1
|
Peng J, Zhang Y, Yang J, Zhou L, Zhang S, Wu X, Chen J, Hu D, Gan X. Novel trans-Resveratrol Derivatives: Design, Synthesis, Antibacterial Activity, and Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15561-15571. [PMID: 38957133 DOI: 10.1021/acs.jafc.4c02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Rice bacterial leaf blight and rice bacterial leaf streak have induced tremendous damage to production of rice worldwide. To discover an effective novel antibacterial agent, a series of novel trans-resveratrol (RSV) derivatives containing 1,3,4-oxadiazole and amide moieties were designed and synthesized for the first time. Most of them showed excellent antibacterial activities against Xanthomonas oryzae pv oryzicola and Xanthomonas oryzae pv oryzae. Especially, compound J12 had the best inhibitory with the half-maximal effective concentration values of 4.2 and 5.0 mg/L, respectively, which were better than that of RSV (63.7 and 75.4 mg/L), bismerthiazol (79.5 and 89.6 mg/L), and thiodiazole copper (105.4 and 112.8 mg/L). Furthermore, compound J12 had an excellent control effect against rice bacterial leaf streak and rice bacterial leaf blight, with protective activities of 46.2 and 42.1% and curative activities of 44.5 and 41.7%, respectively. Preliminary mechanisms indicated that compound J12 could not only remarkably decrease biofilm formation, extracellular polysaccharide production, and the synthesis of extracellular enzymes but also destroy bacterial cell surface morphology, thereby reducing the pathogenicity of bacteria. In addition, compound J12 could increase the activity of defense-related enzymes and affect the expression of multiple pathogenic-related genes including plant-pathogen interaction, the MAPK signaling pathway, and phenylpropanoid biosynthesis, and this could improve the defense of rice against rice bacterial leaf streak infection. The present work indicates that the RSV derivatives can be used as promising candidates for the development of antibacterial agents.
Collapse
Affiliation(s)
- Ju Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingguo Yang
- Technology Center, China Tobacco GuiZhou Industrial Co., Ltd., Guiyang 550009, China
| | - Leliang Zhou
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Shangdu Zhang
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiang Wu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Zhang A, Song R, Wang R, Li H, Hu D, Song B. Synthesis and Antibacterial Activities of 2- Oxo- N-phenylacetamide Derivatives Containing a Dissulfone Moiety Target on Clp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9356-9366. [PMID: 35862796 DOI: 10.1021/acs.jafc.2c02605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rice bacterial blight and rice bacterial streak are two serious rice diseases and have caused great harm to the production of rice all over the world. To develop an efficient antibacterial agent with a novel target, a series of novel 2-oxo-N-phenylacetamide derivatives containing a dissulfone moiety were synthesized, and their antibacterial activities were evaluated. Among them, compound D14 exhibited the best antibacterial activities, especially against Xoo and Xoc with EC50 values of 0.63 and 0.79 mg/L, respectively, which were much better than the commercial control of bismerthiazol (BT) (76.59 and 83.35 mg/L, respectively) and thiodiazole copper (TC) (91.72 and 114.00 mg/L, respectively). Meanwhile, compound D14 can interact with a CRP-like protein (Clp) of Pxo99A and show strong binding activity with Xoo-Clp with a Kd value of 0.52 μM, which was far superior to the corresponding Kd values of BT (183.94 μM) and TC (222.58 μM). Treatment of D14 and deletion of the clp gene could significantly reduce the expression of the clp gene and attenuate the virulence of pathogenic bacteria. These results indicated that compound D14 could be used as a potential novel agricultural bactericide and Clp can be used as a target protein for the control of plant bacterial diseases. This work provided reliable support for developing novel antibacterial agents based on Clp as a target protein.
Collapse
Affiliation(s)
- Awei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ronghua Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongde Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
3
|
Yang Y, Zhou Y, Sun J, Liang W, Chen X, Wang X, Zhou J, Yu C, Wang J, Wu S, Yao X, Zhou Y, Zhu J, Yan C, Zheng B, Chen J. Research Progress on Cloning and Function of Xa Genes Against Rice Bacterial Blight. FRONTIERS IN PLANT SCIENCE 2022; 13:847199. [PMID: 35386667 PMCID: PMC8978965 DOI: 10.3389/fpls.2022.847199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases that hinder the normal growth and production of rice, which greatly reduces the quality and yield of rice. The effect of traditional methods such as chemical control is often not ideal. A series of production practices have shown that among the numerous methods for BB controlling, breeding and using resistant varieties are the most economical, effective, and environmentally friendly, and the important basis for BB resistance breeding is the exploration of resistance genes and their functional research. So far, 44 rice BB resistance genes have been identified and confirmed by international registration or reported in journals, of which 15 have been successfully cloned and characterized. In this paper, research progress in recent years is reviewed mainly on the identification, map-based cloning, molecular resistance mechanism, and application in rice breeding of these BB resistance genes, and the future influence and direction of the remained research for rice BB resistance breeding are also prospected.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jia Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Fujian A & F University, Fuzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Junmin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shilu Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiaoming Yao
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Yujie Zhou
- Zhuji Agricultural Technology Extension Center, Zhuji, China
| | - Jie Zhu
- Plant Protection and Soil Fertilizer Management Station of Wenzhou, Wenzhou, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Wang L, Ma Z, Kang H, Gu S, Mukhina Z, Wang C, Wang H, Bai Y, Sui G, Zheng W, Ma D. Cloning and functional analysis of the novel rice blast resistance gene Pi65 in japonica rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:173-183. [PMID: 34608507 DOI: 10.1007/s00122-021-03957-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Pi65, a leucine-rich repeat receptor-like kinase (LRR-RLK) domain cloned from Oryza sativa japonica, is a novel rice blast disease resistance gene. Rice blast seriously threatens rice production worldwide. Utilizing the rice blast resistance gene to breed rice blast-resistant varieties is one of the best ways to control rice blast disease. Using a map-based cloning strategy, we cloned a novel rice blast resistance gene, Pi65, from the resistant variety GangYu129 (abbreviated GY129, Oryza sativa japonica). Overexpression of Pi65 in the susceptible variety LiaoXing1 (abbreviated LX1, Oryza sativa japonica) enhanced rice blast resistance, while knockout of Pi65 in GY129 resulted in susceptibility to rice blast disease. Pi65 encodes two transmembrane domains, with 15 LRR domains and one serine/threonine protein kinase catalytic domain, conferring resistance to isolates of Magnaporthe oryzae (abbreviated M. oryzae) collected from Northeast China. There were sixteen amino acid differences between the Pi65 resistance and susceptible alleles. Compared with the Pi65-resistant allele, the susceptible allele exhibited one LRR domain deletion. Pi65 was constitutively expressed in whole plants, and it could be induced in the early stage of M. oryzae infection. Transcriptome analysis revealed that numerous genes associated with disease resistance were specifically upregulated in GY129 24 h post inoculation (HPI); in contrast, photosynthesis and carbohydrate metabolism-related genes were particularly downregulated at 24 HPI, demonstrating that disease resistance-associated genes were activated in GY129 (carrying Pi65) after rice blast fungal infection and that cellular basal metabolism and energy metabolism were inhibited simultaneously. Our study provides genetic resources for improving rice blast resistance and enriches the study of rice blast resistance mechanisms.
Collapse
Affiliation(s)
- Lili Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zuobin Ma
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Houxiang Kang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 110193, China
| | - Shuang Gu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhanna Mukhina
- Innovation and R&D Coordination of FSBSI ARRRI, Krasnodar, Russia, 350921
| | - Changhua Wang
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Hui Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Yuanjun Bai
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Guomin Sui
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Wenjing Zheng
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China.
| | - Dianrong Ma
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
5
|
Zhang F, Hu Z, Wu Z, Lu J, Shi Y, Xu J, Wang X, Wang J, Zhang F, Wang M, Shi X, Cui Y, Vera Cruz C, Zhuo D, Hu D, Li M, Wang W, Zhao X, Zheng T, Fu B, Ali J, Zhou Y, Li Z. Reciprocal adaptation of rice and Xanthomonas oryzae pv. oryzae: cross-species 2D GWAS reveals the underlying genetics. THE PLANT CELL 2021; 33:2538-2561. [PMID: 34467412 PMCID: PMC8408478 DOI: 10.1093/plcell/koab146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein-protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop-pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Zhiqiang Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Zhichao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Jialing Lu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063009, China
| | - Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063009, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Mingming Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Xiaorong Shi
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Yanru Cui
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Casiana Vera Cruz
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Dalong Zhuo
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Dandan Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Yongli Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
6
|
Shu X, Wang A, Jiang B, Jiang Y, Xiang X, Yi X, Li S, Deng Q, Wang S, Zhu J, Liang Y, Liu H, Zou T, Wang L, Li P, Zheng A. Genome-wide association study and transcriptome analysis discover new genes for bacterial leaf blight resistance in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2021; 21:255. [PMID: 34082694 PMCID: PMC8173721 DOI: 10.1186/s12870-021-03041-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/14/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Rice (Oryza sativa) bacterial leaf blight (BLB), caused by the hemibiotrophic Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases affecting the production of rice worldwide. The development and use of resistant rice varieties or genes is currently the most effective strategy to control BLB. RESULTS Here, we used 259 rice accessions, which are genotyped with 2 888 332 high-confidence single nucleotide polymorphisms (SNPs). Combining resistance variation data of 259 rice lines for two Xoo races observed in 2 years, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL) conferring plant resistance against BLB. The expression levels of genes, which contains in GWAS results were also identified between the resistant and susceptible rice lines by transcriptome analysis at four time points after pathogen inoculation. From that 109 candidate resistance genes showing significant differential expression between resistant and susceptible rice lines were uncovered. Furthermore, the haplotype block structure analysis predicted 58 candidate genes for BLB resistance based on Chr. 7_707158 with a minimum P-value (-log 10 P = 9.72). Among them, two NLR protein-encoding genes, LOC_Os07g02560 and LOC_Os07g02570, exhibited significantly high expression in the resistant line, but had low expression in the susceptible line of rice. CONCLUSIONS Together, our results reveal novel BLB resistance gene resources, and provide important genetic basis for BLB resistance breeding of rice crops.
Collapse
Affiliation(s)
- Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| | - Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| | - Bo Jiang
- College of Life Science and Technology, Yangtz Normal University, Chongqing, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| | - Xing Xiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| | - Xiaoqun Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ting Zou
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.
| |
Collapse
|
7
|
Li J, Islam S, Guo P, Hu X, Dong W. Isolation of Antimicrobial Genes from Oryza rufipogon Griff by Using a Bacillus subtilis Expression System with Potential Antimicrobial Activities. Int J Mol Sci 2020; 21:E8722. [PMID: 33218175 PMCID: PMC7698926 DOI: 10.3390/ijms21228722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial genes are distributed in all forms of life and provide a primary defensive shield due to their unique broad-spectrum resistance activities. To better isolate these genes, we used the Bacillus subtilis expression system as the host cells to build Oryza rufipogon Griff cDNA libraries and screen potential candidate genes from the library at higher flux using built-in indicator bacteria. We observed that the antimicrobial peptides OrR214 and OrR935 have strong antimicrobial activity against a variety of Gram-positive and Gram-negative bacteria, as well as several fungal pathogens. Owing to their high thermal and enzymatic stabilities, these two peptides can also be used as field biocontrol agents. Furthermore, we also found that the peptide OrR214 (MIC 7.7-10.7 μM) can strongly inhibit bacterial growth compared to polymyxin B (MIC 5-25 μM) and OrR935 (MIC 33-44 μM). The cell flow analysis, reactive oxygen burst, and electron microscopy (scanning and transmission electron microscopy) observations showed that the cell membranes were targeted by peptides OrR214 and OrR935, which revealed the mode of action of bacteriostasis. Moreover, the hemolytic activity, toxicity, and salt sensitivity experiments demonstrated that these two peptides might have the potential to be used for clinical applications. Overall, OrR214 and OrR935 antimicrobial peptides have a high-throughput bacteriostatic activity that acts as a new form of antimicrobial agent and can be used as a raw material in the field of drug development.
Collapse
Affiliation(s)
| | | | | | | | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.I.); (P.G.); (X.H.)
| |
Collapse
|
8
|
Kaur A, Neelam K, Kaur K, Kitazumi A, de Los Reyes BG, Singh K. Novel allelic variation in the Phospholipase D alpha1 gene (OsPLDα1) of wild Oryza species implies to its low expression in rice bran. Sci Rep 2020; 10:6571. [PMID: 32313086 PMCID: PMC7170842 DOI: 10.1038/s41598-020-62649-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Rice bran, a by-product after milling, is a rich source of phytonutrients like oryzanols, tocopherols, tocotrienols, phytosterols, and dietary fibers. Moreover, exceptional properties of the rice bran oil make it unparalleled to other vegetable oils. However, a lipolytic enzyme Phospholipase D alpha1 (OsPLDα1) causes rancidity and ‘stale flavor’ in the oil, and thus limits the rice bran usage for human consumption. To improve the rice bran quality, sequence based allele mining at OsPLDα1 locus (3.6 Kb) was performed across 48 accessions representing 11 wild Oryza species, 8 accessions of African cultivated rice, and 7 Oryza sativa cultivars. From comparative sequence analysis, 216 SNPs and 30 InDels were detected at the OsPLDα1 locus. Phylogenetic analysis revealed 20 OsPLDα1 cDNA variants which further translated into 12 protein variants. The O. officinalis protein variant, when compared to Nipponbare, showed maximum variability comprising 22 amino acid substitutions and absence of two peptides and two β-sheets. Further, expression profiling indicated significant differences in transcript abundance within as well as between the OsPLDα1 variants. Also, a new OsPLDα1 transcript variant having third exon missing in it, Os01t0172400-06, has been revealed. An O. officinalis accession (IRGC101152) had lowest gene expression which suggests the presence of novel allele, named as OsPLDα1-1a (GenBank accession no. MF966931). The identified novel allele could be further deployed in the breeding programs to overcome rice bran rancidity in elite cultivars.
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.,School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ai Kitazumi
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Benildo G de Los Reyes
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India. .,ICAR- National Bureau of Plant Genetic Resources, New Delhi, India.
| |
Collapse
|
9
|
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS, Sundaram RM. Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice- Xanthomonas oryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1152. [PMID: 32849710 PMCID: PMC7417518 DOI: 10.3389/fpls.2020.01152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| | - Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Subha Narayan Das
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Manish K. Pandey
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Abhishek Bohra
- ICAR-Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Naveen K. Sharma
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Gouri Sankar Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Meenakshi Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| |
Collapse
|
10
|
Cao J, Zhang M, Zhu M, He L, Xiao J, Li X, Yuan M. Autophagy-Like Cell Death Regulates Hydrogen Peroxide and Calcium Ion Distribution in Xa3/Xa26-Mediated Resistance to Xanthomonas oryzae pv. oryzae. Int J Mol Sci 2019; 21:ijms21010194. [PMID: 31892124 PMCID: PMC6981989 DOI: 10.3390/ijms21010194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023] Open
Abstract
The broad-spectrum and durable resistance gene Xa3/Xa26 against Xanthomonas oryzae pv. oryzae (Xoo) has been widely exploited in rice production in China. But the cytological features of the Xa3/Xa26-mediated resistance reaction have been rarely reported. This study reveals the cytological characteristics of the Xa3/Xa26-mediated resistance reaction against Xoo to uncover the functions of hypersensitive response programmed cell death (HR-PCD) in rice. Autophagy-like cell death, which was characterized by double-membrane bodies appearance in xylem parenchyma cell and mesophyll cell, was inhibited by autophagy inhibitor 3-methyladenin (3-MA). The autophagy-related genes were induced to reach a high level in resistance reaction. The hydrogen peroxide (H2O2) maintained a low concentration on the plasma membrane. The calcium ions localized on the apoplast were transferred into the vacuole. The autophagy inhibitor (3-MA) impaired Xa3/Xa26-mediated resistance by promoting the accumulation of H2O2, and inhibited the transfer of extracellular calcium ions into the vacuole in the xylem parenchyma cells and mesophyll cells. Therefore, the HR-PCD belongs to autophagy-like cell death in the Xa3/Xa26-mediated resistance reaction. These results suggest that the autophagy-like cell death participates in the Xa3/Xa26-mediated resistance by negatively regulating H2O2 accumulation, in order to abolish oxidative stress and possibly activate calcium ion signals in xylem parenchyma cells of the rice leaf.
Collapse
Affiliation(s)
- Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence: (J.C.); (M.Y.); Tel.: +86-27-8728-2466 (J.C. & M.Y.)
| | - Meng Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
| | - Limin He
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
- Correspondence: (J.C.); (M.Y.); Tel.: +86-27-8728-2466 (J.C. & M.Y.)
| |
Collapse
|
11
|
Li B, Sun S, Gao X, Wu M, Deng Y, Zhang Q, Li X, Xiao J, Ke Y, Wang S. Overexpression a "fruit-weight 2.2-like" gene OsFWL5 improves rice resistance. RICE (NEW YORK, N.Y.) 2019; 12:51. [PMID: 31312920 PMCID: PMC6635517 DOI: 10.1186/s12284-019-0315-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rice (Oryza sativa) feeds half of the world's population. Rice grain yield and quality which are constrained by diseases and mineral nutritions have important human healthy impacts. Plant "fruit-weight 2.2-like" (FWL) genes play key roles in modulating plant fruit weight, organ size and iron distribution. Previous work has uncovered that the grains of OsFWL5-oeverexpressing rice accumulated more beneficial element zinc (Zn) and less toxic element cadmium (Cd) content. However, whether FWL genes play roles in rice resistance remains unknown. FINDINGS Here, we validated that one of rice FWL genes OsFWL5 plays a positive role in defense to Xanthomonas oryzae pv. oryzae (Xoo). Overexpresion of OsFWL5 promotes H2O2 accumulation and cell death. The OsFWL5-overexpresing plants show activated flg22-induced reactive oxygen species (ROS) generation, and increased resistance to Xoo, indicating that OsFWL5 functions to increase pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. The activated defense response is associated with increased the expression of genes involved in jasmonic acid (JA)-related signaling. Furthermore, Cd can induce rice resistance to Xoo, and OsFWL5 is required for Cd-induced rice defense response. CONCLUSION Putting our finds and previous work together, OsFWL5 could be a candiate gene for breeders to genetically improve rice resistance and grain quality.
Collapse
Affiliation(s)
- Bei Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Shengyuan Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
| | - Xianmin Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Mengxiao Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yong Deng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
12
|
Ke Y, Kang Y, Wu M, Liu H, Hui S, Zhang Q, Li X, Xiao J, Wang S. Jasmonic Acid-Involved OsEDS1 Signaling in Rice-Bacteria Interactions. RICE (NEW YORK, N.Y.) 2019; 12:25. [PMID: 30989404 PMCID: PMC6465387 DOI: 10.1186/s12284-019-0283-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/27/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND The function of Arabidopsis enhanced disease susceptibility 1 (AtEDS1) and its sequence homologs in other dicots have been extensively studied. However, it is unknown whether rice EDS1 homolog (OsEDS1) plays a role in regulating the rice-pathogen interaction. RESULTS In this study, a OsEDS1-knouckout mutant (oseds1) was characterized and shown to have increased susceptibility to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), suggesting the positive role of OsEDS1 in regulating rice disease resistance. However, the following evidence suggests that OsEDS1 shares some differences with AtEDS1 in its way to regulate the host-pathogen interactions. Firstly, OsEDS1 modulates the rice-bacteria interactions involving in jasmonic acid (JA) signaling pathway, while AtEDS1 regulates Arabidopsis disease resistance against biotrophic pathogens depending on salicylic acid (SA) signaling pathway. Secondly, introducing AtEDS1 could reduce oseds1 mutant susceptibility to Xoo rather than to Xoc. Thirdly, exogenous application of JA and SA cannot complement the susceptible phenotype of the oseds1 mutant, while exogenous application of SA is capable of complementing the susceptible phenotype of the ateds1 mutant. Finally, OsEDS1 is not required for R gene mediated resistance, while AtEDS1 is required for disease resistance mediated by TIR-NB-LRR class of R proteins. CONCLUSION OsEDS1 is a positive regulator in rice-pathogen interactions, and shares both similarities and differences with AtEDS1 in its way to regulate plant-pathogen interactions.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanrong Kang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengxiao Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Ke Y, Wu M, Zhang Q, Li X, Xiao J, Wang S. Hd3a and OsFD1 negatively regulate rice resistance to Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Biochem Biophys Res Commun 2019; 513:775-780. [PMID: 30992130 DOI: 10.1016/j.bbrc.2019.03.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
In rice, Hd3a, GF14 and OsFD1 proteins, forming florigen activation complex, are key components in flowering time regulation. GF14 genes in rice response to biotic and abiotic stress has also been well addressed. The role of GF14e in rice defense has been well studied. However, whether Hd3a and OsFD1 play roles in defense is unclear. In present study, we identified that Hd3a and OsFD1 expression is repressed by Xoo and JA, and validated that Hd3a and OsFD1 negatively regulate resistance to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc). hd3a and osfd1 mutants increase resistance to Xoo and Xoc, and activate JA responsive genes expression. Our data also demonstrate that OsFD1 binds to the promoters of and activates the expression of JAZ genes; Hd3a, cooperating with GF14e, promotes OsFD1 action on JAZ gene expression. The functional confirmation of Hd3a and OsFD1 in rice defense makes them to be promising targets in molecular rice breeding.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengxiao Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Kim SM, Reinke RF. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS One 2019; 14:e0211775. [PMID: 30753229 PMCID: PMC6372157 DOI: 10.1371/journal.pone.0211775] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/21/2019] [Indexed: 11/18/2022] Open
Abstract
Bacterial blight (BB) caused by the Xanthomonas oryzae pv. oryzae (Xoo) pathogen is a significant disease in most rice cultivation areas. The disease is estimated to cause annual rice production losses of 20–30 percent throughout rice-growing countries in Asia. The discovery and deployment of durable resistance genes for BB is an effective and sustainable means of mitigating production losses. In this study QTL analysis and fine mapping were performed using an F2 and a BC2F2 population derived from a cross with a new R-donor having broad spectrum resistance to Korean BB races. The QTL qBB11 was identified by composite interval mapping and explained 31.25% of the phenotypic variation (R2) with LOD values of 43.44 harboring two SNP markers. The single major R-gene was designated Xa43 (t). Through dissection of the target region we were able to narrow the region to within 27.83–27.95 Mbp, a physical interval of about 119-kb designated by the two flanking markers IBb27os11_14 and S_BB11.ssr_9. Of nine ORFs in the target region two ORFs revealed significantly different expression levels of the candidate genes. From these results we developed a marker specific to this R-gene, which will have utility for future BB resistance breeding and/or R-gene pyramiding using marker assisted selection. Further characterization of the R-gene would be helpful to enhance understanding of mechanisms of BB resistance in rice.
Collapse
Affiliation(s)
- Suk-Man Kim
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
- IRRI-Korea Office, National Institute of Crop Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Russell F. Reinke
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
- * E-mail:
| |
Collapse
|
15
|
Jairin J, Vejchasarn P, Somjai T, Srivilai K, Darwell K, Leelagud P, Kawichai R, Kotcharerk J, Suthanthangjai A, Popa N, Lachanthuek S, Chamarerk V. Identification of QTLs for Blast, Bacterial Blight, and Planthopper Resistance Using SNP-Based Linkage Maps from Two Recombinant Inbred Rice Lines. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/ajps.2019.105056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Yang R, Li J, Zhang H, Yang F, Wu Z, Zhuo X, An X, Cheng Z, Zeng Q, Luo Q. Transcriptome Analysis and Functional Identification of Xa13 and Pi-ta Orthologs in Oryza granulata. THE PLANT GENOME 2018; 11:170097. [PMID: 30512031 DOI: 10.3835/plantgenome2017.11.0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nees & Arn. ex Watt, a perennial wild rice species with a GG genome, preserves many important genes for cultivated rice ( L.) improvement. At present, however, no genetic resource is available for studying . Here, we report 91,562 high-quality transcripts of assembled de novo. Moreover, comparative transcriptome analysis revealed that 1311 single-copy orthologous pairs shared by and (Zoll. & Moritzi) Baill. that may have undergone adaptive evolution. We performed an analysis of the genes potentially involved in plant-pathogen interactions to explore the molecular basis of disease resistance, and isolated the full-length cDNAs of () and () orthologs from . The overexpression of in Nipponbare and functional characterization showed enhanced the resistance of transgenic Nipponbare to rice blast resulting from the presence of the gene. , an alternatively spliced transcript of the blast resistance gene in encodes a 1024-amino acid polypeptide with a C-terminal thioredoxin domain. This study provides an important resource for functional and evolutionary studies of the genus .
Collapse
|
17
|
Rice Routes of Countering Xanthomonas oryzae. Int J Mol Sci 2018; 19:ijms19103008. [PMID: 30279356 PMCID: PMC6213470 DOI: 10.3390/ijms19103008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial blight (BB) and bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, respectively, are two devastating diseases in rice planting areas worldwide. It has been proven that adoption of rice resistance is the most effective, economic, and environment-friendly strategy to avoid yield loss caused by BB and BLS. As a model system for plant—pathogen interaction, the rice—X. oryzae pathosystem has been intensively investigated in the past decade. Abundant studies have shown that the resistance and susceptibility of rice to X. oryzae is determined by molecular interactions between rice genes or their products and various pathogen effectors. In this review, we briefly overviewed the literature regarding the diverse interactions, focusing on recent advances in uncovering mechanisms of rice resistance and X. oryzae virulence. Our analysis and discussions will not only be helpful for getting a better understanding of coevolution of the rice innate immunity and X. oryzae virulence, but it will also provide new insights for application of plant R genes in crop breeding.
Collapse
|
18
|
Liu Y, Cao Y, Zhang Q, Li X, Wang S. A Cytosolic Triosephosphate Isomerase Is a Key Component in XA3/XA26-Mediated Resistance. PLANT PHYSIOLOGY 2018; 178:923-935. [PMID: 30158116 PMCID: PMC6181051 DOI: 10.1104/pp.18.00348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/23/2018] [Indexed: 05/04/2023]
Abstract
Bacterial blight caused by Xanthomonas oryzae pv oryzae (Xoo) causes severe damage to rice (Oryza sativa) production worldwide. The major disease resistance gene, Xa3/Xa26, confers broad-spectrum and durable resistance to Xoo at both seedling and adult stages. However, the molecular mechanism of the Xa3/Xa26-initiated defense pathway against Xoo is still largely unknown. Here, we show that a triosephosphate isomerase (TPI), OsTPI1.1, is a key component in XA3/XA26-mediated resistance to Xoo OsTPI1.1 is a glycolytic enzyme that catalyzes the reversible interconversion of dihydroxyacetone phosphate to glyceraldehyde-3-phosphate. Transcriptional suppression of OsTPI1.1 in plants harboring Xa3/Xa26 largely impaired the XA3/XA26-mediated resistance to Xoo, and constitutive overexpression of OsTPI1.1 in susceptible rice plants without Xa3/Xa26 only slightly decreased the susceptibility to Xoo Therefore, both XA3/XA26 and OsTPI1.1 are required in XA3/XA26-mediated resistance. We show that OsTPI1.1 participates in the resistance through its enzymatic activity, which was enhanced significantly by its binding with XA3/XA26. Reactive oxygen species (ROS), especially hydrogen peroxide, accumulated in the OsTPI1.1-overexpressing plants, and suppression of OsTPI1.1 decreased ROS accumulation. The changes in ROS are associated with the reduction of NADP+ to NADPH, which may act as a redox cofactor to scavenge ROS, leading to reduced resistance to Xoo These results suggest that OsTPI1.1 modulates ROS production as a resistance mechanism against Xoo.
Collapse
Affiliation(s)
- Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglong Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Zhang F, Wu ZC, Wang MM, Zhang F, Dingkuhn M, Xu JL, Zhou YL, Li ZK. Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm. PLoS One 2017; 12:e0174598. [PMID: 28355306 PMCID: PMC5371361 DOI: 10.1371/journal.pone.0174598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/11/2017] [Indexed: 11/18/2022] Open
Abstract
Bacterial blight, which is caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating rice diseases worldwide. The development and use of disease-resistant cultivars have been the most effective strategy to control bacterial blight. Identifying the genes mediating bacterial blight resistance is a prerequisite for breeding cultivars with broad-spectrum and durable resistance. We herein describe a genome-wide association study involving 172 diverse Oryza sativa ssp. indica accessions to identify loci influencing the resistance to representative strains of six Xoo races. Twelve resistance loci containing 121 significantly associated signals were identified using 317,894 single nucleotide polymorphisms, which explained 13.3–59.9% of the variability in lesion length caused by Xoo races P1, P6, and P9a. Two hotspot regions (L11 and L12) were located within or nearby two cloned R genes (xa25 and Xa26) and one fine-mapped R gene (Xa4). Our results confirmed the relatively high resolution of genome-wide association studies. Moreover, we detected novel significant associations on chromosomes 2, 3, and 6–10. Haplotype analyses of xa25, the Xa26 paralog (MRKc; LOC_Os11g47290), and a Xa4 candidate gene (LOC_11g46870) revealed differences in bacterial blight resistance among indica subgroups. These differences were responsible for the observed variations in lesion lengths resulting from infections by Xoo races P1 and P9a. Our findings may be relevant for future studies involving bacterial blight resistance gene cloning, and provide insights into the genetic basis for bacterial blight resistance in indica rice, which may be useful for knowledge-based crop improvement.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Chao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming-Ming Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Michael Dingkuhn
- Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Laguna, Philippines
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Jian-Long Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- * E-mail: (YZ); (JX)
| | - Yong-Li Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- * E-mail: (YZ); (JX)
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Lana UGDP, Prazeres de Souza IR, Noda RW, Pastina MM, Magalhaes JV, Guimaraes CT. Quantitative Trait Loci and Resistance Gene Analogs Associated with Maize White Spot Resistance. PLANT DISEASE 2017; 101:200-208. [PMID: 30682293 DOI: 10.1094/pdis-06-16-0899-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maize white spot (MWS), caused by the bacterium Pantoea ananatis, is one of the most important maize foliar diseases in tropical and subtropical regions, causing significant yield losses. Despite its economic importance, genetic studies of MWS are scarce. The aim of this study was to map quantitative trait loci (QTL) associated with MWS resistance and to identify resistance gene analogs (RGA) underlying these QTL. QTL mapping was performed in a tropical maize F2:3 population, which was genotyped with simple-sequence repeat and RGA-tagged markers and phenotyped for the response to MWS in two Brazilian southeastern locations. Nine QTL explained approximately 70% of the phenotypic variance for MWS resistance at each location, with two of them consistently detected in both environments. Data mining using 112 resistance genes cloned from different plant species revealed 1,697 RGA distributed in clusters within the maize genome. The RGA Pto19, Pto20, Pto99, and Xa26.151.4 were genetically mapped within MWS resistance QTL on chromosomes 4 and 8 and were preferentially expressed in the resistant parental line at locations where their respective QTL occurred. The consistency of QTL mapping, in silico prediction, and gene expression analyses revealed RGA and genomic regions suitable for marker-assisted selection to improve MWS resistance.
Collapse
|
21
|
Huang R, Hui S, Zhang M, Li P, Xiao J, Li X, Yuan M, Wang S. A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts. FRONTIERS IN PLANT SCIENCE 2017; 8:1919. [PMID: 29163628 PMCID: PMC5681966 DOI: 10.3389/fpls.2017.01919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/23/2017] [Indexed: 05/17/2023]
Abstract
Many Xanthomonas bacteria use transcription activator-like effector (TALE) proteins to activate plant disease susceptibility (S) genes, and this activation contributes to disease. We recently reported that rice basal transcription factor IIA gamma subunit, OsTFIIAγ5, is hijacked by TALE-carrying Xanthomonas oryzae infecting the plants. However, whether TFIIAγs are also involved in TALE-carrying Xanthomonas-caused diseases in other plants is unknown. Here, molecular and genetic approaches were used to investigate the role of TFIIAγs in other plants. We found that TFIIAγs are also used by TALE-carrying Xanthomonas to cause disease in other plants. The TALEs of Xanthomonas citri pv. citri (Xcc) causing canker in citrus and Xanthomonas campestris pv. vesicatoria (Xcv) causing bacterial spot in pepper and tomato interacted with corresponding host TFIIAγs as in rice. Transcriptionally suppressing TFIIAγ led to resistance to Xcc in citrus and Xcv in pepper and tomato. The 39th residue of OsTFIIAγ5 and citrus CsTFIIAγ is vital for TALE-dependent induction of plant S genes. As mutated OsTFIIAγ5V 39E, CsTFIIAγV 39E, pepper CaTFIIAγV 39E, and tomato SlTFIIAγV 39E also did not interact with TALEs to prevent disease. These results suggest that TALE-carrying bacteria share a common mechanism for infecting plants. Using TFIIAγV 39E-type mutation could be a general strategy for improving resistance to TALE-carrying pathogens in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Yuan
- *Correspondence: Meng Yuan, Shiping Wang,
| | | |
Collapse
|
22
|
Thomas NC, Schwessinger B, Liu F, Chen H, Wei T, Nguyen YP, Shaker IWF, Ronald PC. XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves. PeerJ 2016; 4:e2446. [PMID: 27703843 PMCID: PMC5045893 DOI: 10.7717/peerj.2446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/14/2016] [Indexed: 11/20/2022] Open
Abstract
The rice XA21 receptor kinase confers robust resistance to the bacterial pathogen Xanthomonas oryzaepv. oryzae (Xoo). We developed a detached leaf infection assay to quickly and reliably measure activation of the XA21-mediated immune response using genetic markers. We used RNA sequencing of elf18 treated EFR:XA21:GFP plants to identify candidate genes that could serve as markers for XA21 activation. From this analysis, we identified eight genes that are up-regulated in both in elf18 treated EFR:XA21:GFP rice leaves and Xoo infected XA21 rice leaves. These results provide a rapid and reliable method to assess bacterial-rice interactions.
Collapse
Affiliation(s)
- Nicholas C Thomas
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States.,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Benjamin Schwessinger
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States.,Joint BioEnergy Institute, Emeryville, CA, United States.,Research School of Biology, Australian National University, Acton, Australia
| | - Furong Liu
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States.,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Huamin Chen
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Bejing, China
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States.,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Yen P Nguyen
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States
| | - Isaac W F Shaker
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States.,Joint BioEnergy Institute, Emeryville, CA, United States
| |
Collapse
|
23
|
Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife 2016; 5:e19605. [PMID: 27472897 PMCID: PMC4993585 DOI: 10.7554/elife.19605] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 01/27/2023] Open
Abstract
Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.
Collapse
Affiliation(s)
- Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Renyan Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife 2016; 5. [PMID: 27472897 DOI: 10.7554/elife.19605.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 05/20/2023] Open
Abstract
Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.
Collapse
Affiliation(s)
- Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Renyan Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Yuan X, Yan C, Wu Z, Ren F, Zhang H, Baker B, Chen J, Kuang H. Frequent Gain and Loss of Resistance against Tobacco Mosaic Virus in Nicotiana Species. MOLECULAR PLANT 2015; 8:1813-5. [PMID: 26363271 DOI: 10.1016/j.molp.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/25/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Xinjie Yuan
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chenghuan Yan
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhujun Wu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Feihong Ren
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA 94710, USA
| | - Jiongjiong Chen
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hanhui Kuang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
26
|
Xie W, Wang G, Yuan M, Yao W, Lyu K, Zhao H, Yang M, Li P, Zhang X, Yuan J, Wang Q, Liu F, Dong H, Zhang L, Li X, Meng X, Zhang W, Xiong L, He Y, Wang S, Yu S, Xu C, Luo J, Li X, Xiao J, Lian X, Zhang Q. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci U S A 2015; 112:E5411-9. [PMID: 26358652 PMCID: PMC4593105 DOI: 10.1073/pnas.1515919112] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intensive rice breeding over the past 50 y has dramatically increased productivity especially in the indica subspecies, but our knowledge of the genomic changes associated with such improvement has been limited. In this study, we analyzed low-coverage sequencing data of 1,479 rice accessions from 73 countries, including landraces and modern cultivars. We identified two major subpopulations, indica I (IndI) and indica II (IndII), in the indica subspecies, which corresponded to the two putative heterotic groups resulting from independent breeding efforts. We detected 200 regions spanning 7.8% of the rice genome that had been differentially selected between IndI and IndII, and thus referred to as breeding signatures. These regions included large numbers of known functional genes and loci associated with important agronomic traits revealed by genome-wide association studies. Grain yield was positively correlated with the number of breeding signatures in a variety, suggesting that the number of breeding signatures in a line may be useful for predicting agronomic potential and the selected loci may provide targets for rice improvement.
Collapse
Affiliation(s)
- Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Yao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Lyu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Quanxiu Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Huaxia Dong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lejing Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinglei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangzhou Meng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wan Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Caiguo Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Xie W, Wang G, Yuan M, Yao W, Lyu K, Zhao H, Yang M, Li P, Zhang X, Yuan J, Wang Q, Liu F, Dong H, Zhang L, Li X, Meng X, Zhang W, Xiong L, He Y, Wang S, Yu S, Xu C, Luo J, Li X, Xiao J, Lian X, Zhang Q. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci U S A 2015. [PMID: 26358652 DOI: 10.1073/pnas.151591911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Intensive rice breeding over the past 50 y has dramatically increased productivity especially in the indica subspecies, but our knowledge of the genomic changes associated with such improvement has been limited. In this study, we analyzed low-coverage sequencing data of 1,479 rice accessions from 73 countries, including landraces and modern cultivars. We identified two major subpopulations, indica I (IndI) and indica II (IndII), in the indica subspecies, which corresponded to the two putative heterotic groups resulting from independent breeding efforts. We detected 200 regions spanning 7.8% of the rice genome that had been differentially selected between IndI and IndII, and thus referred to as breeding signatures. These regions included large numbers of known functional genes and loci associated with important agronomic traits revealed by genome-wide association studies. Grain yield was positively correlated with the number of breeding signatures in a variety, suggesting that the number of breeding signatures in a line may be useful for predicting agronomic potential and the selected loci may provide targets for rice improvement.
Collapse
Affiliation(s)
- Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Yao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Lyu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Quanxiu Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Huaxia Dong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lejing Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinglei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangzhou Meng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wan Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Caiguo Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Hong H, Liu Y, Zhang H, Xiao J, Li X, Wang S. Small RNAs and Gene Network in a Durable Disease Resistance Gene--Mediated Defense Responses in Rice. PLoS One 2015; 10:e0137360. [PMID: 26335702 PMCID: PMC4559425 DOI: 10.1371/journal.pone.0137360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/14/2015] [Indexed: 11/18/2022] Open
Abstract
Accumulating data have suggested that small RNAs (sRNAs) have important functions in plant responses to pathogen invasion. However, it is largely unknown whether and how sRNAs are involved in the regulation of rice responses to the invasion of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight, the most devastating bacterial disease of rice worldwide. We performed simultaneous genome-wide analyses of the expression of sRNAs and genes during early defense responses of rice to Xoo mediated by a major disease resistance gene, Xa3/Xa26, which confers durable and race-specific qualitative resistance. A large number of sRNAs and genes showed differential expression in Xa3/Xa26-mediated resistance. These differentially expressed sRNAs include known microRNAs (miRNAs), unreported miRNAs, and small interfering RNAs. The candidate genes, with expression that was negatively correlated with the expression of sRNAs, were identified, indicating that these genes may be regulated by sRNAs in disease resistance in rice. These results provide a new perspective regarding the putative roles of sRNA candidates and their putative target genes in durable disease resistance in rice.
Collapse
Affiliation(s)
- Hanming Hong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- * E-mail:
| |
Collapse
|
29
|
Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. MOLECULAR PLANT 2015; 8:290-302. [PMID: 25616388 DOI: 10.1016/j.molp.2014.10.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/10/2014] [Accepted: 10/28/2014] [Indexed: 05/03/2023]
Abstract
The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen.
Collapse
Affiliation(s)
- Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Xiaoping Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Yinglun Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chongke Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Tengfei Qin
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Yanqiang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Jinying Che
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Mingwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Bing Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
30
|
Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:957-69. [PMID: 24124925 DOI: 10.1111/tpj.12345] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/25/2013] [Accepted: 10/04/2013] [Indexed: 05/18/2023]
Abstract
The improvement of wheat through breeding has relied strongly on the use of genetic material from related wild and domesticated grass species. The 1RS chromosome arm from rye was introgressed into wheat and crossed into many wheat lines, as it improves yield and fungal disease resistance. Pm8 is a powdery mildew resistance gene on 1RS which, after widespread agricultural cultivation, is now widely overcome by adapted mildew races. Here we show by homology-based cloning and subsequent physical and genetic mapping that Pm8 is the rye orthologue of the Pm3 allelic series of mildew resistance genes in wheat. The cloned gene was functionally validated as Pm8 by transient, single-cell expression analysis and stable transformation. Sequence analysis revealed a complex mosaic of ancient haplotypes among Pm3- and Pm8-like genes from different members of the Triticeae. These results show that the two genes have evolved independently after the divergence of the species 7.5 million years ago and kept their function in mildew resistance. During this long time span the co-evolving pathogens have not overcome these genes, which is in strong contrast to the breakdown of Pm8 resistance since its introduction into commercial wheat 70 years ago. Sequence comparison revealed that evolutionary pressure acted on the same subdomains and sequence features of the two orthologous genes. This suggests that they recognize directly or indirectly the same pathogen effectors that have been conserved in the powdery mildews of wheat and rye.
Collapse
Affiliation(s)
- Severine Hurni
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lv Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L. Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. PHYTOPATHOLOGY 2013; 103:594-9. [PMID: 23384860 DOI: 10.1094/phyto-10-12-0260-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The rice blast resistance gene Pid3 encodes a nucleotide-binding-site leucine-rich repeat (NBS-LRR) protein. This gene was cloned from the rice 'Digu' (indica) by performing a genome-wide comparison of the NBS-LRR gene family between two genome-sequenced varieties, '9311' (indica) and 'Nipponbare' (japonica). In this study, we performed functional analysis of Pid3-A4, an ortholog of Pid3 revealed by allele mining in the common wild rice A4 (Oryza rufipogon). The predicted protein encoded by Pid3-A4 shares 99.03% sequence identity with Pid3, with only nine amino-acid substitutions. In wild rice plants, Pid3-A4 is constitutively expressed, and its expression is not induced by Magnaporthe oryzae isolate Zhong-10-8-14 infection. Importantly, in transgenic plants, Pid3-A4, as compared with Pid3, displays a distinct resistance spectrum to a set of M. oryzae isolates, including those that prevail in the rice fields of Sichuan Province. Therefore, Pid3-A4 should be quite useful for the breeding of rice blast resistance, especially in southwestern China.
Collapse
Affiliation(s)
- Qiming Lv
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang H, Wang S. Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:188-95. [PMID: 23466254 DOI: 10.1016/j.pbi.2013.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 05/18/2023]
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating disease of rice worldwide. The qualitative or pathogen race-specific resistance to this pathogen conferred by major disease resistance (MR) genes has been widely used in rice improvement. Accumulating genetic and molecular data have revealed that the molecular mechanisms of rice qualitative resistance to Xoo are largely different from those of qualitative resistance in other plant-pathogen pathosystems. In this review, we focus on the unique features of rice qualitative resistance to Xoo based on MR genes that have been identified and characterized. The distinctiveness of the rice-Xoo interaction provides a unique pathosystem to elucidate the diverse molecular mechanisms in plant qualitative resistance.
Collapse
Affiliation(s)
- Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
33
|
Zhang H, Cao Y, Zhao J, Li X, Xiao J, Wang S. A pair of orthologs of a leucine-rich repeat receptor kinase-like disease resistance gene family regulates rice response to raised temperature. BMC PLANT BIOLOGY 2011; 11:160. [PMID: 22085497 PMCID: PMC3228767 DOI: 10.1186/1471-2229-11-160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/15/2011] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rice Xa3/Xa26 disease-resistance gene encodes a leucine-rich repeat (LRR) receptor kinase-type protein against Xanthomonas oryzae pv. oryzae (Xoo) and belongs to a multigene family. However, the functions of most genes in this family are unknown. RESULTS Here we report that two orthologs of this family, the NRKe from rice variety Nipponbare and 9RKe from variety 93-11 at the RKe locus, have similar functions although they encode different proteins. This pair of orthologs could not mediate resistance to Xoo, but they were transcriptionally induced by raised temperature. Transcriptional activation of NRKe or 9RKe resulted in the formation of temperature-sensitive lesion mimics, which were spots of dead cells associated with accumulation of superoxides, in different organs of the transgenic plants. These plants were more sensitive to high temperature shock than wild-type controls. Transgenic plants carrying a chimeric protein consisting of the LRR domain of NRKe and the kinase domain of Xa3/Xa26 developed the same lesion mimics as the NRKe-transgenic plants, whereas transgenic plants carrying another chimeric protein consisting of the LRR domain of Xa3/Xa26 and the kinase domain of NRKe were free of lesion mimic. All the transgenic plants carrying a chimeric protein were susceptible to Xoo. CONCLUSION These results suggest that the RKe locus is involved in rice response to raised temperature. The LRR domain of RKe protein appears to be important to sense increased temperature. The RKe-involved temperature-related pathway and Xa3/Xa26-mediated disease-resistance pathway may partially overlap.
Collapse
Affiliation(s)
- Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglong Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|