1
|
Hofmann TA, Atkinson W, Fan M, Simkin AJ, Jindal P, Lawson T. Impact of climate-driven changes in temperature on stomatal anatomy and physiology. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240244. [PMID: 40439300 PMCID: PMC12121385 DOI: 10.1098/rstb.2024.0244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 06/02/2025] Open
Abstract
Climate-driven changes in temperature are likely to have major implications for plant performance including impacts on stomatal conductance (gs), gaseous exchange, photosynthesis, leaf temperature and plant water use. Stomatal conductance is not only vital for carbon assimilation but also plays a key role in maintaining optimum leaf temperatures for cellular processes. Higher gs facilitates both CO2 uptake and enhanced evaporative leaf cooling, however, most likely at the cost of greater water loss and lower water-use efficiency. Lower gs helps to maintain overall plant water status but at the expense of C uptake with reduced evaporative cooling which, at elevated temperatures, could be lethal. It is therefore important for gs to balance these competing demands; however, with rapid changes in temperature due to climate change, stomatal engineering may be required to ensure that this balance is achieved and different strategies for different crops in different environments may be needed. Here, we review current knowledge of stomatal anatomical and behavioural responses to temperature-driven changes, focusing on both rising temperatures and extreme heat events and potential genetic targets for manipulation of relevant stomatal characteristics.This article is part of the theme issue 'Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the 'Resilience Revolution'?'.
Collapse
Affiliation(s)
- Tanja A. Hofmann
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - William Atkinson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Mengjie Fan
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Andrew J. Simkin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Pratham Jindal
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Wang Q, De Vriese K, Desmet S, Wang R, Luklová M, Liu Q, Pollier J, Lu Q, Schlag S, Vetter W, Goossens A, Russinova E, Goeminne G, Geelen D, Beeckman T, Vanneste S. The selective estrogen receptor modulator clomiphene inhibits sterol biosynthesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1131-1146. [PMID: 39680055 DOI: 10.1093/jxb/erae481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic conversions in plants, animals, and fungi, yielding a variety of sterol metabolites with slightly different chemical properties to exert diverse and specific functions. A tremendously diverse landscape of sterols, and sterol-derived compounds can be found across the plant kingdom, determining a wide spectrum of functions. Resolving the underlying biosynthetic pathways is thus instrumental to understanding the function and use of these molecules. In only a few plants, sterol biosynthesis has been studied using mutants. In non-model species, a pharmacological approach is required. However, this relies on only a few inhibitors. Here, we investigated a collection of inhibitors of mammalian cholesterol biosynthesis to identify new inhibitors of plant sterol biosynthesis. We showed that imidazole-type fungicides, bifonazole, clotrimazole, and econazole, inhibited the obtusifoliol 14α-demethylase CYP51 in plants. Moreover, we found that the selective estrogen receptor modulator, clomiphene, inhibited sterol biosynthesis in part by inhibiting the plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of inhibitors of animal sterol biosynthesis is an easy approach for identifying novel inhibitors of plant sterol biosynthesis. The molecules used in this study expand the range of inhibitors for studying and manipulating sterol biosynthesis in the plant kingdom.
Collapse
Affiliation(s)
- Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ren Wang
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Markéta Luklová
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Qianqian Liu
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jacob Pollier
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Qing Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Sarah Schlag
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
3
|
Liu K, Zhao H, Lee KP, Yu Q, Di M, Wang L, Kim C. EXECUTER1 and singlet oxygen signaling: A reassessment of nuclear activity. THE PLANT CELL 2024; 37:koae296. [PMID: 39499663 DOI: 10.1093/plcell/koae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
Chloroplasts are recognized as environmental sensors, capable of translating environmental fluctuations into diverse signals to communicate with the nucleus. Among the reactive oxygen species produced in chloroplasts, singlet oxygen (1O2) has been extensively studied due to its dual roles, encompassing both damage and signaling activities, and the availability of conditional mutants overproducing 1O2 in chloroplasts. In particular, investigating the Arabidopsis (Arabidopsis thaliana) mutant known as fluorescent (flu) has led to the discovery of EXECUTER1 (EX1), a plastid 1O2 sensor residing in the grana margin of the thylakoid membrane. 1O2-triggered EX1 degradation is critical for the induction of 1O2-responsive nuclear genes (SOrNGs). However, a recent study showed that EX1 relocates from chloroplasts to the nucleus upon 1O2 release, where it interacts with WRKY18 and WRKY40 (WRKY18/40) transcription factors to regulate SOrNG expression. In this study, we challenge this assertion. Our confocal microscopy analysis and subcellular fractionation assays demonstrate that EX1 does not accumulate in the nucleus. While EX1 appears in nuclear fractions, subsequent thermolysin treatment assays indicate that it adheres to the outer nuclear region rather than localizing inside the nucleus. Furthermore, luciferase complementation imaging and yeast 2-hybrid assays reveal that EX1 does not interact with nuclear WRKY18/40. Consequently, our study refines the current model of 1O2 signaling by ruling out the nuclear relocation of intact EX1 as a means of communication between the chloroplast and nucleus.
Collapse
Affiliation(s)
- Kaiwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Huan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Di
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Mishra S, Levengood H, Fan J, Zhang C. Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:3144. [PMID: 39599353 PMCID: PMC11597474 DOI: 10.3390/plants13223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment.
Collapse
Affiliation(s)
| | | | | | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; (S.M.); (H.L.); (J.F.)
| |
Collapse
|
5
|
Liese A, Eichstädt B, Lederer S, Schulz P, Oehlschläger J, Matschi S, Feijó JA, Schulze WX, Konrad KR, Romeis T. Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in planta. THE PLANT CELL 2024; 36:276-297. [PMID: 37433056 PMCID: PMC11210078 DOI: 10.1093/plcell/koad196] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Changes in cytosolic calcium (Ca2+) concentration are among the earliest reactions to a multitude of stress cues. While a plethora of Ca2+-permeable channels may generate distinct Ca2+ signatures and contribute to response specificities, the mechanisms by which Ca2+ signatures are decoded are poorly understood. Here, we developed a genetically encoded Förster resonance energy transfer (FRET)-based reporter that visualizes the conformational changes in Ca2+-dependent protein kinases (CDPKs/CPKs). We focused on two CDPKs with distinct Ca2+-sensitivities, highly Ca2+-sensitive Arabidopsis (Arabidopsis thaliana) AtCPK21 and rather Ca2+-insensitive AtCPK23, to report conformational changes accompanying kinase activation. In tobacco (Nicotiana tabacum) pollen tubes, which naturally display coordinated spatial and temporal Ca2+ fluctuations, CPK21-FRET, but not CPK23-FRET, reported oscillatory emission ratio changes mirroring cytosolic Ca2+ changes, pointing to the isoform-specific Ca2+-sensitivity and reversibility of the conformational change. In Arabidopsis guard cells, CPK21-FRET-monitored conformational dynamics suggest that CPK21 serves as a decoder of signal-specific Ca2+ signatures in response to abscisic acid and the flagellin peptide flg22. Based on these data, CDPK-FRET is a powerful approach for tackling real-time live-cell Ca2+ decoding in a multitude of plant developmental and stress responses.
Collapse
Affiliation(s)
- Anja Liese
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Bernadette Eichstädt
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Sarah Lederer
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Philipp Schulz
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Jan Oehlschläger
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Susanne Matschi
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - José A Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Waltraud X Schulze
- Plant Systems Biology, Universität Hohenheim, D-70593 Stuttgart, Germany
| | - Kai R Konrad
- Julius-Von-Sachs Institute for Biosciences, Julius Maximilians Universität Würzburg, D-97082 Würzburg, Germany
| | - Tina Romeis
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
6
|
Shao Z, Yang S, Gu Y, Guo Y, Zhou H, Yang Y. Ubiquitin negatively regulates ABA responses by inhibiting SnRK2.2 and SnRK2.3 kinase activity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5394-5404. [PMID: 37326597 DOI: 10.1093/jxb/erad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Abscisic acid (ABA) is an essential phytohormone for plant responses to complex and variable environmental conditions. The molecular basis of the ABA signaling pathway has been well elucidated. SnRK2.2 and SnRK2.3 are key protein kinases participating in ABA responses, and the regulation of their activity plays an important role in signaling. Previous mass spectroscopy analysis of SnRK2.3 suggested that ubiquitin and homologous proteins may bind directly to the kinase. Ubiquitin typically recruits E3 ubiquitin ligase complexes to target proteins, marking them for degradation by the 26S proteasome. Here, we show that SnRK2.2 and SnRK2.3 interact with ubiquitin but are not covalently attached to the protein, resulting in the suppression of their kinase activity. The binding between SnRK2.2, SnRK2.3, and ubiquitin is weakened under prolonged ABA treatment. Overexpression of ubiquitin positively regulated the growth of seedlings exposed to ABA. Our results thus demonstrate a novel function for ubiquitin, which negatively regulates ABA responses by directly inhibiting SnRK2.2 and SnRK2.3 kinase activity.
Collapse
Affiliation(s)
- Zhengyu Shao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinghui Gu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yongqing Yang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Causier B, McKay M, Hopes T, Lloyd J, Wang D, Harrison CJ, Davies B. The TOPLESS corepressor regulates developmental switches in the bryophyte Physcomitrium patens that were critical for plant terrestrialisation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1331-1344. [PMID: 37243383 PMCID: PMC10953049 DOI: 10.1111/tpj.16322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The plant-specific TOPLESS (TPL) family of transcriptional corepressors is integral to multiple angiosperm developmental processes. Despite this, we know little about TPL function in other plants. To address this gap, we investigated the roles TPL plays in the bryophyte Physcomitrium patens, which diverged from angiosperms approximately 0.5 billion years ago. Although complete loss of PpTPL function is lethal, transgenic lines with reduced PpTPL activity revealed that PpTPLs are essential for two fundamental developmental switches in this plant: the transitions from basal photosynthetic filaments (chloronemata) to specialised foraging filaments (caulonemata) and from two-dimensional (2D) to three-dimensional (3D) growth. Using a transcriptomics approach, we integrated PpTPL into the regulatory network governing 3D growth and we propose that PpTPLs represent another important class of regulators that are essential for the 2D-to-3D developmental switch. Transcriptomics also revealed a previously unknown role for PpTPL in the regulation of flavonoids. Intriguingly, 3D growth and the formation of caulonemata were crucial innovations that facilitated the colonisation of land by plants, a major transformative event in the history of life on Earth. We conclude that TPL, which existed before the land plants, was co-opted into new developmental pathways, enabling phytoterrestrialisation and the evolution of land plants.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Mary McKay
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Tayah Hopes
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - James Lloyd
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Dapeng Wang
- LeedsOmicsUniversity of LeedsLeedsLS2 9JTUK
- National Heart and Lung Institute, Imperial College LondonLondonSW3 6LYUK
| | - C. Jill Harrison
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
8
|
Lin LY, Chow HX, Chen CH, Mitsuda N, Chou WC, Liu TY. Role of autophagy-related proteins ATG8f and ATG8h in the maintenance of autophagic activity in Arabidopsis roots under phosphate starvation. FRONTIERS IN PLANT SCIENCE 2023; 14:1018984. [PMID: 37434600 PMCID: PMC10331476 DOI: 10.3389/fpls.2023.1018984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/23/2023] [Indexed: 07/13/2023]
Abstract
Nutrient starvation-induced autophagy is a conserved process in eukaryotes. Plants defective in autophagy show hypersensitivity to carbon and nitrogen limitation. However, the role of autophagy in plant phosphate (Pi) starvation response is relatively less explored. Among the core autophagy-related (ATG) genes, ATG8 encodes a ubiquitin-like protein involved in autophagosome formation and selective cargo recruitment. The Arabidopsis thaliana ATG8 genes, AtATG8f and AtATG8h, are notably induced in roots under low Pi. In this study, we show that such upregulation correlates with their promoter activities and can be suppressed in the phosphate response 1 (phr1) mutant. Yeast one-hybrid analysis failed to attest the binding of the AtPHR1 transcription factor to the promoter regions of AtATG8f and AtATG8h. Dual luciferase reporter assays in Arabidopsis mesophyll protoplasts also indicated that AtPHR1 could not transactivate the expression of both genes. Loss of AtATG8f and AtATG8h leads to decreased root microsomal-enriched ATG8 but increased ATG8 lipidation. Moreover, atg8f/atg8h mutants exhibit reduced autophagic flux estimated by the vacuolar degradation of ATG8 in the Pi-limited root but maintain normal cellular Pi homeostasis with reduced number of lateral roots. While the expression patterns of AtATG8f and AtATG8h overlap in the root stele, AtATG8f is more strongly expressed in the root apex and root hair and remarkably at sites where lateral root primordia develop. We hypothesize that Pi starvation-induction of AtATG8f and AtATG8h may not directly contribute to Pi recycling but rely on a second wave of transcriptional activation triggered by PHR1 that fine-tunes cell type-specific autophagic activity.
Collapse
Affiliation(s)
- Li-Yen Lin
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Xuan Chow
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hao Chen
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Wen-Chun Chou
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Yin Liu
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
9
|
Zhao JH, Huang YY, Wang H, Yang XM, Li Y, Pu M, Zhou SX, Zhang JW, Zhao ZX, Li GB, Hassan B, Hu XH, Chen X, Xiao S, Wu XJ, Fan J, Wang WM. Golovinomyces cichoracearum effector-associated nuclear localization of RPW8.2 amplifies its expression to boost immunity in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:367-382. [PMID: 36522832 DOI: 10.1111/nph.18682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.
Collapse
Affiliation(s)
- Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Beenish Hassan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20850, USA
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| |
Collapse
|
10
|
Ivanov S, Daniels DA, Harrison MJ. A Medicago truncatula Cell Biology Resource: Transgenic Lines Expressing Fluorescent Protein-Based Markers of Membranes, Organelles, and Subcellular Compartments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:256-259. [PMID: 36401845 DOI: 10.1094/mpmi-01-22-0023-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Sergey Ivanov
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, U.S.A
| | | | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, U.S.A
| |
Collapse
|
11
|
Liang Y, Yu X, Anaokar S, Shi H, Dahl WB, Cai Y, Luo G, Chai J, Cai Y, Mollá‐Morales A, Altpeter F, Ernst E, Schwender J, Martienssen RA, Shanklin J. Engineering triacylglycerol accumulation in duckweed (Lemna japonica). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:317-330. [PMID: 36209479 PMCID: PMC9884027 DOI: 10.1111/pbi.13943] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 05/13/2023]
Abstract
Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 μm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.
Collapse
Affiliation(s)
- Yuanxue Liang
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Xiao‐Hong Yu
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Sanket Anaokar
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Hai Shi
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | | | - Yingqi Cai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Guangbin Luo
- Agronomy Department, Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - Jin Chai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Yuanheng Cai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | | | - Fredy Altpeter
- Agronomy Department, Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - Evan Ernst
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Howard Hughes Medical InstituteCold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Jorg Schwender
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Robert A. Martienssen
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Howard Hughes Medical InstituteCold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - John Shanklin
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| |
Collapse
|
12
|
Ren W, Zhang J, He J, Fang J, Wan L. Identification, expression, and association analysis of calcineurin B-like protein–interacting protein kinase genes in peanut. Front Genet 2022; 13:939255. [PMID: 36134030 PMCID: PMC9483126 DOI: 10.3389/fgene.2022.939255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Plants usually respond to the external environment by initiating a series of signal transduction processes mediated by protein kinases, especially calcineurin B-like protein–interacting protein kinases (CIPKs). In this study, 54 CIPKs were identified in the peanut genome, of which 26 were from cultivated species (named AhCIPKs) and 28 from two diploid progenitors (Arachis duranensis—AdCIPKs and Arachis ipaensis—AiCIPKs). Evolution analysis revealed that the 54 CIPKs were composed of two different evolutionary branches. The CIPK members were unevenly distributed at different chromosomes. Synteny analysis strongly indicated that whole-genome duplication (allopolyploidization) contributed to the expansion of CIPK. Comparative genomics analysis showed that there was only one common collinear CIPK pairs among peanut, Arabidopsis, rice, grape, and soybean. The prediction results of cis-acting elements showed that AhCIPKs, AdCIPKs, and AiCIPKs contained different proportions of transcription factor binding motifs involved in regulating plant growth, abiotic stress, plant hormones, and light response elements. Spatial expression profiles revealed that almost all AhCIPKs had tissue-specific expression patterns. Furthermore, association analysis identified one polymorphic site in AdCIPK12 (AhCIPK11), which was significantly associated with pod length, seed length, hundred seed weight, and shoot root ratio. Our results provide valuable information of CIPKs in peanut and facilitate better understanding of their biological functions.
Collapse
Affiliation(s)
- Weifang Ren
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Juncheng Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jie He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Jiahai Fang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Liyun Wan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Liyun Wan,
| |
Collapse
|
13
|
Wang ZF, Xie ZM, Tan YL, Li JY, Wang FL, Pei D, Li Z, Guo Y, Gong Z, Wang Y. Receptor-like protein kinase BAK1 promotes K+ uptake by regulating H+-ATPase AHA2 under low potassium stress. PLANT PHYSIOLOGY 2022; 189:2227-2243. [PMID: 35604103 PMCID: PMC9342980 DOI: 10.1093/plphys/kiac237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/01/2022] [Indexed: 05/25/2023]
Abstract
Potassium (K+) is one of the essential macronutrients for plant growth and development. However, the available K+ concentration in soil is relatively low. Plant roots can perceive low K+ (LK) stress, then enhance high-affinity K+ uptake by activating H+-ATPases in root cells, but the mechanisms are still unclear. Here, we identified the receptor-like protein kinase Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 (BAK1) that is involved in LK response by regulating the Arabidopsis (Arabidopsis thaliana) plasma membrane H+-ATPase isoform 2 (AHA2). The bak1 mutant showed leaf chlorosis phenotype and reduced K+ content under LK conditions, which was due to the decline of K+ uptake capacity. BAK1 could directly interact with the AHA2 C terminus and phosphorylate T858 and T881, by which the H+ pump activity of AHA2 was enhanced. The bak1 aha2 double mutant also displayed a leaf chlorosis phenotype that was similar to their single mutants. The constitutively activated form AHA2Δ98 and phosphorylation-mimic form AHA2T858D or AHA2T881D could complement the LK sensitive phenotypes of both aha2 and bak1 mutants. Together, our data demonstrate that BAK1 phosphorylates AHA2 and enhances its activity, which subsequently promotes K+ uptake under LK conditions.
Collapse
Affiliation(s)
- Zhi-Fang Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhong-Mei Xie
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ya-Lan Tan
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jia-Ying Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng-Liu Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dan Pei
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | | |
Collapse
|
14
|
Yang Y, Liu X, Guo W, Liu W, Shao W, Zhao J, Li J, Dong Q, Ma L, He Q, Li Y, Han J, Lei X. Testing the polar auxin transport model with a selective plasma membrane H + -ATPase inhibitor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1229-1245. [PMID: 35352470 DOI: 10.1111/jipb.13256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Auxin is unique among plant hormones in that its function requires polarized transport across plant cells. A chemiosmotic model was proposed to explain how polar auxin transport is derived by the H+ gradient across the plasma membrane (PM) established by PM H+ -adenosine triphosphatases (ATPases). However, a classical genetic approach by mutations in PM H+ -ATPase members did not result in the ablation of polar auxin distribution, possibly due to functional redundancy in this gene family. To confirm the crucial role of PM H+ -ATPases in the polar auxin transport model, we employed a chemical genetic approach. Through a chemical screen, we identified protonstatin-1 (PS-1), a selective small-molecule inhibitor of PM H+ -ATPase activity that inhibits auxin transport. Assays with transgenic plants and yeast strains showed that the activity of PM H+ -ATPases affects auxin uptake as well as acropetal and basipetal polar auxin transport. We propose that PS-1 can be used as a tool to interrogate the function of PM H+ -ATPases. Our results support the chemiosmotic model in which PM H+ -ATPase itself plays a fundamental role in polar auxin transport.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Liu
- Department of Dermatology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Shao
- Iomics Biosciences Inc., Beijing, 100102, China
| | - Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qun He
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianyong Han
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Wang Y, Yuan J, Wei X, Chen Y, Chen Q, Ge X. GhLBDs Promote Callus Initiation and Act as Selectable Markers to Increase Transformation Efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:861706. [PMID: 35401622 PMCID: PMC8990305 DOI: 10.3389/fpls.2022.861706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Detached organs or differentiated tissues could form a mass of pluripotent cells termed as callus on an auxin-rich medium, the underlying molecular mechanism of which remains elusive in cotton. LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor is a key regulator of plant cell totipotency/pluripotency, and a number of cotton GhLBDs with high-level differential expression during the callus induction process have been identified. Their overexpression in cotton calli fostered promotions in and callus induction without exogenous auxin. Expression analysis and histological observation using paraffin sectioning suggested that the first 72 h on culture is a key time point for callus initiation, whereby the GhLBDs showed high transcript abundance and enlarged calli that were rapidly developed from procambium and cambium. GhLBDs' expression level could be precisely modulated by the gradient concentrations of exogenous auxin, whereas auxin transport inhibitor 2,3,5-triiodobenzoic acid could severely inhibit its expression. The LBD-mediated callus formation was also dependent on the expression levels of GhLBDs. Further, a β-estradiol-inducible promoter pER8 was used to drive GhLBD18-1 expression, which led to rapid callus proliferation, suggesting that pER8/GhLBD18-1 could be used as a selectable marker system to replace the existing antibiotic/herbicide-resistance selectable markers in plant transformation. Our study provides new insights for callus initiation regulatory mechanism and strategies for improving transformation efficiency in cotton.
Collapse
Affiliation(s)
- Ye Wang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xi Wei
- Research Base of State Key Laboratory of Cotton Biology, Henan Normal University, Xinxiang, China
| | - Yanli Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Xiaoyang Ge
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Kassaw TK, Paton AJ, Peers G. Episome-Based Gene Expression Modulation Platform in the Model Diatom Phaeodactylum tricornutum. ACS Synth Biol 2022; 11:191-204. [PMID: 35015507 DOI: 10.1021/acssynbio.1c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemically inducible gene expression systems have been an integral part of the advanced synthetic genetic circuit design and are employed for precise dynamic control over genetically engineered traits. However, the current systems for controlling transgene expression in most algae are limited to endogenous promoters that respond to different environmental factors. We developed a highly efficient, tunable, and reversible episome-based transcriptional control system in the model diatom alga, Phaeodactylum tricornutum. We assessed the time- and dose-response dynamics of each expression system using a reporter protein (eYFP) as a readout. Using our circuit configuration, we found two inducible expression systems with a high dynamic range and confirmed the suitability of an episome expression platform for synthetic biological applications in diatoms. These systems are controlled by the presence of β-estradiol and digoxin. Addition of either chemical to transgenic strains activates transcription with a dynamic range of up to ∼180-fold and ∼90-fold, respectively. We demonstrated that our episome-based transcriptional control systems are tunable and reversible in a dose- and time-dependent manner. Using droplet digital polymerase chain reaction (PCR), we also confirmed that inducer-dependent transcriptional activation starts within minutes of inducer application without any detectable transcript in the uninduced controls. The system described here expands the molecular and synthetic biology toolkits in algae and will facilitate future gene discovery and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tessema K. Kassaw
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J. Paton
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
17
|
Li X, Gao Y, Wu W, Chen L, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:143-157. [PMID: 34498364 PMCID: PMC8710898 DOI: 10.1111/pbi.13701] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
Stomatal closure is an important process to prevent water loss in plants response to drought stress, which is finely modulated by ion channels together with their regulators in guard cells, especially the S-type anion channel AtSLAC1 in Arabidopsis. However, the functional characterization and regulation analyses of anion channels in gramineous crops, such as in maize guard cells are still limited. In this study, we identified an S-type anion channel ZmSLAC1 that was preferentially expressed in maize guard cells and involved in stomatal closure under drought stress. We found that two Ca2+ -dependent protein kinases ZmCPK35 and ZmCPK37 were expressed in maize guard cells and localized on the plasma membrane. Lesion of ZmCPK37 resulted in drought-sensitive phenotypes. Mutation of ZmSLAC1 and ZmCPK37 impaired ABA-activated S-type anion currents in maize guard cells, while the S-type anion currents were increased in the guard cells of ZmCPK35- and ZmCPK37-overexpression lines. Electrophysiological characterization in maize guard cells and Xenopus oocytes indicated that ZmCPK35 and ZmCPK37 could activate ZmSLAC1-mediated Cl- and NO3- currents. The maize inbred and hybrid lines overexpressing ZmCPK35 and ZmCPK37 exhibited enhanced tolerance and increased yield under drought conditions. In conclusion, our results demonstrate that ZmSLAC1 plays crucial roles in stomatal closure in maize, whose activity is regulated by ZmCPK35 and ZmCPK37. Elevation of ZmCPK35 and ZmCPK37 expression levels is a feasible way to improve maize drought tolerance as well as reduce yield loss under drought stress.
Collapse
Affiliation(s)
- Xi‐Dong Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yong‐Qiang Gao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wei‐Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Li‐Mei Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
18
|
Xiao F, Li X, He J, Zhao J, Wu G, Gong Q, Zhou H, Lin H. Protein kinase PpCIPK1 modulates plant salt tolerance in Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2021; 105:685-696. [PMID: 33543389 DOI: 10.1007/s11103-021-01120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
This work demonstrates that PpCIPK1, a putative protein kinase, participates in regulating plant salt tolerance in moss Physcomitrella patens. Calcineurin B-Like protein (CBL)-interacting protein kinases (CIPKs) have been reported to be involved in multiple signaling networks and function in plant growth and stress responses, however, their biological functions in non-seed plants have not been well characterized. In this study, we report that PpCIPK1, a putative protein kinase, participates in regulating plant salt tolerance in moss Physcomitrella patens (P. patens). Phylogenetic analysis revealed that PpCIPK1 shared high similarity with its homologs in higher plants. PpCIPK1 transcription level was induced upon salt stress in P. patens. Using homologous recombination, we constructed PpCIPK1 knockout mutant lines (PpCIPK1 KO). Salt sensitivity analysis showed that independent PpCIPK1 KO plants exhibited severe growth inhibition and developmental deficiency of gametophytes under salt stress condition compared to that of wild-type P. patens (WT). Consistently, ionic homeostasis was disrupted in plants due to PpCIPK1 deletion, and high level of H2O2 was accumulated in PpCIPK1 KO than that in WT. Furthermore, PpCIPK1 functions in regulating photosynthetic activity in response to salt stress. Interestingly, we observed that PpCIPK1 could completely rescue the salt-sensitive phenotype of sos2-1 to WT level in Arabidopsis, indicating that AtSOS2 and PpCIPK1 are functionally conserved. In conclusion, our work provides evidence that PpCIPK1 participates in salt tolerance regulation in P. patens.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiaochuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Jiaxian He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guochun Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qianyuan Gong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
19
|
Nakano M, Ichinose Y, Mukaihara T. Ralstonia solanacearum Type III Effector RipAC Targets SGT1 to Suppress Effector-Triggered Immunity. PLANT & CELL PHYSIOLOGY 2021; 61:2067-2076. [PMID: 32991707 DOI: 10.1093/pcp/pcaa122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Ralstonia solanacearum injects type III effectors into host cells to cause bacterial wilt in Solanaceae plants. To identify R. solanacearum effectors that suppress effector-triggered immunity (ETI) in plants, we evaluated R. solanacearum RS1000 effectors for their ability to suppress a hypersensitive response (HR) induced by the avirulence (Avr) effector RipAA in Nicotiana benthamiana. Out of the 11 effectors tested, 4 suppressed RipAA-triggered HR cell death. Among them, RipAC contains tandem repeats of the leucine-rich repeat (LRR) motif, which serves as the structural scaffold for a protein-protein interaction. We found that the LRR domain of RipAC was indispensable for the suppression of HR cell death during the recognition of RipAA and another Avr effector RipP1. By yeast two-hybrid screening, we identified N. benthamiana SGT1, an adaptor protein that forms a molecular chaperone complex with RAR1, as a host factor of the RipAC target. RipAC interacted with NbSGT1 in yeast and plant cells. Upon the formation of the molecular chaperone complex, the presence of RipAC markedly inhibits the interaction between NbSGT1 and NbRAR1. The RipAA- and RipP1-triggered HR cell deaths were not observed in NbSGT1-silenced plants. The introduction of RipAC was complementary to the reduced growth of the R. solanacearum mutant strain in N. benthamiana. These findings indicate that R. solanacearum uses RipAC to subvert the NbSGT1-mediated formation of the molecular chaperone complex and suppress ETI responses during the recognition of Avr effectors.
Collapse
Affiliation(s)
- Masahito Nakano
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama, 716-1241 Japan
| |
Collapse
|
20
|
Xian L, Yu G, Wei Y, Rufian JS, Li Y, Zhuang H, Xue H, Morcillo RJL, Macho AP. A Bacterial Effector Protein Hijacks Plant Metabolism to Support Pathogen Nutrition. Cell Host Microbe 2020; 28:548-557.e7. [PMID: 32735848 DOI: 10.1016/j.chom.2020.07.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023]
Abstract
Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization.
Collapse
Affiliation(s)
- Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yansha Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
21
|
Wang N, Liu Y, Cai Y, Tang J, Li Y, Gai J. The soybean U-box gene GmPUB6 regulates drought tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:284-296. [PMID: 32795910 DOI: 10.1016/j.plaphy.2020.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The plant U-box (PUB) proteins function as E3 ligases to poly-ubiquitinate the target proteins for their degradation or post-translational modification. PUBs also play important roles in regulation of diverse biological processes, including plant response to environmental stresses. In this study, the functional characterization of a soybean PUB gene, GmPUB6, was performed. GmPUB6 was mainly localized to peroxisome, and showed E3 ubiquitin ligase activity. The transcript levels of GmPUB6 in soybean leaves and roots were induced by abscisic acid (ABA), high salinity and polyethylene glycol (PEG) treatment. Comparing with the wild-type (WT) plants, overexpression of GmPUB6 in Arabidopsis thaliana decreased plant survival rate after drought stress, reduced seed germination rate and root elongation under mannitol (osmotic) stress, and suppressed ABA- or mannitol-mediated stomatal closure. In addition, under dehydration stress, the relative expression levels of seven stress responsive genes, including ABI1, DREB2A, KIN2, RAB18, RD20, RD29A and RD29B, were lower in GmPUB6-overexpressed plants than WT. Taken together, these results suggest that GmPUB6 functions as a negative regulator in drought tolerance, and plays an important role in osmotic stress and ABA signaling pathways, which might be the possible mechanism of PUB6 participating in drought stress response.
Collapse
Affiliation(s)
- Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yandang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Cai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiajun Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Sang Y, Yu W, Zhuang H, Wei Y, Derevnina L, Yu G, Luo J, Macho AP. Intra-strain Elicitation and Suppression of Plant Immunity by Ralstonia solanacearum Type-III Effectors in Nicotiana benthamiana. PLANT COMMUNICATIONS 2020; 1:100025. [PMID: 33367244 PMCID: PMC7747989 DOI: 10.1016/j.xplc.2020.100025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 05/11/2023]
Abstract
Effector proteins delivered inside plant cells are powerful weapons for bacterial pathogens, but this exposes the pathogen to potential recognition by the plant immune system. Therefore, the effector repertoire of a given pathogen must be balanced for a successful infection. Ralstonia solanacearum is an aggressive pathogen with a large repertoire of secreted effectors. One of these effectors, RipE1, is conserved in most R. solanacearum strains sequenced to date. In this work, we found that RipE1 triggers immunity in N. benthamiana, which requires the immune regulator SGT1, but not EDS1 or NRCs. Interestingly, RipE1-triggered immunity induces the accumulation of salicylic acid (SA) and the overexpression of several genes encoding phenylalanine-ammonia lyases (PALs), suggesting that the unconventional PAL-mediated pathway is responsible for the observed SA biosynthesis. Surprisingly, RipE1 recognition also induces the expression of jasmonic acid (JA)-responsive genes and JA biosynthesis, suggesting that both SA and JA may act cooperatively in response to RipE1. We further found that RipE1 expression leads to the accumulation of glutathione in plant cells, which precedes the activation of immune responses. R. solanacearum secretes another effector, RipAY, which is known to inhibit immune responses by degrading cellular glutathione. Accordingly, RipAY inhibits RipE1-triggered immune responses. This work shows a strategy employed by R. solanacearum to counteract the perception of its effector proteins by plant immune system.
Collapse
Affiliation(s)
- Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jiamin Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
23
|
Harnessing β-estradiol inducible expression system to overproduce nervonic acid in Saccharomyces cerevisiae. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Singh NK, Shukla P, Kirti PB. A CBL-interacting protein kinase AdCIPK5 confers salt and osmotic stress tolerance in transgenic tobacco. Sci Rep 2020; 10:418. [PMID: 31941979 PMCID: PMC6962456 DOI: 10.1038/s41598-019-57383-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022] Open
Abstract
CBL interacting protein kinases play important roles in adaptation to stress conditions. In the present study, we isolated a CBL-interacting protein kinase homolog (AdCIPK5) from a wild peanut (Arachis diogoi) with similarity to AtCIPK5 of Arabidopsis. Expression analyses in leaves of the wild peanut showed AdCIPK5 induction by exogenous signaling molecules including salicylic acid, abscisic acid and ethylene or abiotic stress factors like salt, PEG and sorbitol. The recombinant AdCIPK5-GFP protein was found to be localized to the nucleus, plasma membrane and cytoplasm. We overexpressed AdCIPK5 in tobacco plants and checked their level of tolerance to biotic and abiotic stresses. While wild type and transgenic plants displayed no significant differences to the treatment with the phytopathogen, Phytophthora parasitica pv nicotianae, the expression of AdCIPK5 increased salt and osmotic tolerance in transgenic plants. Analysis of different physiological parameters revealed that the transgenic plants maintained higher chlorophyll content and catalase activity with lower levels of H2O2 and MDA content during the abiotic stress conditions. AdCIPK5 overexpression also contributed to the maintenance of a higher the K+/Na+ ratio under salt stress. The enhanced tolerance of transgenic plants was associated with elevated expression of stress-related marker genes; NtERD10C, NtERD10D, NtNCED1, NtSus1, NtCAT and NtSOS1. Taken together, these results indicate that AdCIPK5 is a positive regulator of salt and osmotic stress tolerance.
Collapse
Affiliation(s)
- Naveen Kumar Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
- Agricultural Research Organization-the Volcani Center, 68 HaMaccabim Road P.O.B 15159, Rishon LeZion, 7505101, Israel.
| | - Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore, 192121, J & K, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- Agri Biotech Foundation, Rajendranagar, Hyderabad, 500030, India
| |
Collapse
|
25
|
Nakano M, Mukaihara T. Comprehensive Identification of PTI Suppressors in Type III Effector Repertoire Reveals that Ralstonia solanacearum Activates Jasmonate Signaling at Two Different Steps. Int J Mol Sci 2019; 20:E5992. [PMID: 31795135 PMCID: PMC6928842 DOI: 10.3390/ijms20235992] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt in many plants. To identify R. solanacearum effectors that suppress pattern-triggered immunity (PTI) in plants, we transiently expressed R. solanacearum RS1000 effectors in Nicotiana benthamiana leaves and evaluated their ability to suppress the production of reactive oxygen species (ROS) triggered by flg22. Out of the 61 effectors tested, 11 strongly and five moderately suppressed the flg22-triggered ROS burst. Among them, RipE1 shared homology with the Pseudomonas syringae cysteine protease effector HopX1. By yeast two-hybrid screening, we identified jasmonate-ZIM-domain (JAZ) proteins, which are transcriptional repressors of the jasmonic acid (JA) signaling pathway in plants, as RipE1 interactors. RipE1 promoted the degradation of JAZ repressors and induced the expressions of JA-responsive genes in a cysteine-protease-activity-dependent manner. Simultaneously, RipE1, similarly to the previously identified JA-producing effector RipAL, decreased the expression level of the salicylic acid synthesis gene that is required for the defense responses against R. solanacearum. The undecuple mutant that lacks 11 effectors with a strong PTI suppression activity showed reduced growth of R. solanacearum in Nicotiana plants. These results indicate that R. solanacearum subverts plant PTI responses using multiple effectors and manipulates JA signaling at two different steps to promote infection.
Collapse
Affiliation(s)
- Masahito Nakano
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| |
Collapse
|
26
|
Qin YJ, Wu WH, Wang Y. ZmHAK5 and ZmHAK1 function in K + uptake and distribution in maize under low K + conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:691-705. [PMID: 30548401 DOI: 10.1111/jipb.12756] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/03/2018] [Indexed: 05/27/2023]
Abstract
Potassium (K+ ) is an essential macronutrient for plant growth and development. Transporters from the KT/HAK/KUP family play crucial roles in K+ homeostasis and cell growth in various plant species. However, their physiological roles in maize are still unknown. In this study, we cloned ZmHAK5 and ZmHAK1 and investigated their functions in maize (Zea mays L.). In situ hybridization showed that ZmHAK5 was mainly expressed in roots, especially in the epidermis, cortex, and vascular bundle. ZmHAK5 was characterized as a high-affinity K+ transporter. Loss of function of ZmHAK5 led to defective K+ uptake in maize, under low K+ conditions, whereas ZmHAK5-overexpressing plants showed increased K+ uptake activity and improved growth. ZmHAK1 was upregulated under low K+ stress, as revealed by RT-qPCR. ZmHAK1 mediated K+ uptake when heterologously expressed in yeast, but its transport activity was weaker than that of ZmHAK5. Overexpression of ZmHAK1 in maize significantly affected K+ distribution in shoots, leading to chlorosis in older leaves. These findings indicate that ZmHAK5 and ZmHAK1 play distinct roles in K+ homeostasis in maize, functioning in K+ uptake and K+ distribution, respectively. Genetic manipulation of ZmHAK5 may represent a feasible way to improve K+ utilization efficiency in maize.
Collapse
Affiliation(s)
- Ya-Juan Qin
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Pérez Di Giorgio JA, Lepage É, Tremblay-Belzile S, Truche S, Loubert-Hudon A, Brisson N. Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 2019; 14:e0214552. [PMID: 30943245 PMCID: PMC6447228 DOI: 10.1371/journal.pone.0214552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Though it is an essential process, transcription can be a source of genomic instability. For instance, it may generate RNA:DNA hybrids as the nascent transcript hybridizes with the complementary DNA template. These hybrids, called R-loops, act as a major cause of replication fork stalling and DNA breaks. In this study, we show that lowering transcription and R-loop levels in plastids of Arabidopsis thaliana reduces DNA rearrangements and mitigates plastid genome instability phenotypes. This effect can be observed on a genome-wide scale, as the loss of the plastid sigma transcription factor SIG6 prevents DNA rearrangements by favoring conservative repair in the presence of ciprofloxacin-induced DNA damage or in the absence of plastid genome maintenance actors such as WHY1/WHY3, RECA1 and POLIB. Additionally, resolving R-loops by the expression of a plastid-targeted exogenous RNAse H1 produces similar results. We also show that highly-transcribed genes are more susceptible to DNA rearrangements, as increased transcription of the psbD operon by SIG5 correlates with more locus-specific rearrangements. The effect of transcription is not specific to Sigma factors, as decreased global transcription levels by mutation of heat-stress-induced factor HSP21, mutation of nuclear-encoded polymerase RPOTp, or treatment with transcription-inhibitor rifampicin all prevent the formation of plastid genome rearrangements, especially under induced DNA damage conditions.
Collapse
Affiliation(s)
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Truche
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Audrey Loubert-Hudon
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
28
|
Waadt R, Jawurek E, Hashimoto K, Li Y, Scholz M, Krebs M, Czap G, Hong-Hermesdorf A, Hippler M, Grill E, Kudla J, Schumacher K. Modulation of ABA responses by the protein kinase WNK8. FEBS Lett 2019; 593:339-351. [PMID: 30556127 DOI: 10.1002/1873-3468.13315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
Abscisic acid (ABA) regulates growth and developmental processes in response to limiting water conditions. ABA functions through a core signaling pathway consisting of PYR1/PYL/RCAR ABA receptors, type 2C protein phosphatases (PP2Cs), and SnRK2-type protein kinases. Other signaling modules might converge with ABA signals through the modulation of core ABA signaling components. We have investigated the role of the protein kinase WNK8 in ABA signaling. WNK8 interacted with PP2CA and PYR1, phosphorylated PYR1 in vitro, and was dephosphorylated by PP2CA. A hypermorphic wnk8-ct Arabidopsis mutant allele suppressed ABA and glucose hypersensitivities of pp2ca-1 mutants during young seedling development, and WNK8 expression in protoplasts suppressed ABA-induced reporter gene expression. We conclude that WNK8 functions as a negative modulator of ABA signaling.
Collapse
Affiliation(s)
- Rainer Waadt
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Esther Jawurek
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische-Wilhelms-Universität Münster, Germany
| | - Yan Li
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Martin Scholz
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische-Wilhelms-Universität Münster, Germany
| | - Melanie Krebs
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Gereon Czap
- Lehrstuhl für Botanik, Technische Universität München, Freising, Germany
| | - Anne Hong-Hermesdorf
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische-Wilhelms-Universität Münster, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Freising, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische-Wilhelms-Universität Münster, Germany
| | - Karin Schumacher
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| |
Collapse
|
29
|
Sui Z, Luo J, Yao R, Huang C, Zhao Y, Kong L. Functional characterization and correlation analysis of phenylalanine ammonia-lyase (PAL) in coumarin biosynthesis from Peucedanum praeruptorum Dunn. PHYTOCHEMISTRY 2019; 158:35-45. [PMID: 30448740 DOI: 10.1016/j.phytochem.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Coumarins exhibit many biological activities and are the main specialised metabolites of Peucedanum praeruptorum Dunn, an important plant used in traditional Chinese medicine. In preliminary studies, we cloned several genes involved in coumarin biosynthesis in P. praeruptorum, such as 4-coumarate: CoA ligase (4CL), p-coumaroyl CoA 2'-hydroxylase (C2'H), feruloyl CoA 6'-hydroxylase (F6'H) and bergaptol O-methyltransferase (BMT). However, phenylalanine ammonia-lyase (PAL) in P. praeruptorum (PpPAL) has not yet been studied. In the present study, we cloned one novel PpPAL gene. Subsequently, the relationship between gene and compounds was studied using quantitative real-time PCR (qRT-PCR) and High Performance Liquid Chromatography (HPLC) analysis. Then, enzyme function was analyzed with L-phenylalanine (L-Phe) as substrate. These experiments showed that the coumarin content could be upregulated by methyl jasmonate (MeJA), UV irradiation and cold, which was consistent with increased expression levels of PpPAL. In addition, correlation analysis indicated that coumarins were partially related to PpPAL. And the recombinant protein could catalyze the conversion of L-Phe to trans-cinnamic acid (t-CA) with a Km of 120 ± 33 μM and a Kcat of 117 ± 32 min-1. Besides, Tyr110, Phe116, Gly117, Ser206, Leu209, Leu259, Tyr354, Arg357, Asn387 and Phe403 were essential for enzymatic activity based on three-dimensional modeling and site-directed mutagenesis experiments. Altogether these results highlight the importance of PpPAL in abiotically induced coumarin biosynthesis and provide further insights regarding the structure-function relationships of this protein.
Collapse
Affiliation(s)
- Ziwei Sui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ruolan Yao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Chuanlong Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
30
|
Sharma M, Bennewitz B, Klösgen RB. Rather rule than exception? How to evaluate the relevance of dual protein targeting to mitochondria and chloroplasts. PHOTOSYNTHESIS RESEARCH 2018; 138:335-343. [PMID: 29946965 DOI: 10.1007/s11120-018-0543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/20/2018] [Indexed: 05/11/2023]
Abstract
Dual targeting of a nuclearly encoded protein into two different cell organelles is an exceptional event in eukaryotic cells. Yet, the frequency of such dual targeting is remarkably high in case of mitochondria and chloroplasts, the two endosymbiotic organelles of plant cells. In most instances, it is mediated by "ambiguous" transit peptides, which recognize both organelles as the target. A number of different approaches including in silico, in organello as well as both transient and stable in vivo assays are established to determine the targeting specificity of such transit peptides. In this review, we will describe and compare these approaches and discuss the potential role of this unusual targeting process. Furthermore, we will present a hypothetical scenario how dual targeting might have arisen during evolution.
Collapse
Affiliation(s)
- Mayank Sharma
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Bationa Bennewitz
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany.
| |
Collapse
|
31
|
CBL1‐CIPK26‐mediated phosphorylation enhances activity of the NADPH oxidase RBOHC, but is dispensable for root hair growth. FEBS Lett 2018; 592:2582-2593. [DOI: 10.1002/1873-3468.13187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022]
|
32
|
Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2018; 27:R667-R679. [PMID: 28697370 DOI: 10.1016/j.cub.2017.05.020] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their characteristic intracellular responses. It is becoming clear from genomic and physiological investigations that while the basic elements in the toolkit are common between plants and animals, evolution has acted in such a way that, in plants, some components have diversified with respect to their animal counterparts, while others have either been lost or have never evolved in the plant lineages. In comparison with animals, in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma membrane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular second-messenger-based system, coupled with the requirement to adapt to changing environmental conditions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Elodie Marchadier
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Génétique Quantitative et Evolution - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
33
|
Gantner J, Ordon J, Ilse T, Kretschmer C, Gruetzner R, Löfke C, Dagdas Y, Bürstenbinder K, Marillonnet S, Stuttmann J. Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system. PLoS One 2018; 13:e0197185. [PMID: 29847550 PMCID: PMC5976141 DOI: 10.1371/journal.pone.0197185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/27/2018] [Indexed: 11/21/2022] Open
Abstract
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a "peripheral infrastructure" around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies.
Collapse
Affiliation(s)
- Johannes Gantner
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Jana Ordon
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Theresa Ilse
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Ramona Gruetzner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Christian Löfke
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle (Saale), Halle, Germany
| |
Collapse
|
34
|
Liu TY, Chou WC, Chen WY, Chu CY, Dai CY, Wu PY. Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:426-438. [PMID: 29451720 DOI: 10.1111/tpj.13874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the β-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta.
Collapse
Affiliation(s)
- Tzu-Yin Liu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wen-Chun Chou
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-Yuan Chen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Yi Chu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chen-Yi Dai
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Yu Wu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
35
|
Gao YQ, Wu WH, Wang Y. The K + channel KZM2 is involved in stomatal movement by modulating inward K + currents in maize guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:662-675. [PMID: 28891257 DOI: 10.1111/tpj.13712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1-like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin ) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2-KZM3 heteromeric channel became slower than the KZM3 channel. Patch-clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
36
|
N-terminal S-acylation facilitates tonoplast targeting of the calcium sensor CBL6. FEBS Lett 2017; 591:3745-3756. [DOI: 10.1002/1873-3468.12880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
|
37
|
Yao R, Zhao Y, Liu T, Huang C, Xu S, Sui Z, Luo J, Kong L. Identification and functional characterization of a p-coumaroyl CoA 2'-hydroxylase involved in the biosynthesis of coumarin skeleton from Peucedanum praeruptorum Dunn. PLANT MOLECULAR BIOLOGY 2017; 95:199-213. [PMID: 28822035 DOI: 10.1007/s11103-017-0650-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
A p-coumaroyl CoA 2'-hydroxylase responsible for the formation of coumarin lactone ring was identified from Peucedanum praeruptorum Dunn and functionally characterized in vitro. Coumarins are important plant secondary metabolites with a variety of biological activities. Ortho-hydroxylation of cinnamates leads to the formation of coumarin lactone ring and is generally thought to be a key step in coumarin biosynthesis. However, ortho-hydroxylases, especially p-coumaroyl CoA 2'-hydroxylase (C2'H) responsible for the biosynthesis of the most common coumarin skeleton, have received insufficient attention. Here, a putative ortho-hydroxylase PpC2'H was isolated from P. praeruptorum Dunn, a traditional Chinese medicinal herb rich in coumarins. Expression profile indicated that PpC2'H exhibited the highest transcript level in roots and could be up-regulated by MeJA elicitation. Subcellular localization of PpC2'H was demonstrated to be cytosol in planta. In order to functionally characterize PpC2'H, the purified recombinant protein was incubated with various potential substrates. HPLC-ESI-MS analysis indicated that PpC2'H catalyzed the conversion of p-coumaroyl CoA into hydroxylated intermediate, which then underwent spontaneous lactonization to generate umbelliferone. Our data also showed that light would promote the spontaneous process. In addition, based on homology modeling and site-directed mutagenesis, amino acid residues Phe-130, Lys-141, Asn-207, His-224, Asp-226, His-282 and Phe-298 were verified essential for enzymatic activity. These findings provide insight into structure-function relationship of this pivotal ortho-hydroxylase and also contribute to elucidating the biosynthetic mechanism of coumarin skeleton.
Collapse
MESH Headings
- Amino Acid Sequence
- Apiaceae/enzymology
- Biosynthetic Pathways/genetics
- Chromatography, High Pressure Liquid
- Coumarins/chemistry
- Coumarins/metabolism
- DNA, Complementary/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Kinetics
- Light
- Mixed Function Oxygenases/chemistry
- Mixed Function Oxygenases/metabolism
- Models, Molecular
- Mutagenesis, Site-Directed
- Organ Specificity/genetics
- Organ Specificity/radiation effects
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protoplasts/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Spectrometry, Mass, Electrospray Ionization
- Structural Homology, Protein
- Subcellular Fractions/enzymology
- Transcriptome/genetics
- Transcriptome/radiation effects
Collapse
Affiliation(s)
- Ruolan Yao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Tingting Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Chuanlong Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Ziwei Sui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Chen Z, Cheng Q, Hu C, Guo X, Chen Z, Lin Y, Hu T, Bellizzi M, Lu G, Wang GL, Wang Z, Chen S, Wang F. A Chemical-Induced, Seed-Soaking Activation Procedure for Regulated Gene Expression in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1447. [PMID: 28871269 PMCID: PMC5566991 DOI: 10.3389/fpls.2017.01447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Inducible gene expression has emerged as a powerful tool for plant functional genomics. The estrogen receptor-based, chemical-inducible system XVE has been used in many plant species, but the limited systemic movement of inducer β-estradiol in transgenic rice plants has prohibited a wide use of the XVE system in this important food crop. Here, we constructed an improved chemical-regulated, site-specific recombination system by employing the XVE transactivator in combination with a Cre/loxP-FRT system, and optimized a seed-soaking procedure for XVE induction in rice. By using a gus gene and an hpRNAi cassette targeted for OsPDS as reporters, we demonstrated that soaking transgenic seeds with estradiol solution could induce highly efficient site-specific recombination in germinating embryos, resulting in constitutive and high-level expression of target gene or RNAi cassette in intact rice plants from induced seeds. The strategy reported here thereby provides a useful gene activation approach for effectively regulating gene expression in rice.
Collapse
Affiliation(s)
- Zaijie Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Qianqian Cheng
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Chanquan Hu
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Yan Lin
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Taijiao Hu
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Maria Bellizzi
- Department of Plant Pathology, The Ohio State University, ColumbusOH, United States
| | - Guodong Lu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, ColumbusOH, United States
| | - Zonghua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Songbiao Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| |
Collapse
|
39
|
Liu T, Yao R, Zhao Y, Xu S, Huang C, Luo J, Kong L. Cloning, Functional Characterization and Site-Directed Mutagenesis of 4-Coumarate: Coenzyme A Ligase (4CL) Involved in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn. FRONTIERS IN PLANT SCIENCE 2017; 8:4. [PMID: 28144249 PMCID: PMC5239791 DOI: 10.3389/fpls.2017.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/03/2017] [Indexed: 05/19/2023]
Abstract
Coumarins are the main bioactive compounds in Peucedanum praeruptorum Dunn, a common Chinese herbal medicine. Nevertheless, the genes involved in the biosynthesis of core structure of coumarin in P. praeruptorum have not been identified yet. 4-Coumarate: CoA ligase (4CL) catalyzes the formation of hydroxycinnamates CoA esters, and plays an essential role at the divergence point from general phenylpropanoid metabolism to major branch pathway of coumarin. Here, three novel putative 4CL genes (Pp4CL1, Pp4CL7, and Pp4CL10) were isolated from P. praeruptorum. Biochemical characterization of the recombinant proteins revealed that Pp4CL1 utilized p-coumaric and ferulic acids as its two main substrates for coumarin biosynthesis in P. praeruptorum. Furthermore, Pp4CL1 also exhibited activity toward caffeic, cinnamic, isoferulic, and o-coumaric acids and represented a bona fide 4CL. Pp4CL7 and Pp4CL10 had no catalytic activity toward hydroxycinnamic acid compounds. But they had close phylogenetic relationship to true 4CLs and were defined as 4CL-like genes. Among all putative 4CLs, Pp4CL1 was the most highly expressed gene in roots, and its expression level was significantly up-regulated in mature roots compared with seedlings. Subcellular localization studies showed that Pp4CL1 and Pp4CL10 proteins were localized in the cytosol. In addition, site-directed mutagenesis of Pp4CL1 demonstrated that amino acids of Tyr-239, Ala-243, Met-306, Ala-309, Gly-334, Lys-441, Gln-446, and Lys-526 were essential for substrate binding or catalytic activities. The characterization and site-directed mutagenesis studies of Pp4CL1 lays a solid foundation for elucidating the biosynthetic mechanisms of coumarins in P. praeruptorum and provides further insights in understanding the structure-function relationships of this important family of proteins.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical UniversityNanjing, China
| | - Ruolan Yao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical UniversityNanjing, China
| | - Yucheng Zhao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical UniversityNanjing, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Chuanlong Huang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical UniversityNanjing, China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical UniversityNanjing, China
- *Correspondence: Lingyi Kong, Jun Luo,
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical UniversityNanjing, China
- *Correspondence: Lingyi Kong, Jun Luo,
| |
Collapse
|
40
|
Liu S, Yoder JI. Chemical induction of hairpin RNAi molecules to silence vital genes in plant roots. Sci Rep 2016; 6:37711. [PMID: 27898105 PMCID: PMC5127191 DOI: 10.1038/srep37711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022] Open
Abstract
Understanding the functions encoded by plant genes can be facilitated by reducing transcript levels by hairpin RNA (hpRNA) mediated silencing. A bottleneck to this technology occurs when a gene encodes a phenotype that is necessary for cell viability and silencing the gene inhibits transformation. Here we compared the use of two chemically inducible plant promoter systems to drive hpRNA mediated gene silencing in transgenic, hairy roots. We cloned the gene encoding the Yellow Fluorescence Protein (YFP) into the dexamethasone inducible vector pOpOff2 and into the estradiol induced vector pER8. We then cloned a hpRNA targeting YFP under the regulation of the inducible promoters, transformed Medicago truncatula roots, and quantified YFP fluorescence and mRNA levels. YFP fluorescence was normal in pOpOff2 transformed roots without dexamethasone but was reduced with dexamethasone treatment. Interestingly, dexamethasone removal did not reverse YFP inhibition. YFP expression in roots transformed with pER8 was low even in the absence of inducer. We used the dexamethasone system to silence acetyl-CoA carboxylase gene and observed prolific root growth when this construct was transformed into Medicago until dexamethasone was applied. Our study shows that dexamethasone inducibility can be useful to silence vital genes in transgenic roots.
Collapse
Affiliation(s)
- Siming Liu
- Plant Sciences Department, University of California, Davis, CA 95616, USA
| | - John I. Yoder
- Plant Sciences Department, University of California, Davis, CA 95616, USA
| |
Collapse
|
41
|
Beckmann L, Edel KH, Batistič O, Kudla J. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species. Sci Rep 2016; 6:31645. [PMID: 27538881 PMCID: PMC4990929 DOI: 10.1038/srep31645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity.
Collapse
Affiliation(s)
- Linda Beckmann
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany.,College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Amarasinghe S, Watson-Haigh NS, Gilliham M, Roy S, Baumann U. The evolutionary origin of CIPK16: A gene involved in enhanced salt tolerance. Mol Phylogenet Evol 2016; 100:135-147. [DOI: 10.1016/j.ympev.2016.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022]
|
43
|
Offenborn JN, Waadt R, Kudla J. Visualization and translocation of ternary Calcineurin-A/Calcineurin-B/Calmodulin-2 protein complexes by dual-color trimolecular fluorescence complementation. THE NEW PHYTOLOGIST 2015; 208:269-79. [PMID: 25919910 DOI: 10.1111/nph.13439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Fluorescence complementation (FC) techniques are expedient for analyzing bimolecular protein-protein interactions. Here we aimed to develop a method for visualization of ternary protein complexes using dual-color trimolecular fluorescence complementation (TriFC). Dual-color TriFC combines protein fragments of mCherry and mVenus, in which a scaffold protein is bilaterally fused to C-terminal fragments of both fluorescent proteins and combined with potential interacting proteins fused to an N-terminal fluorescent protein fragment. For efficient visual verification of ternary complex formation, TriFC was combined with a cytoplasm to plasma membrane translocation assay. Modular vector sets were designed which are fully compatible with previously reported bimolecular fluorescence complementation (BiFC) vectors. As a proof-of-principle, the ternary complex formation of the PP2B protein phosphatase Calcineurin-A/Calcineurin-B with Calmodulin-2 was investigated in transiently transformed Nicotiana benthamiana leaf epidermal cells. The results indicate a Calcineurin-B-induced interaction of Calmodulin-2 with Calcineurin-A. TriFC and the translocation of TriFC complexes provide a novel tool to investigate ternary complex formations with the simplicity of a BiFC approach. The robustness of FC applications and the opportunity to quantify fluorescence complementation render this assay suitable for a broad range of interaction analyses.
Collapse
Affiliation(s)
- Jan Niklas Offenborn
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Rainer Waadt
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, Münster, 48149, Germany
- Plant Developmental Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| |
Collapse
|
44
|
Luo Y, Scholl S, Doering A, Zhang Y, Irani NG, Rubbo SD, Neumetzler L, Krishnamoorthy P, Van Houtte I, Mylle E, Bischoff V, Vernhettes S, Winne J, Friml J, Stierhof YD, Schumacher K, Persson S, Russinova E. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. NATURE PLANTS 2015; 1:15094. [PMID: 27250258 PMCID: PMC4905525 DOI: 10.1038/nplants.2015.94] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 06/03/2015] [Indexed: 05/18/2023]
Abstract
In plants, vacuolar H(+)-ATPase (V-ATPase) activity acidifies both the trans-Golgi network/early endosome (TGN/EE) and the vacuole. This dual V-ATPase function has impeded our understanding of how the pH homeostasis within the plant TGN/EE controls exo- and endocytosis. Here, we show that the weak V-ATPase mutant deetiolated3 (det3) displayed a pH increase in the TGN/EE, but not in the vacuole, strongly impairing secretion and recycling of the brassinosteroid receptor and the cellulose synthase complexes to the plasma membrane, in contrast to mutants lacking tonoplast-localized V-ATPase activity only. The brassinosteroid insensitivity and the cellulose deficiency defects in det3 were tightly correlated with reduced Golgi and TGN/EE motility. Thus, our results provide strong evidence that acidification of the TGN/EE, but not of the vacuole, is indispensable for functional secretion and recycling in plants.
Collapse
Affiliation(s)
- Yu Luo
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Stefan Scholl
- Developmental Biology of Plants, Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Anett Doering
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Yi Zhang
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Niloufer G. Irani
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Simone Di Rubbo
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Lutz Neumetzler
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | - Isabelle Van Houtte
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Evelien Mylle
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Volker Bischoff
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, 78000 Versailles, France
- AgroParisTech,Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - Samantha Vernhettes
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, 78000 Versailles, France
- AgroParisTech,Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - Johan Winne
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000 Gent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Karin Schumacher
- Developmental Biology of Plants, Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
- , , and
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
- Australian Research Council, Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
- , , and
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- , , and
| |
Collapse
|
45
|
Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:3134-9. [PMID: 25646412 DOI: 10.1073/pnas.1420944112] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Mg(2+) is essential for a myriad of cellular processes, high levels of Mg(2+) in the environment, such as those found in serpentine soils, become toxic to plants. In this study, we identified two calcineurin B-like (CBL) proteins, CBL2 and CBL3, as key regulators for plant growth under high-Mg conditions. The Arabidopsis mutant lacking both CBL2 and CBL3 displayed severe growth retardation in the presence of excess Mg(2+), implying elevated Mg(2+) toxicity in these plants. Unexpectedly, the cbl2 cbl3 mutant plants retained lower Mg content than wild-type plants under either normal or high-Mg conditions, suggesting that CBL2 and CBL3 may be required for vacuolar Mg(2+) sequestration. Indeed, patch-clamp analysis showed that the cbl2 cbl3 mutant exhibited reduced Mg(2+) influx into the vacuole. We further identified four CBL-interacting protein kinases (CIPKs), CIPK3, -9, -23, and -26, as functionally overlapping components downstream of CBL2/3 in the signaling pathway that facilitates Mg(2+) homeostasis. The cipk3 cipk9 cipk23 cipk26 quadruple mutant, like the cbl2 cbl3 double mutant, was hypersensitive to high-Mg conditions; furthermore, CIPK3/9/23/26 physically interacted with CBL2/3 at the vacuolar membrane. Our results thus provide evidence that CBL2/3 and CIPK3/9/23/26 constitute a multivalent interacting network that regulates the vacuolar sequestration of Mg(2+), thereby protecting plants from Mg(2+) toxicity.
Collapse
|
46
|
Edel KH, Kudla J. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium 2014; 57:231-46. [PMID: 25477139 DOI: 10.1016/j.ceca.2014.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
Calcium serves as a versatile messenger in adaptation reactions and developmental processes in plants and animals. Eukaryotic cells generate cytosolic Ca(2+) signals via Ca(2+) conducting channels. Ca(2+) signals are represented in form of stimulus-specific spatially and temporally defined Ca(2+) signatures. These Ca(2+) signatures are detected, decoded and transmitted to downstream responses by an elaborate toolkit of Ca(2+) binding proteins that function as Ca(2+) sensors. In this article, we examine the distribution and evolution of Ca(2+)-conducting channels and Ca(2+) decoding proteins in the plant lineage. To this end, we have in addition to previously studied genomes of plant species, identified and analyzed the Ca(2+)-signaling components from species that hold key evolutionary positions like the filamentous terrestrial algae Klebsormidium flaccidum and Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants. Plants and animals exhibit substantial differences in their complements of Ca(2+) channels and Ca(2+) binding proteins. Within the plant lineage, remarkable differences in the evolution of complexity between different families of Ca(2+) signaling proteins are observable. Using the CBL/CIPK Ca(2+) sensor/kinase signaling network as model, we attempt to link evolutionary tendencies to functional predictions. Our analyses, for example, suggest Ca(2+) dependent regulation of Na(+) homeostasis as an evolutionary most ancient function of this signaling network. Overall, gene families of Ca(2+) signaling proteins have significantly increased in their size during plant evolution reaching an extraordinary complexity in angiosperms.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany.
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany; College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
47
|
Steinhorst L, Kudla J. Calcium and reactive oxygen species rule the waves of signaling. PLANT PHYSIOLOGY 2013; 163:471-85. [PMID: 23898042 PMCID: PMC3793029 DOI: 10.1104/pp.113.222950] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/25/2013] [Indexed: 05/18/2023]
Abstract
Calcium signaling and reactive oxygen species signaling are directly connected, and both contribute to cell-to-cell signal propagation in plants.
Collapse
|