1
|
Hajheidari M, Sunyaev S, de Meaux J. Are complex traits underpinned by polygenic molecular traits? A reflection on the complexity of gene expression. PLANT & CELL PHYSIOLOGY 2025; 66:444-460. [PMID: 39626022 PMCID: PMC12085094 DOI: 10.1093/pcp/pcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 05/18/2025]
Abstract
Variation in complex traits is controlled by multiple genes. The prevailing assumption is that such polygenic complex traits are underpinned by variation in elementary molecular traits, such as gene expression, which themselves have a simple genetic basis. Here, we review recent advances that reveal the captivating complexity of gene regulation: the cell type, time point, and magnitude of gene expression are not merely dependent on a couple of regulators; rather, they result from a probabilistic process shaped by cis- and trans-regulatory elements collaboratively integrating internal and external cues with the tightly regulated dynamics of DNA. In addition, the finding that genetic variants linked to complex diseases in humans often do not co-localize with quantitative trait loci modulating gene expression, along with the role of nonfunctional transcription factor (TF) binding sites, suggests that some of the genetic effects influencing gene expression variation may be indirect. If the number of genomic positions responsible for TF binding, TF binding site search time, DNA conformation and accessibility as well as regulation of all trans-acting factors is indeed vast, is it plausible that the complexity of elementary molecular traits approaches the complexity of higher-level organismal traits? Although it is hard to know the answer to this question, we motivate it by reviewing the complexity of the molecular machinery further.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Juliette de Meaux
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| |
Collapse
|
2
|
Shi X, Li B, Rojas-Pierce M, Hernández R. White LED intensities during co-cultivation affect the Agrobacterium-mediated soybean (Glycine max) transformation using mature half seeds as explants. PLoS One 2024; 19:e0312129. [PMID: 39591445 PMCID: PMC11594425 DOI: 10.1371/journal.pone.0312129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024] Open
Abstract
The transition of light fixture from fluorescent light to light-emitting diodes (LEDs) in growth chambers prompts a reevaluation of current practices in plant biotechnology. Agrobacterium-mediated transformation is crucial for genetic engineering and genome editing in soybean (Glycine max). The critical co-cultivation step of soybean transformation occurs under light condition. Current protocols for co-cultivation in soybean transformation lack a standard for light intensity. In the present study, the objective is to investigate the effect of light intensity during co-cultivation on soybean transformation efficiency. Five light intensities were implemented during five days of co-cultivation: 50, 100, 150, 190 μmol∙m-2∙s-1 of white LEDs in addition to 100 μmol∙m-2∙s-1 of fluorescent light. After co-cultivation, all the explants underwent shoot induction and elongation with selection pressure, rooting and acclimation under uniform condition. The experiment was conducted with two selectable markers, hppdPf-4Pa and bar, separately, investigating whether the potential light effects vary due to the marker-associated pathways. The positive PCR analysis of rooted in vitro plants suggested successful transformation events achieved under both selectable markers across all light treatments ranging from 2.4% to 6.9%. Increasing LED light intensity during co-cultivation resulted in different transformation efficiencies between the two selectable markers. Results indicated that increasing the light intensity during co-cultivation led to a linear increase in transformation efficiency when shoot regeneration was under 4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor selection. No difference in transformation efficiency was detected among the treatments under glufosinate selection. Furthermore, when selection occurred with HPPD inhibitor, variation of transformation efficiency was also observed between fluorescent light and white LED at 100 μmol∙m-2∙s-1. The results highlight the significance and potential applications of investigating the impact of light on transformation efficiency.
Collapse
Affiliation(s)
- Xiaonan Shi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States of America
| | - Baochun Li
- BASF Agricultural Solutions, Durham, NC, United States of America
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Ricardo Hernández
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
3
|
Bogomolov A, Zolotareva K, Filonov S, Chadaeva I, Rasskazov D, Sharypova E, Podkolodnyy N, Ponomarenko P, Savinkova L, Tverdokhleb N, Khandaev B, Kondratyuk E, Podkolodnaya O, Zemlyanskaya E, Kolchanov NA, Ponomarenko M. AtSNP_TATAdb: Candidate Molecular Markers of Plant Advantages Related to Single Nucleotide Polymorphisms within Proximal Promoters of Arabidopsis thaliana L. Int J Mol Sci 2024; 25:607. [PMID: 38203780 PMCID: PMC10779315 DOI: 10.3390/ijms25010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The mainstream of the post-genome target-assisted breeding in crop plant species includes biofortification such as high-throughput phenotyping along with genome-based selection. Therefore, in this work, we used the Web-service Plant_SNP_TATA_Z-tester, which we have previously developed, to run a uniform in silico analysis of the transcriptional alterations of 54,013 protein-coding transcripts from 32,833 Arabidopsis thaliana L. genes caused by 871,707 SNPs located in the proximal promoter region. The analysis identified 54,993 SNPs as significantly decreasing or increasing gene expression through changes in TATA-binding protein affinity to the promoters. The existence of these SNPs in highly conserved proximal promoters may be explained as intraspecific diversity kept by the stabilizing natural selection. To support this, we hand-annotated papers on some of the Arabidopsis genes possessing these SNPs or on their orthologs in other plant species and demonstrated the effects of changes in these gene expressions on plant vital traits. We integrated in silico estimates of the TBP-promoter affinity in the AtSNP_TATAdb knowledge base and showed their significant correlations with independent in vivo experimental data. These correlations appeared to be robust to variations in statistical criteria, genomic environment of TATA box regions, plants species and growing conditions.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Sergey Filonov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Bato Khandaev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk 630501, Novosibirsk Region, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| |
Collapse
|
4
|
Smet D, Opdebeeck H, Vandepoele K. Predicting transcriptional responses to heat and drought stress from genomic features using a machine learning approach in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1212073. [PMID: 37528982 PMCID: PMC10390317 DOI: 10.3389/fpls.2023.1212073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved various mechanisms to adapt to adverse environmental stresses, such as the modulation of gene expression. Expression of stress-responsive genes is controlled by specific regulators, including transcription factors (TFs), that bind to sequence-specific binding sites, representing key components of cis-regulatory elements and regulatory networks. Our understanding of the underlying regulatory code remains, however, incomplete. Recent studies have shown that, by training machine learning (ML) algorithms on genomic sequence features, it is possible to predict which genes will transcriptionally respond to a specific stress. By identifying the most important features for gene expression prediction, these trained ML models allow, in theory, to further elucidate the regulatory code underlying the transcriptional response to abiotic stress. Here, we trained random forest ML models to predict gene expression in rice (Oryza sativa) in response to heat or drought stress. Apart from thoroughly assessing model performance and robustness across various input training data, the importance of promoter and gene body sequence features to train ML models was evaluated. The use of enriched promoter oligomers, complementing known TF binding sites, allowed us to gain novel insights in DNA motifs contributing to the stress regulatory code. By comparing genomic feature importance scores for drought and heat stress over time, general and stress-specific genomic features contributing to the performance of the learned models and their temporal variation were identified. This study provides a solid foundation to build and interpret ML models accurately predicting transcriptional responses and enables novel insights in biological sequence features that are important for abiotic stress responses.
Collapse
Affiliation(s)
- Dajo Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Helder Opdebeeck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
6
|
Khatoon U, Prasad V, Sawant SV. Expression dynamics and a loss-of-function of Arabidopsis RabC1 GTPase unveil its role in plant growth and seed development. PLANTA 2023; 257:89. [PMID: 36988700 DOI: 10.1007/s00425-023-04122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Transcript isoform dynamics, spatiotemporal expression, and mutational analysis uncover that Arabidopsis RabC1 GTPase is required for root length, flowering time, seed size, and seed mucilage. Rab GTPases are crucial regulators for moving different molecules to their specific compartments according to the needs of the cell. In this work, we illustrate the role of RabC1 GTPase in Arabidopsis growth and seed development. We identify and analyze the expression pattern of three transcript isoforms of RabC1 in different development stages, along with their tissue-specific transcript abundance. The promoter activity of RabC1 using promoter-GUS fusion shows that it is widely expressed during the growth of Arabidopsis, particularly in seed tissues such as chalazal seed coat and chalazal endosperm. Lack of RabC1 function led to shorter roots, lesser biomass, delayed flowering, and sluggish plant development. The mutants had smaller seeds than the wildtype, less seed mass, and lower seed coat permeability. Developing seeds also revealed a smaller endosperm cavity and shorter integument cells. Additionally, we found that the knock-out mutant had downregulated expression of genes implicated in the transit of sugars and amino acids from maternal tissue to developing seed. The seeds of the loss-of-function mutant had reduced seed mucilage. All the observed mutant phenotypes were restored in the complemented lines confirming the function of RabC1 in seed development and plant growth.
Collapse
Affiliation(s)
- Uzma Khatoon
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vivek Prasad
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Samir V Sawant
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
7
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 PMCID: PMC12061055 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
8
|
Ferreira TMM, Ferreira Filho JA, Leão AP, de Sousa CAF, Souza MTJ. Structural and functional analysis of stress-inducible genes and their promoters selected from young oil palm ( Elaeis guineensis) under salt stress. BMC Genomics 2022; 23:735. [PMCID: PMC9620643 DOI: 10.1186/s12864-022-08926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Soil salinity is a problem in more than 100 countries across all continents. It is one of the abiotic stress that threatens agriculture the most, negatively affecting crops and reducing productivity. Transcriptomics is a technology applied to characterize the transcriptome in a cell, tissue, or organism at a given time via RNA-Seq, also known as full-transcriptome shotgun sequencing. This technology allows the identification of most genes expressed at a particular stage, and different isoforms are separated and transcript expression levels measured. Once determined by this technology, the expression profile of a gene must undergo validation by another, such as quantitative real-time PCR (qRT-PCR). This study aimed to select, annotate, and validate stress-inducible genes—and their promoters—differentially expressed in the leaves of oil palm (Elaeis guineensis) plants under saline stress. Results The transcriptome analysis led to the selection of 14 genes that underwent structural and functional annotation, besides having their expression validated using the qRT-PCR technique. When compared, the RNA-Seq and qRT-PCR profiles of those genes resulted in some inconsistencies. The structural and functional annotation analysis of proteins coded by the selected genes showed that some of them are orthologs of genes reported as conferring resistance to salinity in other species. There were those coding for proteins related to the transport of salt into and out of cells, transcriptional regulatory activity, and opening and closing of stomata. The annotation analysis performed on the promoter sequence revealed 22 distinct types of cis-acting elements, and 14 of them are known to be involved in abiotic stress. Conclusion This study has helped validate the process of an accurate selection of genes responsive to salt stress with a specific and predefined expression profile and their promoter sequence. Its results also can be used in molecular-genetics-assisted breeding programs. In addition, using the identified genes is a window of opportunity for strategies trying to relieve the damages arising from the salt stress in many glycophyte crops with economic importance.
Collapse
Affiliation(s)
- Thalita Massaro Malheiros Ferreira
- grid.411269.90000 0000 8816 9513Graduate Program of Plant Biotechnology, Federal University of Lavras, 37200-000 Lavras, MG CP 3037, Brazil
| | - Jaire Alves Ferreira Filho
- grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| | - André Pereira Leão
- grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| | | | - Manoel Teixeira Jr. Souza
- grid.411269.90000 0000 8816 9513Graduate Program of Plant Biotechnology, Federal University of Lavras, 37200-000 Lavras, MG CP 3037, Brazil ,grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| |
Collapse
|
9
|
Yang Y, Shao Y, Chaffin TA, Lee JH, Poindexter MR, Ahkami AH, Blumwald E, Stewart CN. Performance of abiotic stress-inducible synthetic promoters in genetically engineered hybrid poplar ( Populus tremula × Populus alba). FRONTIERS IN PLANT SCIENCE 2022; 13:1011939. [PMID: 36330242 PMCID: PMC9623294 DOI: 10.3389/fpls.2022.1011939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Abiotic stresses can cause significant damage to plants. For sustainable bioenergy crop production, it is critical to generate resistant crops to such stress. Engineering promoters to control the precise expression of stress resistance genes is a very effective way to address the problem. Here we developed stably transformed Populus tremula × Populus alba hybrid poplar (INRA 717-1B4) containing one-of-six synthetic drought stress-inducible promoters (SDs; SD9-1, SD9-2, SD9-3, SD13-1, SD18-1, and SD18-3) identified previously by transient transformation assays. We screened green fluorescent protein (GFP) induction in poplar under osmotic stress conditions. Of six transgenic lines containing synthetic promoter, three lines (SD18-1, 9-2, and 9-3) had significant GFP expression in both salt and osmotic stress treatments. Each synthetic promoter employed heptamerized repeats of specific and short cis-regulatory elements (7 repeats of 7-8 bases). To verify whether the repeats of longer sequences can improve osmotic stress responsiveness, a transgenic poplar containing the synthetic promoter of the heptamerized entire SD9 motif (20 bases, containing all partial SD9 motifs) was generated and measured for GFP induction under osmotic stress. The heptamerized entire SD9 motif did not result in higher GFP expression than the shorter promoters consisting of heptamerized SD9-1, 9-2, and 9-3 (partial SD9) motifs. This result indicates that shorter synthetic promoters (~50 bp) can be used for versatile control of gene expression in transgenic poplar. These synthetic promoters will be useful tools to engineer stress-resilient bioenergy tree crops in the future.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Yuanhua Shao
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Timothy A. Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Jun Hyung Lee
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Magen R. Poindexter
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - C. Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| |
Collapse
|
10
|
Zhang R, Kuo R, Coulter M, Calixto CPG, Entizne JC, Guo W, Marquez Y, Milne L, Riegler S, Matsui A, Tanaka M, Harvey S, Gao Y, Wießner-Kroh T, Paniagua A, Crespi M, Denby K, Hur AB, Huq E, Jantsch M, Jarmolowski A, Koester T, Laubinger S, Li QQ, Gu L, Seki M, Staiger D, Sunkar R, Szweykowska-Kulinska Z, Tu SL, Wachter A, Waugh R, Xiong L, Zhang XN, Conesa A, Reddy ASN, Barta A, Kalyna M, Brown JWS. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biol 2022; 23:149. [PMID: 35799267 PMCID: PMC9264592 DOI: 10.1186/s13059-022-02711-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis. RESULTS We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts-twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage. CONCLUSIONS AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species.
Collapse
Affiliation(s)
- Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK.
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Max Coulter
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Cristiane P G Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Present address: Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Juan Carlos Entizne
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Yamile Marquez
- Centre for Genomic Regulation, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Linda Milne
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
- Present address: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Sarah Harvey
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York Wentworth Way, York, YO10 5DD, UK
| | - Yubang Gao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Theresa Wießner-Kroh
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Alejandro Paniagua
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Martin Crespi
- French National Centre for Scientific Research | CNRS INRAE-Universities of Paris Saclay and Paris, Institute of Plant Sciences Paris Saclay IPS2, Rue de Noetzlin, 91192, Gif sur Yvette, France
| | - Katherine Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York Wentworth Way, York, YO10 5DD, UK
| | - Asa Ben Hur
- Department of Computer Science, Colorado State University, 1873 Campus Delivery, Fort Collins, CO, 80523-1873, USA
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, 100 East 24th St., Austin, TX, 78712-1095, USA
| | - Michael Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17 A-1090, Vienna, Austria
| | - Artur Jarmolowski
- Department of Gene Expression, Adam Mickiewicz University, Poznań, Poland
| | - Tino Koester
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Sascha Laubinger
- Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Qingshun Quinn Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lianfeng Gu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
- Present address: Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Ning Zhang
- Biology Department, School of Arts and Sciences, St. Bonaventure University, 3261 West State Road, St. Bonaventure, NY, 14778, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Center of Medical Biochemistry, Dr.-Bohr-Gasse 9/3, A-1030, Vienna, Austria
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
11
|
Mishra DK, Srivastava R, Pandey BK, Verma PC, Sawant SV. Identification and validation of the wound and insect bite early inducible promoter from Arabidopsis thaliana. 3 Biotech 2022; 12:74. [PMID: 35251877 PMCID: PMC8861216 DOI: 10.1007/s13205-022-03143-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 11/01/2022] Open
Abstract
A wound-inducible promoter facilitates the regulated gene expression at the targeted site during the time of mechanical stress or infestation by the pathogen. The present work has aimed to identify a wound-inducible promoter that expresses at early time points preceding wound-stress treatment in Arabidopsis thaliana. The computational analysis of microarray data (GSE5627) resulted in the identification of five early inducible genes, viz., AT1G17380, AT1G80440, AT2G43530, AT3G48360, and AT5G13220. The RT-PCR analysis showed AT5G13220 (JASMONATE-ASSOCIATED 1) gene induced at a significantly higher level post 30 min of wounding. Thus, the promoter of the highly induced and early expressed wound-inducible gene, AT5G13220 (named PW220), was characterized by fusing with β-glucuronidase (gusA) reporter or Cry1EC genes. The fluorometric analysis and histochemical staining of the gusA gene and quantitative estimation of Cry1EC protein in Nicotiana tabacum transgenic lines confirmed wound-induced expression characteristic of the selected promoter. Insect bioassay suggested that wound-inducible and constitutive expression of Cry1EC protein in transgenic lines showed a similar level of protection against different instar Spodoptera litura larvae. Furthermore, we identified that abscisic acid influenced the wound-specific expression of the selected PW220 promoter in the transgenic lines, which correlates with the presence of conserved cis-regulatory elements associated with dehydration and abscisic acid responses. Altogether, our results suggested that the wound-inducible promoter PW220 provides an excellent alternative for developing insect-tolerant transgenic crops in the future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03143-0.
Collapse
Affiliation(s)
- Devesh Kumar Mishra
- grid.417642.20000 0000 9068 0476Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001 India ,grid.469887.c0000 0004 7744 2771AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India ,Present Address: Department of Botany. School of Applied Sciences, Om Sterling Global University, Hisar, Haryana 125001 India
| | - Rakesh Srivastava
- grid.417642.20000 0000 9068 0476Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001 India
| | - Bhoopendra K. Pandey
- grid.417642.20000 0000 9068 0476Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001 India ,grid.469887.c0000 0004 7744 2771AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| | - Praveen Chandra Verma
- grid.417642.20000 0000 9068 0476Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001 India ,grid.469887.c0000 0004 7744 2771AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| | - Samir Vishwanath Sawant
- grid.417642.20000 0000 9068 0476Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001 India ,grid.469887.c0000 0004 7744 2771AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
12
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
13
|
Jores T, Tonnies J, Wrightsman T, Buckler ES, Cuperus JT, Fields S, Queitsch C. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. NATURE PLANTS 2021; 7:842-855. [PMID: 34083762 PMCID: PMC10246763 DOI: 10.1038/s41477-021-00932-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/27/2021] [Indexed: 05/24/2023]
Abstract
Targeted engineering of plant gene expression holds great promise for ensuring food security and for producing biopharmaceuticals in plants. However, this engineering requires thorough knowledge of cis-regulatory elements to precisely control either endogenous or introduced genes. To generate this knowledge, we used a massively parallel reporter assay to measure the activity of nearly complete sets of promoters from Arabidopsis, maize and sorghum. We demonstrate that core promoter elements-notably the TATA box-as well as promoter GC content and promoter-proximal transcription factor binding sites influence promoter strength. By performing the experiments in two assay systems, leaves of the dicot tobacco and protoplasts of the monocot maize, we detect species-specific differences in the contributions of GC content and transcription factors to promoter strength. Using these observations, we built computational models to predict promoter strength in both assay systems, allowing us to design highly active promoters comparable in activity to the viral 35S minimal promoter. Our results establish a promising experimental approach to optimize native promoter elements and generate synthetic ones with desirable features.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Graduate Program in Biology, University of Washington, Seattle, WA, USA
| | - Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 2021; 78:4467-4486. [PMID: 33638653 PMCID: PMC11072255 DOI: 10.1007/s00018-021-03794-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Sethi L, Kumari K, Dey N. Engineering of Plants for Efficient Production of Therapeutics. Mol Biotechnol 2021; 63:1125-1137. [PMID: 34398446 PMCID: PMC8365136 DOI: 10.1007/s12033-021-00381-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Plants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination. This review introduces the main challenges faced by plant expression system: post-translational modifications, protein stability, biosafety concern and regulation. It also summarizes essential factors to be considered in engineering plants, including plant expression system, promoter, post-translational modification, codon optimization, and fusion tags, protein stabilization and purification, subcellular targeting, and making vaccines in an edible way. This review will be beneficial and informative to scholars and readers in the field of plant biotechnology.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| |
Collapse
|
16
|
Gupta H, Chandratre K, Sinha S, Huang T, Wu X, Cui J, Zhang MQ, Wang SM. Highly diversified core promoters in the human genome and their effects on gene expression and disease predisposition. BMC Genomics 2020; 21:842. [PMID: 33256598 PMCID: PMC7706239 DOI: 10.1186/s12864-020-07222-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Core promoter controls transcription initiation. However, little is known for core promoter diversity in the human genome and its relationship with diseases. We hypothesized that as a functional important component in the genome, the core promoter in the human genome could be under evolutionary selection, as reflected by its highly diversification in order to adjust gene expression for better adaptation to the different environment. Results Applying the “Exome-based Variant Detection in Core-promoters” method, we analyzed human core-promoter diversity by using the 2682 exome data sets of 25 worldwide human populations sequenced by the 1000 Genome Project. Collectively, we identified 31,996 variants in the core promoter region (− 100 to + 100) of 12,509 human genes (https://dbhcpd.fhs.um.edu.mo). Analyzing the rich variation data identified highly ethnic-specific patterns of core promoter variation between different ethnic populations, the genes with highly variable core promoters, the motifs affected by the variants, and their involved functional pathways. eQTL test revealed that 12% of core promoter variants can significantly alter gene expression level. Comparison with GWAS data we located 163 variants as the GWAS identified traits associated with multiple diseases, half of these variants can alter gene expression. Conclusion Data from our study reals the highly diversified nature of core promoter in the human genome, and highlights that core promoter variation could play important roles not only in gene expression regulation but also in disease predisposition. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07222-5.
Collapse
Affiliation(s)
- Hemant Gupta
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Khyati Chandratre
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Teng Huang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Xiaobing Wu
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Jian Cui
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China.
| |
Collapse
|
17
|
Unravelling Cotton Nonexpressor of Pathogenesis-Related 1(NPR1)-Like Genes Family: Evolutionary Analysis and Putative Role in Fiber Development and Defense Pathway. PLANTS 2020; 9:plants9080999. [PMID: 32781507 PMCID: PMC7463611 DOI: 10.3390/plants9080999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The nonexpressor of pathogenesis-related 1 (NPR1) family plays diverse roles in gene regulation in the defense and development signaling pathways in plants. Less evidence is available regarding the significance of the NPR1-like gene family in cotton (Gossypium species). Therefore, to address the importance of the cotton NPR1-like gene family in the defense pathway, four Gossypium species were studied: two tetraploid species, G.hirsutum and G. barbadense, and their two potential ancestral diploids, G. raimondii and G. arboreum. In this study, 12 NPR1-like family genes in G. hirsutum were recognized, including six genes in the A-subgenome and six genes in the D-subgenome. Based on the phylogenetic analysis, gene and protein structural features, cotton NPR-like proteins were grouped into three different clades. Our analysis suggests the significance of cis-regulatory elements in the upstream region of cotton NPR1-like genes in hormonal signaling, biotic stress conditions, and developmental processes. The quantitative expression analysis for different developmental tissues and fiber stages (0 to 25 days post-anthesis), as well as salicylic acid induction, confirmed the distinct function of different cotton NPR genes in defense and fiber development. Altogether, this study presents specifications of conservation in the cotton NPR1-like gene family and their functional divergence for development of fiber and defense properties.
Collapse
|
18
|
Dixit G, Srivastava A, Rai KM, Dubey RS, Srivastava R, Verma PC. Distinct defensive activity of phenolics and phenylpropanoid pathway genes in different cotton varieties toward chewing pests. PLANT SIGNALING & BEHAVIOR 2020; 15:1747689. [PMID: 32290756 PMCID: PMC7238874 DOI: 10.1080/15592324.2020.1747689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/02/2023]
Abstract
Identifying the maximum level of inherent defense against harmful insects in natural variation among wild lineages of crop plants may result in high yield tolerant varieties and reducing use of chemical insecticides. However, knowledge of natural cotton genotypes with high insect-resistance is still indistinguishable at the biochemical or molecular level. In the present study, different cultivated Gossypium hirsutum varieties were evaluated for their inherent insect-tolerance against two major cottons chewing pests. The insect bio-assay identified two tolerant and one susceptible cotton varieties. The study demonstrates difference in phenolic acids, proanthocyanidin and tannin accumulation in tolerant and susceptible varieties. The post-infestation of chewing pests increases transcript level of the phenylpropanoid pathway genes were detected in tolerant varieties as compared to the susceptible varieties. Altogether, chewing pest-tolerance level in cotton varieties is the cumulative effect of enhanced phenylpropanoid pathway genes expression and secondary metabolite leading to defense responses to conventional host plant.
Collapse
Affiliation(s)
- Garima Dixit
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research), Rana Pratap Marg, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Alka Srivastava
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research), Rana Pratap Marg, Lucknow, India
- Department of Biochemistry, Banaras Hindu University, Varanasi, India
| | - Krishan Mohan Rai
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Rakesh Srivastava
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research), Rana Pratap Marg, Lucknow, India
| | - Praveen Chandra Verma
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research), Rana Pratap Marg, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
19
|
Effect of Transgenesis on mRNA and miRNA Profiles in Cucumber Fruits Expressing Thaumatin II. Genes (Basel) 2020; 11:genes11030334. [PMID: 32245082 PMCID: PMC7140888 DOI: 10.3390/genes11030334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/03/2023] Open
Abstract
Transgenic plants are commonly used in breeding programs because of the various features that can be introduced. However, unintended effects caused by genetic transformation are still a topic of concern. This makes research on the nutritional safety of transgenic crop plants extremely interesting. Cucumber (Cucumis sativus L.) is a crop that is grown worldwide. The aim of this study was to identify and characterize differentially expressed genes and regulatory miRNAs in transgenic cucumber fruits that contain the thaumatin II gene, which encodes the sweet-tasting protein thaumatin II, by NGS sequencing. We compared the fruit transcriptomes and miRNomes of three transgenic cucumber lines with wild-type cucumber. In total, we found 47 differentially expressed genes between control and all three transgenic lines. We performed the bioinformatic functional analysis and gene ontology classification. We also identified 12 differentially regulated miRNAs, from which three can influence the two targets (assigned as DEGs) in one of the studied transgenic lines (line 224). We found that the transformation of cucumber with thaumatin II and expression of the transgene had minimal impact on gene expression and epigenetic regulation by miRNA, in the cucumber fruits.
Collapse
|
20
|
Kondhare KR, Vetal PV, Kalsi HS, Banerjee AK. BEL1-like protein (StBEL5) regulates CYCLING DOF FACTOR1 (StCDF1) through tandem TGAC core motifs in potato. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153014. [PMID: 31487619 DOI: 10.1016/j.jplph.2019.153014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Tuberization in potato is governed by many intrinsic and extrinsic factors. Various molecular signals, such as red light photoreceptor (StPHYB), BEL1-like transcription factor (StBEL5), CYCLING DOF FACTOR1 (StCDF1), StCO1/2 (CONSTANS1/2) and StSP6A (Flowering Locus T orthologue), function as crucial regulators during the photoperiod-dependent tuberization pathway. StCDF1 induces tuberization by increasing StSP6A levels via StCO1/2 suppression. Although the circadian clock proteins, GIGANTEA (StGI) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (StFKF1), are reported as StCDF1 interactors, how the StCDF1 gene is regulated in potato is unknown. The BEL-KNOX heterodimer regulates key tuberization genes through tandem TGAC core motifs in their promoters. A recent study reported the presence of six tandem TGAC core motifs in the StCDF1 promoter, suggesting possible regulation of StCDF1 by StBEL5. In our study, we observed a positive correlation between StBEL5 and StCDF1 expression, whereas StCDF1 and its known repressor, StFKF1, showed a negative correlation for the tested tissue types. To investigate the StBEL5-StCDF1 interaction, we generated transgenic potato promoter lines containing a wild-type or mutated (deletion of six tandem TGAC sites) StCDF1 promoter fused to GUS. Wild-type promoter transgenic lines exhibited widespread GUS activity, whereas this activity was absent in the mutated promoter transgenic lines. Moreover, StBEL5 and StCDF1 transcript levels were significantly higher in the stolon-to-tuber stages under short-day conditions compared to long-day conditions. Using wild-type and mutated prStCDF1 as baits in Y1H assays, we further demonstrated that StBEL5 interacts with the StCDF1 promoter through tandem TGAC motifs, indicating direct regulation of StCDF1 by StBEL5 in potato.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Biology Division, Dr. Homi Bhabha Road, Indian Institute of Science Education and Research (IISER), Pune, 411008, Maharashtra, India
| | - Pallavi V Vetal
- Biology Division, Dr. Homi Bhabha Road, Indian Institute of Science Education and Research (IISER), Pune, 411008, Maharashtra, India
| | - Harpreet S Kalsi
- Biology Division, Dr. Homi Bhabha Road, Indian Institute of Science Education and Research (IISER), Pune, 411008, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Dr. Homi Bhabha Road, Indian Institute of Science Education and Research (IISER), Pune, 411008, Maharashtra, India.
| |
Collapse
|
21
|
Ali S, Kim WC. A Fruitful Decade Using Synthetic Promoters in the Improvement of Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1433. [PMID: 31737027 PMCID: PMC6838210 DOI: 10.3389/fpls.2019.01433] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/16/2019] [Indexed: 05/17/2023]
Abstract
Advances in plant biotechnology provide various means to improve crop productivity and greatly contributing to sustainable agriculture. A significant advance in plant biotechnology has been the availability of novel synthetic promoters for precise spatial and temporal control of transgene expression. In this article, we review the development of various synthetic promotors and the rise of their use over the last several decades for regulating the transcription of various transgenes. Similarly, we provided a brief description of the structure and scope of synthetic promoters and the engineering of their cis-regulatory elements for different targets. Moreover, the functional characteristics of different synthetic promoters, their modes of regulating the expression of candidate genes in response to different conditions, and the resulting plant trait improvements reported in the past decade are discussed.
Collapse
|
22
|
Bhardwaj P, Goswami N, Narula P, Jain CK, Mathur A. Zinc oxide nanoparticles (ZnO NP) mediated regulation of bacosides biosynthesis and transcriptional correlation of HMG-CoA reductase gene in suspension culture of Bacopa monnieri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:148-156. [PMID: 29982171 DOI: 10.1016/j.plaphy.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Bacopa monnieri (L.) Wettst. is a well documented nootropic plant, extensive known for alleviating symptoms of neurological disorder, along with other symptomatic relief. This property is attributed to the active phytocompounds, saponins (bacoside A) present in the plant. However, lack of stringent validation guidelines in most of the countries bring to the market, formulations differing in phytocompounds yield, thereby suggesting possible variation in therapeutic efficacy. The in-vitro suspension cultures of the Bacopa monnieri, provide an ease of scale-up, but regulating saponin yield is a stringent task. The aim of the study is to explore the effects of different concentrations (0, 0.25, 0.50, 0.75 and 1.0 ppm) of zinc oxide nanoparticles (ZnO NP) (24 nm in size), in regulating growth rate, bacoside yield and transcriptional profile of HMG CoA reductasegene in the suspension cells of Bacopa monnieri. Results showed a linear correlation between Bacoside A yield and ZnO NP concentrations with around 2 fold increase in total bacoside A concentration at 1 ppm. Also, ZnO NP supplemented suspension cells showed variation in the specific growth rate. Neuroprotective properties, analyzed using methanolic extracts of suspension cells again obtrude the extract of ZnO NP supplemented (0.75 ppm and 1 ppm) culture for better response in alleviating oxidative stress mediated damage to neuronal cells. ZnO NP supplemented system showed lower expression of HMG CoA reductasegene (the rate limiting step in bacoside A biosynthesis) but higher concentration of bacoside A, suggesting possible role of ZnO NP in isoprenoid pathway than MVA pathways.
Collapse
Affiliation(s)
- Pragya Bhardwaj
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida, Uttar Pradesh, 201307, India
| | - Navendu Goswami
- Department of Physics & Materials Science & Engineering, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida, Uttar Pradesh, 201307, India
| | - Pankhuri Narula
- Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida, Uttar Pradesh, 201307, India
| | - Ashwani Mathur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida, Uttar Pradesh, 201307, India.
| |
Collapse
|
23
|
ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E4503-E4511. [PMID: 29686058 PMCID: PMC5948964 DOI: 10.1073/pnas.1718099115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions. Integration of environmental signals and interactions among photoreceptors and transcriptional regulators is key in shaping plant development. TANDEM ZINC-FINGER PLUS3 (TZP) is an integrator of light and photoperiodic signaling that promotes flowering in Arabidopsis thaliana. Here we elucidate the molecular role of TZP as a positive regulator of hypocotyl elongation. We identify an interacting partner for TZP, the transcription factor ZINC-FINGER HOMEODOMAIN 10 (ZFHD10), and characterize its function in coregulating the expression of blue-light–dependent transcriptional regulators and growth-promoting genes. By employing a genome-wide approach, we reveal that ZFHD10 and TZP coassociate with promoter targets enriched in light-regulated elements. Furthermore, using a targeted approach, we show that ZFHD10 recruits TZP to the promoters of key coregulated genes. Our findings not only unveil the mechanism of TZP action in promoting hypocotyl elongation at the transcriptional level but also assign a function to an uncharacterized member of the ZFHD transcription factor family in promoting plant growth.
Collapse
|
24
|
Dubey NK, Mishra DK, Idris A, Nigam D, Singh PK, Sawant SV. Whitefly and aphid inducible promoters of Arabidopsis thaliana L. J Genet 2018. [DOI: 10.1007/s12041-018-0887-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Ahlawat S, Saxena P, Ali A, Khan S, Abdin MZ. Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:19-28. [PMID: 28249222 DOI: 10.1016/j.plaphy.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/16/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Ashwagandha (Withania somnifera) is one of the most reputed medicinal plants in the traditional medicinal system. In this study, cell suspension culture of W. somnifera was elicited with cell homogenates of fungi (A. alternata, F. solani, V. dahliae and P. indica) in shake flask and the major withanolides like withanolide A, withaferin A and withanone were analysed. Simultaneously expression levels of key pathway genes from withanolides biosynthetic pathways were also checked via quantitative PCR in shake flask as well as in bioreactor. The results show that highest gene expression of 10.8, 5.8, 4.9, and 3.3 folds were observed with HMGR among all the expressed genes in cell suspension cultures with cell homogenates of 3% P. indica, 5% V. dahliae, 3% A. alternata and 3% F. solani, respectively, in comparison to the control in shake flask. Optimized concentration of cell homogenate of P. indica (3% v/v) was added to the growing culture in 5.0-l bioreactor under optimized up-scaling conditions and harvested after 22 days. The genes of MVA, MEP and withanolides biosynthetic pathways like HMGR, SS, SE, CAS, FPPS, DXR and DXS were up-regulated by 12.5, 4.9, 2.18, 4.65, 2.34, 1.89 and 1.4 folds, respectively in bioreactor. The enhancement of biomass (1.13 fold) and withanolides [withanolide A (1.7), withaferin A (1.5), and withanone (1.5) folds] in bioreactor in comparison to shake flask was also found to be in line with the up-regulation of genes of withanolide biosynthetic pathways.
Collapse
Affiliation(s)
- Seema Ahlawat
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Parul Saxena
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Athar Ali
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Shazia Khan
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Malik Z Abdin
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
26
|
Mahoney AK, Anderson EM, Bakker RA, Williams AF, Flood JJ, Sullivan KC, Pillitteri LJ. Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression. PLANTA 2016; 243:987-98. [PMID: 26748914 PMCID: PMC4819751 DOI: 10.1007/s00425-015-2445-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/11/2015] [Indexed: 05/26/2023]
Abstract
The MUTE promoter contains a 175-bp region rich in Dof regulatory elements (AAAG) that is necessary and sufficient for initiation of transcription in meristemoids and the stomatal lineage. The molecular mechanism underlying the decision to divide or differentiate is a central question in developmental biology. During stomatal development, expression of the master regulator MUTE triggers the differentiation of meristemoids into stomata. In this study, we carried out MUTE promoter deletion analysis to define a regulatory region that promotes the initiation of expression in meristemoids. Expression constructs with truncated promoter fragments fused to β-glucuronidase (GUS) were developed. The full-length promoter and promoter truncations of at least 500 bp from the translational start site exhibited normal spatiotemporal expression patterns. Further truncation revealed a 175-bp promoter fragment that was necessary and sufficient for stomatal-lineage expression. Known cis-elements were identified and tested for functional relevance. Comparison of orthologous MUTE promoters suggested DNA binding with one finger (Dof) regulatory elements and novel motifs may be important for regulation. Our data highlight the complexity and combinatorial control of gene regulation and provides tools to further investigate the genetic control of stomatal development.
Collapse
Affiliation(s)
- Aaron K Mahoney
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Elizabeth M Anderson
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Rachael A Bakker
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Anthony F Williams
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Jake J Flood
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Katrina C Sullivan
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Lynn J Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA.
| |
Collapse
|
27
|
Liu W, Stewart CN. Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 2016; 37:36-44. [DOI: 10.1016/j.copbio.2015.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
28
|
Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination. PLoS One 2015; 10:e0134709. [PMID: 26263547 PMCID: PMC4532415 DOI: 10.1371/journal.pone.0134709] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023] Open
Abstract
The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses.
Collapse
|
29
|
Mellenthin M, Ellersiek U, Börger A, Baier M. Expression of the Arabidopsis Sigma Factor SIG5 Is Photoreceptor and Photosynthesis Controlled. PLANTS 2014; 3:359-91. [PMID: 27135509 PMCID: PMC4844344 DOI: 10.3390/plants3030359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/07/2014] [Accepted: 07/30/2014] [Indexed: 11/16/2022]
Abstract
Two collections of Arabidopsis GAL4 enhancer trap lines were screened for light-intensity dependent reporter gene activation. Line N9313 was isolated for its strong light-intensity regulation. The T-DNA element trapped distant enhancers of the SIG5 promoter, which drives expression of a sigma factor involved in regulation of chloroplast genes for photosystem II core proteins. The T-DNA insertion 715 bp upstream of the transcription initiation site splits the promoter in a distal and proximal part. Both parts are sensitive to blue and red light and depend on photosynthetic electron transport activity between photosystem II and the plastoquinone pool. The mainblue-light sensitivity is localized within a 196-bp sequence (-887 to -691 bp) in the proximal promoter region It is preferentially CRY1 and PHYB controlled. Type-I and type-II phytochromes mediate red-light sensitivity via various promoter elements spread over the proximal and distal upstream region. This work characterizes SIG5 as an anterograde control factor of chloroplast gene expression, which is controlled by chloroplast signals in a retrograde manner.
Collapse
Affiliation(s)
- Marina Mellenthin
- Plant Sciences, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | - Ulrike Ellersiek
- Plant Sciences, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | - Anna Börger
- Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, Berlin 14195, Germany.
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, Berlin 14195, Germany.
| |
Collapse
|