiliation(s)
- Daniel Tapken
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Hachez C, Besserer A, Chevalier AS, Chaumont F. Insights into plant plasma membrane aquaporin trafficking. TRENDS IN PLANT SCIENCE 2013; 18:344-52. [PMID: 23291163 DOI: 10.1016/j.tplants.2012.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 05/11/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
34
|
New putative chloroplast vesicle transport components and cargo proteins revealed using a bioinformatics approach: an Arabidopsis model. PLoS One 2013; 8:e59898. [PMID: 23573218 PMCID: PMC3613420 DOI: 10.1371/journal.pone.0059898] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/19/2013] [Indexed: 11/23/2022] Open
Abstract
Proteins and lipids are known to be transported to targeted cytosolic compartments in vesicles. A similar system in chloroplasts is suggested to transfer lipids from the inner envelope to the thylakoids. However, little is known about both possible cargo proteins and the proteins required to build a functional vesicle transport system in chloroplasts. A few components have been suggested, but only one (CPSAR1) has a verified location in chloroplast vesicles. This protein is localized in the donor membrane (envelope) and vesicles, but not in the target membrane (thylakoids) suggesting it plays a similar role to a cytosolic homologue, Sar1, in the secretory pathway. Thus, we hypothesized that there may be more similarities, in addition to lipid transport, between the vesicle transport systems in the cytosol and chloroplast, i.e. similar vesicle transport components, possible cargo proteins and receptors. Therefore, using a bioinformatics approach we searched for putative chloroplast components in the model plant Arabidopsis thaliana, corresponding mainly to components of the cytosolic vesicle transport system that may act in coordination with previously proposed COPII chloroplast homologues. We found several additional possible components, supporting the notion of a fully functional vesicle transport system in chloroplasts. Moreover, we found motifs in thylakoid-located proteins similar to those of COPII vesicle cargo proteins, supporting the hypothesis that chloroplast vesicles may transport thylakoid proteins from the envelope to the thylakoid membrane. Several putative cargo proteins are involved in photosynthesis, thus we propose the existence of a novel thylakoid protein pathway that is important for construction and maintenance of the photosynthetic machinery.
Collapse
|
35
|
Pedrazzini E, Komarova NY, Rentsch D, Vitale A. Traffic Routes and Signals for the Tonoplast. Traffic 2013; 14:622-8. [DOI: 10.1111/tra.12051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria; Consiglio Nazionale delle Ricerche; Milano; Italy
| | | | - Doris Rentsch
- Institute of Plant Sciences; University of Bern; Bern; Switzerland
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria; Consiglio Nazionale delle Ricerche; Milano; Italy
| |
Collapse
|
36
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
37
|
Kang H, Kim SY, Song K, Sohn EJ, Lee Y, Lee DW, Hara-Nishimura I, Hwang I. Trafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor. THE PLANT CELL 2012; 24:5058-73. [PMID: 23263768 PMCID: PMC3556975 DOI: 10.1105/tpc.112.103481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/26/2012] [Accepted: 12/06/2012] [Indexed: 05/18/2023]
Abstract
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-Golgi network (TGN) during trafficking to the lytic vacuole (LV). Here, we report that VPS29 plays an essential role in the trafficking of soluble proteins to the LV from the TGN to the PVC. maigo1-1 (mag1-1) mutants, which harbor a knockdown mutation in VPS29, were defective in trafficking of two soluble proteins, Arabidopsis aleurain-like protein (AALP):green fluorescent protein (GFP) and sporamin:GFP, to the LV but not in trafficking membrane proteins to the LV or plasma membrane or via the secretory pathway. AALP:GFP and sporamin:GFP in mag1-1 protoplasts accumulated in the TGN but were also secreted into the medium. In mag1-1 mutants, VSR1 failed to recycle from the PVC to the TGN; rather, a significant proportion was transported to the LV; VSR1 overexpression rescued this defect. Moreover, endogenous VSRs were expressed at higher levels in mag1-1 plants. Based on these results, we propose that VPS29 plays a crucial role in recycling VSRs from the PVC to the TGN during the trafficking of soluble proteins to the LV.
Collapse
Affiliation(s)
- Hyangju Kang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Soo Youn Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyungyoung Song
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Eun Ju Sohn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
- Address correspondence to
| |
Collapse
|
38
|
Abstract
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K+-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K+ channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Collapse
Affiliation(s)
- Rainer Hedrich
- University of Wuerzburg, Institute for Molecular Plant Physiology and Biophysics, Wuerzburg, Germany; and King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M. A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLoS One 2012; 7:e44735. [PMID: 22957103 PMCID: PMC3434187 DOI: 10.1371/journal.pone.0044735] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/07/2012] [Indexed: 01/26/2023] Open
Abstract
Tonoplast intrinsic proteins (TIPs) facilitate the membrane transport of water and other small molecules across the plant vacuolar membrane, and members of this family are expressed in specific developmental stages and tissue types. Delivery of TIP proteins to the tonoplast is thought to occur by vesicle–mediated traffic from the endoplasmic reticulum to the vacuole, and at least two pathways have been proposed, one that is Golgi-dependent and another that is Golgi-independent. However, the mechanisms for trafficking of vacuolar membrane proteins to the tonoplast remain poorly understood. Here we describe a chemical genetic approach to unravel the mechanisms of TIP protein targeting to the vacuole in Arabidopsis seedlings. We show that members of the TIP family are targeted to the vacuole via at least two distinct pathways, and we characterize the bioactivity of a novel inhibitor that can differentiate between them. We demonstrate that, unlike for TIP1;1, trafficking of markers for TIP3;1 and TIP2;1 is insensitive to Brefeldin A in Arabidopsis hypocotyls. Using a chemical inhibitor that may target this BFA-insensitive pathway for membrane proteins, we show that inhibition of this pathway results in impaired root hair growth and enhanced vacuolar targeting of the auxin efflux carrier PIN2 in the dark. Our results indicate that the vacuolar targeting of PIN2 and the BFA-insensitive pathway for tonoplast proteins may be mediated in part by common mechanisms.
Collapse
Affiliation(s)
- Efrain E. Rivera-Serrano
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Maria F. Rodriguez-Welsh
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Glenn R. Hicks
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Marcela Rojas-Pierce
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Larisch N, Schulze C, Galione A, Dietrich P. An N-Terminal Dileucine Motif Directs Two-Pore Channels to the Tonoplast of Plant Cells. Traffic 2012; 13:1012-22. [DOI: 10.1111/j.1600-0854.2012.01366.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Nina Larisch
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| | - Christina Schulze
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| | - Antony Galione
- Department of Pharmacology; Oxford University; Oxford; OX1 3QT; UK
| | - Petra Dietrich
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| |
Collapse
|
41
|
Wolfenstetter S, Wirsching P, Dotzauer D, Schneider S, Sauer N. Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. THE PLANT CELL 2012; 24:215-32. [PMID: 22253225 PMCID: PMC3289566 DOI: 10.1105/tpc.111.090415] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/22/2011] [Accepted: 12/28/2011] [Indexed: 05/05/2023]
Abstract
Vacuoles perform a multitude of functions in plant cells, including the storage of amino acids and sugars. Tonoplast-localized transporters catalyze the import and release of these molecules. The mechanisms determining the targeting of these transporters to the tonoplast are largely unknown. Using the paralogous Arabidopsis thaliana inositol transporters INT1 (tonoplast) and INT4 (plasma membrane), we performed domain swapping and mutational analyses and identified a C-terminal di-leucine motif responsible for the sorting of higher plant INT1-type transporters to the tonoplast in Arabidopsis mesophyll protoplasts. We demonstrate that this motif can reroute other proteins, such as INT4, SUCROSE TRANSPORTER2 (SUC2), or SWEET1, to the tonoplast and that the position of the motif relative to the transmembrane helix is critical. Rerouted INT4 is functionally active in the tonoplast and complements the growth phenotype of an int1 mutant. In Arabidopsis plants defective in the β-subunit of the AP-3 adaptor complex, INT1 is correctly localized to the tonoplast, while sorting of the vacuolar sucrose transporter SUC4 is blocked in cis-Golgi stacks. Moreover, we demonstrate that both INT1 and SUC4 trafficking to the tonoplast is sensitive to brefeldin A. Our data show that plants possess at least two different Golgi-dependent targeting mechanisms for newly synthesized transporters to the tonoplast.
Collapse
Affiliation(s)
| | | | | | | | - Norbert Sauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and ECROPS (Erlangen Center of Plant Science), D-91058 Erlangen, Germany
| |
Collapse
|
42
|
Gomez-Porras JL, Riaño-Pachón DM, Benito B, Haro R, Sklodowski K, Rodríguez-Navarro A, Dreyer I. Phylogenetic analysis of k(+) transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. FRONTIERS IN PLANT SCIENCE 2012; 3:167. [PMID: 22876252 PMCID: PMC3410407 DOI: 10.3389/fpls.2012.00167] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/05/2012] [Indexed: 05/18/2023]
Abstract
As heritage from early evolution, potassium (K(+)) is absolutely necessary for all living cells. It plays significant roles as stabilizer in metabolism and is important for enzyme activation, stabilization of protein synthesis, and neutralization of negative charges on cellular molecules as proteins and nucleic acids. Land plants even enlarged this spectrum of K(+) utilization after having gone ashore, despite the fact that K(+) is far less available in their new oligotrophic habitats than in sea water. Inevitably, plant cells had to improve and to develop unique transport systems for K(+) accumulation and distribution. In the past two decades a manifold of K(+) transporters from flowering plants has been identified at the molecular level. The recently published genome of the fern ally Selaginella moellendorffii now helps in providing a better understanding on the molecular changes involved in the colonization of land and the development of the vasculature and the seeds. In this article we present an inventory of K(+) transporters of this lycophyte and pigeonhole them together with their relatives from the moss Physcomitrella patens, the monocotyledon Oryza sativa, and two dicotyledonous species, the herbaceous plant Arabidopsis thaliana, and the tree Populus trichocarpa. Interestingly, the transition of green plants from an aqueous to a dry environment coincides with a dramatic reduction in the diversity of voltage-gated potassium channels followed by a diversification on the basis of one surviving K(+) channel class. The first appearance of K(+) release (K(out)) channels in S. moellendorffii that were shown in Arabidopsis to be involved in xylem loading and guard cell closure coincides with the specialization of vascular plants and may indicate an important adaptive step.
Collapse
Affiliation(s)
| | - Diego Mauricio Riaño-Pachón
- Grupo de Biología Computacional y Evolutiva, Departamento de Ciencias Biológicas, Universidad de los AndesBogotá D.C., Colombia
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Kamil Sklodowski
- Institut für Biochemie und Biologie, Universität PotsdamPotsdam, Germany
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
- Institut für Biochemie und Biologie, Universität PotsdamPotsdam, Germany
- *Correspondence: Ingo Dreyer, Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223-Pozuelo de Alarcón (Madrid), Spain. e-mail:
| |
Collapse
|
43
|
Abstract
Protein turnover is fundamental both for development and cellular homeostasis. The mechanisms responsible for the turnover of integral membrane proteins in plant cells are however still largely unknown. Recently, considerable attention has been devoted to the degradation of plasma membrane proteins. We have now studied the turnover of a tonoplast protein, the potassium channel TPK1, in fully differentiated Arabidopsis leaf cells and showed that its degradation occurs upon internalization into the vacuole. Here, we discuss the possible mechanisms and triggering events involved.
Collapse
|
44
|
Shen Y, Wang J, Ding Y, Lo SW, Gouzerh G, Neuhaus JM, Jiang L. The rice RMR1 associates with a distinct prevacuolar compartment for the protein storage vacuole pathway. MOLECULAR PLANT 2011; 4:854-68. [PMID: 21493745 DOI: 10.1093/mp/ssr025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transport of vacuolar proteins from Golgi apparatus or trans-Golgi network (TGN) to vacuoles is a receptor-mediated process via an intermediate membrane-bound prevacuolar compartment (PVC) in plant cells. Both vacuolar sorting receptor (VSR) and receptor homology region-transmembrane domain-RING-H2 (RMR) proteins have been shown to function in transporting storage proteins to protein storage vacuole (PSV), but little is known about the nature of the PVC for the PSV pathway. Here, we use the rice RMR1 (OsRMR1) as a probe to study the PSV pathway in plants. Immunogold electron microscopy (EM) with specific OsRMR1 antibodies showed that OsRMR1 proteins were found in the Golgi apparatus, TGN, and a distinct organelle with characteristics of PVC in both rice culture cells and developing rice seeds, as well as the protein body type II (PBII) or PSV in developing rice seeds. This organelle, also found in both tobacco BY-2 and Arabidopsis suspension cultured cells, is morphologically distinct from the VSR-positive multivesicular lytic PVC or multivesicular body (MVB) and thus represent a PVC for the PSV pathway that we name storage PVC (sPVC). Further in vivo and in vitro interaction studies using truncated OsRMR1 proteins secreted into the culture media of transgenic BY-2 suspension cells demonstrated that OsRMR1 functions as a sorting receptor in transporting vicilin-like storage proteins.
Collapse
Affiliation(s)
- Yun Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Isayenkov S, Isner JC, Maathuis FJM. Membrane localisation diversity of TPK channels and their physiological role. PLANT SIGNALING & BEHAVIOR 2011; 6:1201-4. [PMID: 21757998 PMCID: PMC3260722 DOI: 10.4161/psb.6.8.15808] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 05/23/2023]
Abstract
Potassium (K) is one of the major nutrients that is essential for plant growth and development. The majority of cellular K+ resides in the vacuole and tonoplast K+ channels of the TPK (Two Pore K) family are main players in cellular K+ homeostasis. All TPK channels were previously reported to be expressed in the tonoplast of the large central lytic vacuole (LV) except for one isoform in Arabidopsis that resides in the plasma membrane. However, plant cells often contain more than one type of vacuole that coexist in the same cell. We recently showed that two TPK isoforms (OsTPKa and OsTPKb) from Oryza sativa localise to different vacuoles with OsTPKa predominantly found in the LV tonoplast and OsTPKb primarily in smaller compartments that resemble small vacuoles (SVs). Our study further revealed that it is the C-terminal domain that determines differential targeting of OsTPKa and OsTPKb. Three C-terminal amino acids were particularly relevant for targeting TPKs to their respective endomembranes. In this addendum we further evaluate how the different localisation of TPKa and TPKb impact on their physiological role and how TPKs provide a potential tool to study the physiology of different types of vacuole.
Collapse
Affiliation(s)
- Stanislav Isayenkov
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, Kiev, Ukraine
| | | | | |
Collapse
|
46
|
Maîtrejean M, Wudick MM, Voelker C, Prinsi B, Mueller-Roeber B, Czempinski K, Pedrazzini E, Vitale A. Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole. PLANT PHYSIOLOGY 2011; 156:1783-96. [PMID: 21697507 PMCID: PMC3149923 DOI: 10.1104/pp.111.177816] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/18/2010] [Indexed: 05/18/2023]
Abstract
The assembly, sorting signals, and turnover of the tonoplast potassium channel AtTPK1 of Arabidopsis (Arabidopsis thaliana) were studied. We used transgenic Arabidopsis expressing a TPK1-green fluorescent protein (GFP) fusion or protoplasts transiently transformed with chimeric constructs based on domain exchange between TPK1 and TPK4, the only TPK family member not located at the tonoplast. The results show that TPK1-GFP is a dimer and that the newly synthesized polypeptides transiently interact with a thus-far unidentified 20-kD polypeptide. A subset of the TPK1-TPK4 chimeras were unable to assemble correctly and these remained located in the endoplasmic reticulum where they interacted with the binding protein chaperone. Therefore, TPK1 must assemble correctly to pass endoplasmic reticulum quality control. Substitution of the cytosolic C terminus of TPK4 with the corresponding domain of TPK1 was sufficient to allow tonoplast delivery, indicating that this domain contains tonoplast sorting information. Pulse-chase labeling indicated that TPK1-GFP has a half-life of at least 24 h. Turnover of the fusion protein involves internalization into the vacuole where the GFP domain is released. This indicates a possible mechanism for the turnover of tonoplast proteins.
Collapse
|
47
|
Abstract
The most prominent ion channel localized in plant vacuoles is the slow activating SV type. Slow vacuolar (SV) channels were discovered by patch clamp studies as early as 1986. In the following two decades, numerous studies revealed that these calcium- and voltage-activated, nonselective cation channels are expressed in the vacuoles of all plants and every plant tissue. The voltage-dependent properties of the SV channel are susceptible to modulation by calcium, pH, redox state, as well as regulatory proteins. In Arabidopsis, the SV channel is encoded by the AtTPC1 gene, and even though its gene product represents the by far largest conductance of the vacuolar membrane, tpc1-loss-of-function mutants appeared not to be impaired in major physiological functions such as growth, development, and reproduction. In contrast, the fou2 gain-of-function point mutation D454N within TPC1 leads to a pronounced growth phenotype and increased synthesis of the stress hormone jasmonate. Since the TPC1 gene is present in all land plants, it likely encodes a very general function. In this review, we will discuss major SV channel properties and their impact on plant cell physiology.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | | |
Collapse
|
48
|
Okumoto S, Pilot G. Amino acid export in plants: a missing link in nitrogen cycling. MOLECULAR PLANT 2011; 4:453-63. [PMID: 21324969 PMCID: PMC3143828 DOI: 10.1093/mp/ssr003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/24/2010] [Indexed: 05/17/2023]
Abstract
The export of nutrients from source organs to parts of the body where they are required (e.g. sink organs) is a fundamental biological process. Export of amino acids, one of the most abundant nitrogen species in plant long-distance transport tissues (i.e. xylem and phloem), is an essential process for the proper distribution of nitrogen in the plant. Physiological studies have detected the presence of multiple amino acid export systems in plant cell membranes. Yet, surprisingly little is known about the molecular identity of amino acid exporters, partially due to the technical difficulties hampering the identification of exporter proteins. In this short review, we will summarize our current knowledge about amino acid export systems in plants. Several studies have described plant amino acid transporters capable of bi-directional, facilitative transport, reminiscent of activities identified by earlier physiological studies. Moreover, recent expansion in the number of available amino acid transporter sequences have revealed evolutionary relationships between amino acid exporters from other organisms with a number of uncharacterized plant proteins, some of which might also function as amino acid exporters. In addition, genes that may regulate export of amino acids have been discovered. Studies of these putative transporter and regulator proteins may help in understanding the elusive molecular mechanisms of amino acid export in plants.
Collapse
Affiliation(s)
- Sakiko Okumoto
- 549 Latham Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
49
|
Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L. Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:882-96. [PMID: 21251105 DOI: 10.1111/j.1365-313x.2010.04469.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Isayenkov S, Isner JC, Maathuis FJ. Rice two-pore K+ channels are expressed in different types of vacuoles. THE PLANT CELL 2011; 23:756-68. [PMID: 21224427 PMCID: PMC3077780 DOI: 10.1105/tpc.110.081463] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 11/30/2010] [Accepted: 12/17/2010] [Indexed: 05/17/2023]
Abstract
Potassium (K+) is a major nutrient for plant growth and development. Vacuolar K+ ion channels of the two-pore K+ (TPK) family play an important role in maintaining K+ homeostasis. Several TPK channels were previously shown to be expressed in the lytic vacuole (LV) tonoplast. Plants also contain smaller protein storage vacuoles (PSVs) that contain membrane transporters. However, the mechanisms that define how membrane proteins reach different vacuolar destinations are largely unknown. The Oryza sativa genome encodes two TPK isoforms (TPKa and TPKb) that have very similar sequences and are ubiquitously expressed. The electrophysiological properties of both TPKs were comparable, showing inward rectification and voltage independence. In spite of high levels of similarity in sequence and transport properties, the cellular localization of TPKa and TPKb channels was different, with TPKa localization predominantly at the large LV and TPKb primarily in smaller PSV-type compartments. Trafficking of TPKa was sensitive to brefeldin A, while that of TPKb was not. The use of TPKa:TPKb chimeras showed that C-terminal domains are crucial for the differential targeting of TPKa and TPKb. Site-directed mutagenesis of C-terminal residues that were different between TPKa and TPKb identified three amino acids that are important in determining ultimate vacuolar destination.
Collapse
Affiliation(s)
| | | | - Frans J.M. Maathuis
- University of York, Biology Department/Area 9, York YO10 5DD, United Kingdom
| |
Collapse
|