1
|
Bashyal S, Everett H, Matsuura S, Müller LM. A plant CLE peptide and its fungal mimic promote arbuscular mycorrhizal symbiosis via CRN-mediated ROS suppression. Proc Natl Acad Sci U S A 2025; 122:e2422215122. [PMID: 40228122 PMCID: PMC12037060 DOI: 10.1073/pnas.2422215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides have emerged as key regulators of plant-microbe interactions, including arbuscular mycorrhizal (AM) symbiosis. Here, we identify Medicago truncatula CLE16 as a positive regulator of AM symbiosis. MtCLE16 is expressed in root cells colonized by AM fungi (AMF) and its overexpression within colonized tissues increases arbuscule abundance by finetuning their growth and lifespan. Functional and transcriptomic analyses reveal that MtCLE16 acts via the M. truncatula pseudokinase CORYNE (MtCRN) and suppresses the accumulation of reactive oxygen species (ROS) in roots, thereby attenuating immune responses and promoting root colonization by mutualistic AM fungi. Notably, AMF also express MtCLE16-like peptides. We show that the Rhizophagus irregularis MtCLE16-like peptide, RiCLE1, also attenuates ROS and promotes AMF colonization via MtCRN. This finding suggests that RiCLE1 can interfere with the MtCLE16-MtCRN signaling module of host roots to benefit the fungus. Our research uncovers a functional mechanism underpinning cross-kingdom signaling and molecular mimicry in mutualistic plant-microbe interactions.
Collapse
Affiliation(s)
- Sagar Bashyal
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California San Diego, La Jolla, CA92093
- Department of Biology, University of Miami, Coral Gables, FL33146
| | - Hasani Everett
- Department of Biology, University of Miami, Coral Gables, FL33146
| | - Suzanne Matsuura
- Department of Biology, University of Miami, Coral Gables, FL33146
| | - Lena Maria Müller
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California San Diego, La Jolla, CA92093
- Department of Biology, University of Miami, Coral Gables, FL33146
| |
Collapse
|
2
|
Narasimhan M, Jahnke N, Kallert F, Bahafid E, Böhmer F, Hartmann L, Simon R. Macromolecular tool box to elucidate CLAVATA3/EMBRYO SURROUNDING REGION-RELATED-RLK binding, signaling, and downstream effects. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5438-5456. [PMID: 38717932 PMCID: PMC11389835 DOI: 10.1093/jxb/erae206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 09/13/2024]
Abstract
Plant peptides communicate by binding to a large family of receptor-like kinases (RLKs), and they share a conserved binding mechanism, which may account for their promiscuous interaction with several RLKs. In order to understand the in vivo binding specificity of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED peptide family in Arabidopsis, we have developed a novel set of CLAVATA3 (CLV3)-based peptide tools. After carefully evaluating the CLE peptide binding characteristics, using solid phase synthesis process, we modified the CLV3 peptide and attached a fluorophore and a photoactivable side group. We observed that the labeled CLV3 shows binding specificity within the CLAVATA1 clade of RLKs while avoiding the distantly related PEP RECEPTOR clade, thus resolving the contradictory results obtained previously by many in vitro methods. Furthermore, we observed that the RLK-bound CLV3 undergoes clathrin-mediated endocytosis and is trafficked to the vacuole via ARA7 (a Rab GTPase)-labeled endosomes. Additionally, modifying CLV3 for light-controlled activation enabled spatial and temporal control over CLE signaling. Hence, our CLV3 macromolecular toolbox can be used to study rapid cell specific down-stream effects. Given the conserved binding properties, in the future our toolbox can also be used as a template to modify other CLE peptides.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Nina Jahnke
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Felix Kallert
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Elmehdi Bahafid
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Franziska Böhmer
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
- Institute of Macromolecular Chemistry, University Freiburg, Stefan-Meier-Straße 31, D-79104 Freiburg, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| |
Collapse
|
3
|
Xu K, Tian D, Wang T, Zhang A, Elsadek MAY, Liu W, Chen L, Guo Y. Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response. MOLECULAR HORTICULTURE 2023; 3:17. [PMID: 37789434 PMCID: PMC10515272 DOI: 10.1186/s43897-023-00063-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.
Collapse
Affiliation(s)
- Kexin Xu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - TingJin Wang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Weihong Liu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liping Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
4
|
Nakagami S, Aoyama T, Sato Y, Kajiwara T, Ishida T, Sawa S. CLE3 and its homologs share overlapping functions in the modulation of lateral root formation through CLV1 and BAM1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1176-1191. [PMID: 36628476 DOI: 10.1111/tpj.16103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lateral roots are important for a wide range of processes, including uptake of water and nutrients. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) 1 ~ 7 peptide family and their cognate receptor CLV1 have been shown to negatively regulate lateral root formation under low-nitrate conditions. However, little is known about how CLE signaling regulates lateral root formation. A persistent obstacle in CLE peptide research is their functional redundancies, which makes functional analyses difficult. To address this problem, we generate the cle1 ~ 7 septuple mutant (cle1 ~ 7-cr1, cr stands for mutant allele generated with CRISPR/Cas9). cle1 ~ 7-cr1 exhibits longer lateral roots under normal conditions. Specifically, in cle1 ~ 7-cr1, the lateral root density is increased, and lateral root primordia initiation is found to be accelerated. Further analysis shows that cle3 single mutant exhibits slightly longer lateral roots. On the other hand, plants that overexpress CLE2 and CLE3 exhibit decreased lateral root lengths. To explore cognate receptor(s) of CLE2 and CLE3, we analyze lateral root lengths in clv1 barely any meristem 1(bam1) double mutant. Mutating both the CLV1 and BAM1 causes longer lateral roots, but not in each single mutant. In addition, genetic analysis reveals that CLV1 and BAM1 are epistatic to CLE2 and CLE3. Furthermore, gene expression analysis shows that the LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes, which promote lateral root formation, are upregulated in cle1 ~ 7-cr1 and clv1 bam1. We therefore propose that CLE2 and CLE3 peptides are perceived by CLV1 and BAM1 to mediate lateral root formation through LBDs regulation.
Collapse
Affiliation(s)
- Satoru Nakagami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Tsuyoshi Aoyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Taiki Kajiwara
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Center for Agriculture and Environmental Biology, Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
5
|
Dong J, Wang Y, Xu L, Li B, Wang K, Ying J, He Q, Liu L. RsCLE22a regulates taproot growth through an auxin signaling-related pathway in radish (Raphanus sativus L.). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:233-250. [PMID: 36239471 DOI: 10.1093/jxb/erac406] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides are a class of small molecules involved in plant growth and development. Although radish (Raphanus sativus) is an important root vegetable crop worldwide, the functions of CLE peptides in its taproot formation remain elusive. Here, a total of 48 RsCLE genes were identified from the radish genome. RNA in situ hybridization showed that RsCLE22a gene was highly expressed in the vascular cambium. Overexpression of RsCLE22a inhibited root growth by impairing stem cell proliferation in Arabidopsis, and radish plants with exogenous supplementation of RsCLE22 peptide (CLE22p) showed a similar phenotype. The vascular cambial activity was increased in RsCLE22a-silenced plants. Transcriptome analysis revealed that CLE22p altered the expression of several genes involved in meristem development and hormone signal transduction in radish. Immunolocalization results showed that CLE22p increased auxin accumulation in vascular cambium. Yeast one-hybrid and dual-luciferase assays showed that the WUSCHEL-RELATED HOMEOBOX 4 (RsWOX4) binds to RsCLE22a promoter and activates its transcription. The expression level of RsWOX4 was related to vascular cambial activity and was regulated by auxin. Furthermore, a RsCLE22a-RsWOX4 module is proposed to regulate taproot vascular cambium activity through an auxin signaling-related pathway in radish. These findings provide novel insights into the regulation of root growth in a horticultural crop.
Collapse
Affiliation(s)
- Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingshuang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Zhang Y, Tan S, Gao Y, Kan C, Wang HL, Yang Q, Xia X, Ishida T, Sawa S, Guo H, Li Z. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:550-562. [PMID: 35396726 DOI: 10.1111/nph.18154] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is the final stage of leaf development and is influenced by numerous internal and environmental factors. CLE family peptides are plant-specific peptide hormones that regulate various developmental processes. However, the role of CLE in regulating Arabidopsis leaf senescence remains unclear. Here, we found that CLE42 is a negative regulator of leaf senescence by using a CRISPR/Cas9-produced CLE mutant collection. The cle42 mutant displayed earlier senescence phenotypes, while overexpression of CLE42 delayed age-dependent and dark-induced leaf senescence. Moreover, application of the synthesized 12-amino-acid peptide (CLE42p) also delayed leaf senescence under natural and dark conditions. CLE42 and CLE41/44 displayed functional redundancy in leaf senescence, and the cle41 cle42 cle44 triple mutant displayed more pronounced earlier senescence phenotypes than any single mutant. Analysis of differentially expressed genes obtained by RNA-Seq methodology revealed that the ethylene pathway was suppressed by overexpressing CLE42. Moreover, CLE42 suppressed ethylene biosynthesis and thus promoted the protein accumulation of EBF, which in turn decreased the function of EIN3. Accordingly, mutation of EIN3/EIL1 or overexpression of EBF1 suppressed the earlier senescence phenotypes of the cle42 mutant. Together, our results reveal that the CLE peptide hormone regulates leaf senescence by communicating with the ethylene pathway.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, China
| | - Shuya Tan
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chengcheng Kan
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, China
| | - Zhonghai Li
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
7
|
Zhang L, Yang Y, Mu C, Liu M, Ishida T, Sawa S, Zhu Y, Pi L. Control of Root Stem Cell Differentiation and Lateral Root Emergence by CLE16/17 Peptides in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:869888. [PMID: 35519820 PMCID: PMC9062579 DOI: 10.3389/fpls.2022.869888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Secreted peptide-mediated cell-to-cell communication plays a crucial role in the development of multicellular organisms. A large number of secreted peptides have been predicated by bioinformatic approaches in plants. However, only a few of them have been functionally characterized. In this study, we show that two CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides CLE16/17 are required for both stem cell differentiation and lateral root (LR) emergence in Arabidopsis. We further demonstrate that the CLE16/17 peptides act through the CLAVATA1-ARABIDOPSIS CRINKLY4 (CLV1-ACR4) protein kinase complex in columella stem cell (CSC) differentiation, but not in LR emergence. Furthermore, we show that CLE16/17 promote LR emergence probably via activating the expression of HAESA/HAESA-LIKE2 (HAE/HSL2) required for cell wall remodeling. Collectively, our results reveal a CLV1-ACR4-dependent and -independent dual-function of the CLE16/17 peptides in root development.
Collapse
Affiliation(s)
- Lihua Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Changqing Mu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Mingyu Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Nemec‐Venza Z, Madden C, Stewart A, Liu W, Novák O, Pěnčík A, Cuming AC, Kamisugi Y, Harrison CJ. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss. THE NEW PHYTOLOGIST 2022; 234:149-163. [PMID: 35032334 PMCID: PMC9303531 DOI: 10.1111/nph.17969] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/21/2021] [Indexed: 05/26/2023]
Abstract
The CLAVATA pathway is a key regulator of stem cell function in the multicellular shoot tips of Arabidopsis, where it acts via the WUSCHEL transcription factor to modulate hormone homeostasis. Broad-scale evolutionary comparisons have shown that CLAVATA is a conserved regulator of land plant stem cell function, but CLAVATA acts independently of WUSCHEL-like (WOX) proteins in bryophytes. The relationship between CLAVATA, hormone homeostasis and the evolution of land plant stem cell functions is unknown. Here we show that in the moss, Physcomitrella (Physcomitrium patens), CLAVATA affects stem cell activity by modulating hormone homeostasis. CLAVATA pathway genes are expressed in the tip cells of filamentous tissues, regulating cell identity, filament branching, plant spread and auxin synthesis. The receptor-like kinase PpRPK2 plays the major role, and Pprpk2 mutants have abnormal responses to cytokinin, auxin and auxin transport inhibition, and show reduced expression of PIN auxin transporters. We propose a model whereby PpRPK2 modulates auxin gradients in filaments to determine stem cell identity and overall plant form. Our data indicate that CLAVATA-mediated auxin homeostasis is a fundamental property of plant stem cell function, probably exhibited by the last shared common ancestor of land plants.
Collapse
Affiliation(s)
- Zoe Nemec‐Venza
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Connor Madden
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
- Division of Psychological Medicine & Clinical NeurosciencesMRC Centre for Neuropsychiatric Genetics & GenomicsCardiff University School of MedicineHeath ParkCardiffCF14 4XNUK
| | - Amy Stewart
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Wei Liu
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Ondřej Novák
- Laboratory of Growth RegulatorsFaculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 27Olomouc78371Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth RegulatorsFaculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 27Olomouc78371Czech Republic
| | - Andrew C. Cuming
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Yasuko Kamisugi
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - C. Jill Harrison
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| |
Collapse
|
9
|
Song XF, Hou XL, Liu CM. CLE peptides: critical regulators for stem cell maintenance in plants. PLANTA 2021; 255:5. [PMID: 34841457 DOI: 10.1007/s00425-021-03791-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Plant CLE peptides, which regulate stem cell maintenance in shoot and root meristems and in vascular bundles through LRR family receptor kinases, are novel, complex, and to some extent conserved. Over the past two decades, peptide ligands of the CLAVATA3 (CLV3) /Embryo Surrounding Region (CLE) family have been recognized as critical short- and long-distance communication signals in plants, especially for stem cell homeostasis, cell fate determination and physiological responses. Stem cells located at the shoot apical meristem (SAM), the root apical meristem (RAM) and the procambium divide and differentiate into specialized cells that form a variety of tissues such as epidermis, ground tissues, xylem and phloem. In the SAM of Arabidopsis (Arabidopsis thaliana), the CLV3 peptide restricts the number of stem cells via leucine-rich repeat (LRR)-type receptor kinases. In the RAM, root-active CLE peptides are critical negative regulators, while ROOT GROWTH FACTOR (RGF) peptides are positive regulators in stem cell maintenance. Among those root-active CLE peptides, CLE25 promotes, while CLE45 inhibits phloem differentiation. In vascular bundles, TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/CLE41/CLE44 promotes procambium cell division, and prevents xylem differentiation. Orthologs of CLV3 have been identified in liverwort (Marchantia polymorpha), tomato (Solanum lycopersicum), rice (Oryza sativa), maize (Zea mays) and lotus (Lotus japonicas), suggesting that CLV3 is an evolutionarily conserved signal in stem cell maintenance. However, functional characterization of endogenous CLE peptides and corresponding receptor kinases, and the downstream signal transduction has been challenging due to their genome-wide redundancies and rapid evolution.
Collapse
Affiliation(s)
- Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Li Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Breiden M, Olsson V, Blümke P, Schlegel J, Gustavo-Pinto K, Dietrich P, Butenko MA, Simon R. The Cell Fate Controlling CLE40 Peptide Requires CNGCs to Trigger Highly Localized Ca2+ Transients in Arabidopsis thaliana Root Meristems. PLANT & CELL PHYSIOLOGY 2021; 62:1290-1301. [PMID: 34059877 DOI: 10.1093/pcp/pcab079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Communication between plant cells and their biotic environment largely depends on the function of plasma membrane localized receptor-like kinases (RLKs). Major players in this communication within root meristems are secreted peptides, including CLAVATA3/EMBRYO SURROUNDING REGION40 (CLE40). In the distal root meristem, CLE40 acts through the RLK ARABIDOPSIS CRINKLY4 (ACR4) and the leucine-rich repeat (LRR) RLK CLAVATA1 (CLV1) to promote cell differentiation. In the proximal meristem, CLE40 signaling requires the LRR receptor-like protein CLAVATA2 (CLV2) and the membrane localized pseudokinase CORYNE (CRN) and serves to inhibit cell differentiation. The molecular components that act immediately downstream of the CLE40-activated receptors are not yet known. Here, we show that active CLE40 signaling triggers the release of intracellular Ca2+ leading to increased cytosolic Ca2+ concentration ([Ca2+]cyt) in a small subset of proximal root meristem cells. This rise in [Ca2+]cyt depends on the CYCLIC NUCLEOTIDE GATED CHANNELS (CNGCs) 6 and 9 and on CLV1. The precise function of changes in [Ca2+]cyt is not yet known but might form a central part of a fine-tuned response to CLE40 peptide that serves to integrate root meristem growth with stem cell fate decisions and initiation of lateral root primordia.
Collapse
Affiliation(s)
- Maike Breiden
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Vilde Olsson
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Osl, Blindernveien 31, Oslo 0316, Norway
| | - Patrick Blümke
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jenia Schlegel
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Karine Gustavo-Pinto
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Petra Dietrich
- Cell Biology of Plants, Friedrich Alexander University, Staudtstr. 5, Erlangen 91058, Germany
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Osl, Blindernveien 31, Oslo 0316, Norway
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
11
|
Schlegel J, Denay G, Wink R, Pinto KG, Stahl Y, Schmid J, Blümke P, Simon RGW. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. eLife 2021; 10:e70934. [PMID: 34643181 PMCID: PMC8594942 DOI: 10.7554/elife.70934] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Stem cell homeostasis in plant shoot meristems requires tight coordination between stem cell proliferation and cell differentiation. In Arabidopsis, stem cells express the secreted dodecapeptide CLAVATA3 (CLV3), which signals through the leucine-rich repeat (LRR)-receptor kinase CLAVATA1 (CLV1) and related CLV1-family members to downregulate expression of the homeodomain transcription factor WUSCHEL (WUS). WUS protein moves from cells below the stem cell domain to the meristem tip and promotes stem cell identity, together with CLV3 expression, generating a negative feedback loop. How stem cell activity in the meristem centre is coordinated with organ initiation and cell differentiation at the periphery is unknown. We show here that the CLE40 gene, encoding a secreted peptide closely related to CLV3, is expressed in the SAM in differentiating cells in a pattern complementary to that of CLV3. CLE40 promotes WUS expression via BAM1, a CLV1-family receptor, and CLE40 expression is in turn repressed in a WUS-dependent manner. Together, CLE40-BAM1-WUS establish a second negative feedback loop. We propose that stem cell homeostasis is achieved through two intertwined pathways that adjust WUS activity and incorporate information on the size of the stem cell domain, via CLV3-CLV1, and on cell differentiation via CLE40-BAM1.
Collapse
Affiliation(s)
- Jenia Schlegel
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Gregoire Denay
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Rene Wink
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Karine Gustavo Pinto
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Yvonne Stahl
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Julia Schmid
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Patrick Blümke
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Rüdiger GW Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
12
|
Wang C, Reid JB, Foo E. The role of CLV1, CLV2 and HPAT homologues in the nitrogen-regulation of root development. PHYSIOLOGIA PLANTARUM 2020; 170:607-621. [PMID: 32880978 DOI: 10.1111/ppl.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Plants use a variety of signals to control root development, including in modifying root development in response to nutrient stress. For example, in response to nitrogen (N) stress, plants dramatically modulate root development, including the formation of N-fixing nodules in legumes. Recently, specific CLE peptides and/or receptors important for their perception, including CLV1 and CLV2, have been found to play roles in root development, including in response to N supply. In the legume Medicago truncatula, this response also appears to be influenced by RDN1, a member of the hydroxyproline-O-arabinosyltransferase (HPAT) family which can modify specific CLE peptides. However, it is not known if this signalling pathway plays a central role in root development across species, and in particular root responses to N. In this study, we systematically examined the role of the CLV signalling pathway genes in root development of the legume pea (Pisum sativum) and non-legume tomato (Solanum lycopersicum) using a mutant-based approach. This included a detailed examination of root development in response to N in tomato mutants disrupted in CLV1- or CLV2-like genes or HPAT family member FIN. We found no evidence for a role of these genes in pea seedling root development. Furthermore, the CLV1-like FAB gene did not influence tomato root development, including the root response to N supply. In contrast, both CLV2 and the HPAT gene FIN appear to positively influence root size in tomato but do not mediate root responses to N. These results suggest the function of these genes may vary somewhat in different species, including the N regulation of root architecture.
Collapse
Affiliation(s)
- Chenglei Wang
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - James B Reid
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
13
|
Liu J, Chen T, Zhang J, Li C, Xu Y, Zheng H, Zhou J, Zha L, Jiang C, Jin Y, Nan T, Yi J, Sun P, Yuan Y, Huang L. Ginsenosides regulate adventitious root formation in Panax ginseng via a CLE45-WOX11 regulatory module. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6396-6407. [PMID: 32794554 DOI: 10.1093/jxb/eraa375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Adventitious root branching is vital to plant growth and regeneration, but the regulation of this process remains unclear. We therefore investigated how ginsenosides regulate adventitious root branching in Panax ginseng. Cell proliferation and adventitious root branching were decreased in the presence of ginsenoside Rb1 and a high concentration of ginsenoside Re, but increased when treating with a low concentration of Re. Moreover, the exogenous application of a synthetic dodeca-amino acid peptide that has a CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) motif corresponding to PgCLE45 retarded root growth in both ginseng and Arabidopsis. The root Re levels and the expression of the DDS, CYP716A47, and CYP716A53 genes that encode enzymes involved in ginsenoside synthesis were decreased in the presence of PgCLE45. The expression profiles of PgWOX and PgCLE genes were determined to further investigate the CLE-WOX signaling pathway. The levels of PgWOX11 transcripts showed an inverse pattern to PgCLE45 transcripts. Using yeast one-hybrid assay, EMSA, and ChIP assay, we showed that PgWOX11 bound to the PgCLE45 promoter, which contained the HD motif. Transient expression assay showed that PgWOX11 induced the expression of PgCLE45 in adventitious roots, while PgCLE45 suppressed the expression of PgWOX11. These results suggest that there is a negative feedback regulation between PgCLE45 and PgWOX11. Taken together, these data show that ginsenosides regulate adventitious root branching via a novel PgCLE45-PgWOX11 regulatory loop, providing a potential mechanism for the regulation of adventitious root branching.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jie Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, PR China
| | - Yanhong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Han Zheng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Liangping Zha
- Anhui University of Chinese Medicine, Hefei, PR China
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yan Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Tiegui Nan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jinhao Yi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Peiwen Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| |
Collapse
|
14
|
Khan SU, Khan MHU, Ahmar S, Fan C. Comprehensive study and multipurpose role of the CLV3/ESR-related (CLE) genes family in plant growth and development. J Cell Physiol 2020; 236:2298-2317. [PMID: 32864739 DOI: 10.1002/jcp.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) is one of the most important signaling peptides families in plants. These peptides signaling are common in the cell to cell communication and control various physiological and developmental processes, that is cell differentiation and proliferation, self-incompatibility, and the defense response. The CLE signaling systems are conserved across the plant kingdom but have a diverse mode of action in various developmental processes in different species. In this review, we concise various methods of peptides identification, structure, and molecular identity of the CLE family, the developmental role of CLE genes/peptides in plants, environmental stimuli, and CLE family and some other novel progress in CLE genes/peptides in various crops, and so forth. According to previous literature, about 1,628 CLE genes were identified in land plants, which deeply explained the tale of plant development. Nevertheless, some important queries need to be addressed to get clear insights into the CLE gene family in other organisms and their role in various physiological and developmental processes. Furthermore, we summarized the power of the CLE family around the environment as well as bifunctional activity and the crystal structure recognition mechanism of CLE peptides by their receptors and CLE clusters functions. We strongly believed that the discovery of the CLE family in other organisms would provide a significant breakthrough for future revolutionary and functional studies.
Collapse
Affiliation(s)
- Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Hafeez U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Whitewoods CD. Evolution of CLE peptide signalling. Semin Cell Dev Biol 2020; 109:12-19. [PMID: 32444290 DOI: 10.1016/j.semcdb.2020.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
CLEs are small non-cell autonomous signalling peptides that regulate cell division rate and orientation in a variety of developmental contexts. Recent years have generated a huge amount of research on CLE function across land plants, characterising their role across the whole plant; they control stem cell division in the shoot, root and cambial meristems, balance developmental investment into symbiosis, regulate leaf development, pattern stomata and control axillary branching. They have even been co-opted by parasitic nematodes to mediate infection. This review synthesises these recent findings and embeds them in an evolutionary context, outlining the likely evolution of the CLE signalling pathway. I use this framework to infer common mechanistic themes and pose key future questions for the field.
Collapse
|
16
|
Li Z, Liu D, Xia Y, Li Z, Niu N, Ma S, Wang J, Song Y, Zhang G. Identification and Functional Analysis of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Wheat. Int J Mol Sci 2019; 20:E4319. [PMID: 31484454 PMCID: PMC6747155 DOI: 10.3390/ijms20174319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/13/2022] Open
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are post-translationally cleaved and modified peptides from their corresponding pre-propeptides. Although they are only 12 to 13 amino acids in length, they are important ligands involved in regulating cell proliferation and differentiation in plant shoots, roots, vasculature, and other tissues. They function by interacting with their corresponding receptors. CLE peptides have been studied in many plants, but not in wheat. We identified 104 TaCLE genes in the wheat genome based on a genome-wide scan approach. Most of these genes have homologous copies distributed on sub-genomes A, B, and D. A few genes are derived from tandem duplication and segmental duplication events. Phylogenetic analysis revealed that TaCLE genes can be divided into five different groups. We obtained functional characterization of the peptides based on the evolutionary relationships among the CLE peptide families of wheat, rice, and Arabidopsis, and expression pattern analysis. Using chemically synthesized peptides (TaCLE3p and TaCLE34p), we found that TaCLE3 and TaCLE34 play important roles in regulating wheat and Arabidopsis root development, and wheat stem development. Overexpression analysis of TaCLE3 in Arabidopsis revealed that TaCLE3 not only affects the development of roots and stems, but also affects the development of leaves and fruits. These data represent the first comprehensive information on TaCLE family members.
Collapse
Affiliation(s)
- Zheng Li
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China
| | - Dan Liu
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China
| | - Yu Xia
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China
| | - Ziliang Li
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China
| | - Na Niu
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China
| | - Shoucai Ma
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China
| | - Yulong Song
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China.
| |
Collapse
|
17
|
Uchida N, Torii KU. Stem cells within the shoot apical meristem: identity, arrangement and communication. Cell Mol Life Sci 2019; 76:1067-1080. [PMID: 30523363 PMCID: PMC11105333 DOI: 10.1007/s00018-018-2980-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Stem cells are specific cells that renew themselves and also provide daughter cells for organ formation. In plants, primary stem cell populations are nurtured within shoot and root apical meristems (SAM and RAM) for the production of aerial and underground parts, respectively. This review article summarizes recent progress on control of stem cells in the SAM from studies of the model plant Arabidopsis thaliana. To that end, a brief overview of the RAM is provided first to emphasize similarities and differences between the two apical meristems, which would help in better understanding of stem cells in the SAM. Subsequently, we will discuss in depth how stem cells are arranged in an organized manner in the SAM, how dynamically the stem cell identity is regulated, what factors participate in stem cell control, and how intercellular communication by mobile signals modulates stem cell behaviors within the SAM. Remaining questions and perspectives are also presented for future studies.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
18
|
DiGennaro P, Grienenberger E, Dao TQ, Jun J, Fletcher JC. Peptide signaling molecules CLE5 and CLE6 affect Arabidopsis leaf shape downstream of leaf patterning transcription factors and auxin. PLANT DIRECT 2018; 2:e00103. [PMID: 31245702 PMCID: PMC6508849 DOI: 10.1002/pld3.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 05/18/2023]
Abstract
Intercellular signaling mediated by small peptides is critical to coordinate organ formation in animals, but whether extracellular polypeptides play similar roles in plants is unknown. Here we describe a role in Arabidopsis leaf development for two members of the CLAVATA3/ESR-RELATED peptide family, CLE5 and CLE6, which lie adjacent to each other on chromosome 2. Uniquely among the CLE genes, CLE5 and CLE6 are expressed specifically at the base of developing leaves and floral organs, adjacent to the boundary with the shoot apical meristem. During vegetative development CLE5 and CLE6 transcription is regulated by the leaf patterning transcription factors BLADE-ON-PETIOLE1 (BOP1) and ASYMMETRIC LEAVES2 (AS2), as well as by the WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors WOX1 and PRESSED FLOWER (PRS). Moreover, CLE5 and CLE6 transcript levels are differentially regulated in various genetic backgrounds by the phytohormone auxin. Analysis of loss-of-function mutations generated by genome engineering reveals that CLE5 and CLE6 independently and together have subtle effects on rosette leaf shape. Our study indicates that the CLE5 and CLE6 peptides function downstream of leaf patterning factors and phytohormones to modulate the final leaf morphology.
Collapse
Affiliation(s)
- Peter DiGennaro
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
- Present address:
Department of Entomology and NematologyUniversity of FloridaGainesvilleFlorida
| | - Etienne Grienenberger
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
- Present address:
Centre National de la Recherche Scientifique (CNRS)Institute of Plant Molecular BiologyUniversity of StrasbourgStrasbourgFrance
| | - Thai Q. Dao
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
| | - Ji Hyung Jun
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
- Present address:
BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTexas
| | - Jennifer C. Fletcher
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
19
|
Chiatante D, Rost T, Bryant J, Scippa GS. Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium. ANNALS OF BOTANY 2018; 122:697-710. [PMID: 29394314 PMCID: PMC6215048 DOI: 10.1093/aob/mcy003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/08/2018] [Indexed: 05/07/2023]
Abstract
Background The production of a new lateral root from parental root primary tissues has been investigated extensively, and the most important regulatory mechanisms are now well known. A first regulatory mechanism is based on the synthesis of small peptides which interact ectopically with membrane receptors to elicit a modulation of transcription factor target genes. A second mechanism involves a complex cross-talk between plant hormones. It is known that lateral roots are formed even in parental root portions characterized by the presence of secondary tissues, but there is not yet agreement about the putative tissue source providing the cells competent to become founder cells of a new root primordium. Scope We suggest models of possible regulatory mechanisms for inducing specific root vascular cambium (VC) stem cells to abandon their activity in the production of xylem and phloem elements and to start instead the construction of a new lateral root primordium. Considering the ontogenic nature of the VC, the models which we suggest are the result of a comparative review of mechanisms known to control the activity of stem cells in the root apical meristem, procambium and VC. Stem cells in the root meristems can inherit various competences to play different roles, and their fate could be decided in response to cross-talk between endogenous and exogenous signals. Conclusions We have found a high degree of relatedness among the regulatory mechanisms controlling the various root meristems. This fact suggests that competence to form new lateral roots can be inherited by some stem cells of the VC lineage. This kind of competence could be represented by a sensitivity of specific stem cells to factors such as those presented in our models.
Collapse
Affiliation(s)
- Donato Chiatante
- Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, Varese, Italy
| | - Thomas Rost
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - John Bryant
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
20
|
Tognetti VB, Bielach A, Hrtyan M. Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. PLANT, CELL & ENVIRONMENT 2017; 40:2586-2605. [PMID: 28708264 DOI: 10.1111/pce.13021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/17/2017] [Accepted: 06/24/2017] [Indexed: 05/18/2023]
Abstract
To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Kirschner GK, Stahl Y, Von Korff M, Simon R. Unique and Conserved Features of the Barley Root Meristem. FRONTIERS IN PLANT SCIENCE 2017; 8:1240. [PMID: 28785269 PMCID: PMC5519606 DOI: 10.3389/fpls.2017.01240] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.
Collapse
Affiliation(s)
- Gwendolyn K. Kirschner
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Institute for Plant Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
| | - Maria Von Korff
- Institute for Plant Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
| |
Collapse
|
22
|
Hazak O, Brandt B, Cattaneo P, Santiago J, Rodriguez-Villalon A, Hothorn M, Hardtke CS. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature. EMBO Rep 2017; 18:1367-1381. [PMID: 28607033 PMCID: PMC5538625 DOI: 10.15252/embr.201643535] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
Arabidopsis root development is orchestrated by signaling pathways that consist of different CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands and their cognate CLAVATA (CLV) and BARELY ANY MERISTEM (BAM) receptors. How and where different CLE peptides trigger specific morphological or physiological changes in the root is poorly understood. Here, we report that the receptor‐like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) are necessary to fully sense root‐active CLE peptides. We uncover BAM3 as the CLE45 receptor in the root and biochemically map its peptide binding surface. In contrast to other plant peptide receptors, we found no evidence that SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) proteins act as co‐receptor kinases in CLE45 perception. CRN stabilizes BAM3 expression and thus is required for BAM3‐mediated CLE45 signaling. Moreover, protophloem‐specific CRN expression complements resistance of the crn mutant to root‐active CLE peptides, suggesting that protophloem is their principal site of action. Our work defines a genetic framework for dissecting CLE peptide signaling and CLV/BAM receptor activation in the root.
Collapse
Affiliation(s)
- Ora Hazak
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Pietro Cattaneo
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Julia Santiago
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Phosphate Starvation-Dependent Iron Mobilization Induces CLE14 Expression to Trigger Root Meristem Differentiation through CLV2/PEPR2 Signaling. Dev Cell 2017; 41:555-570.e3. [DOI: 10.1016/j.devcel.2017.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
|
24
|
Vanyushin BF, Ashapkin VV, Aleksandrushkina NI. Regulatory Peptides in Plants. BIOCHEMISTRY (MOSCOW) 2017; 82:89-94. [PMID: 28320293 DOI: 10.1134/s0006297917020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.
Collapse
Affiliation(s)
- B F Vanyushin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
25
|
Araya T, von Wirén N, Takahashi H. CLE peptide signaling and nitrogen interactions in plant root development. PLANT MOLECULAR BIOLOGY 2016; 91:607-615. [PMID: 26994997 DOI: 10.1007/s11103-016-0472-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
The CLAVATA signaling pathway is essential for the regulation of meristem activities in plants. This signaling pathway consists of small signaling peptides of the CLE family interacting with CLAVATA1 and leucine-rich repeat receptor-like kinases (LRR-RLKs). The peptide-receptor relationships determine the specificities of CLE-dependent signals controlling stem cell fate and differentiation that are critical for the establishment and maintenance of shoot and root apical meristems. Plants root systems are highly organized into three-dimensional structures for successful anchoring and uptake of water and mineral nutrients from the soil environment. Recent studies have provided evidence that CLE peptides and CLAVATA signaling pathways play pivotal roles in the regulation of lateral root development and systemic autoregulation of nodulation (AON) integrated with nitrogen (N) signaling mechanisms. Integrations of CLE and N signaling pathways through shoot-root vascular connections suggest that N demand modulates morphological control mechanisms and optimize N uptake as well as symbiotic N fixation in roots.
Collapse
Affiliation(s)
- Takao Araya
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
26
|
Somssich M, Bleckmann A, Simon R. Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4901-15. [PMID: 27229734 PMCID: PMC4983110 DOI: 10.1093/jxb/erw207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stem cell maintenance in plants depends on the activity of small secreted signaling peptides of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family, which, in the shoot, act through at least three kinds of receptor complexes, CLAVATA1 (CLV1) homomers, CLAVATA2 (CLV2) / CORYNE (CRN) heteromers, and CLV1/CLV2/CRN multimers. In the root, the CLV2/CRN receptor complexes function in the proximal meristem to transmit signals from the CLE peptide CLE40. While CLV1 consists of an extracellular receptor domain and an intracellular kinase domain, CLV2, a leucine-rich repeat (LRR) receptor-like protein, and CRN, a protein kinase, have to interact to form a receptor-kinase complex. The kinase domain of CRN has been reported to be catalytically inactive, and it is not yet known how the CLV2/CRN complex can relay the perceived signal into the cells, and whether the kinase domain is necessary for signal transduction at all. In this study we show that the kinase domain of CRN is actively involved in CLV3 signal transduction in the shoot apical meristem of Arabidopsis, but it is dispensable for CRN protein function in root meristem maintenance. Hence, we provide an example of a catalytically inactive pseudokinase that is involved in two homologous pathways, but functions in distinctively different ways in each of them.
Collapse
Affiliation(s)
- Marc Somssich
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andrea Bleckmann
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Abstract
A significant part of the communication between plant cells is mediated by signaling peptides and their corresponding plasma membrane-localized receptor-like kinases. This communication mechanism serves as a key regulatory unit for coordination of plant growth and development. In the past years more peptide–receptor signaling pathways have been shown to regulate developmental processes, such as shoot and root meristem maintenance, seed formation, and floral abscission. More detailed understanding of the processes behind this regulation might also be helpful to increase the yield of crop plants.
Collapse
Affiliation(s)
- Maike Breiden
- Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, University Street, D-40225, Düsseldorf, Germany
| | - Rüdiger Simon
- Cluster of Excellence on Plant Sciences and Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
28
|
Liu Z, Yang N, Lv Y, Pan L, Lv S, Han H, Wang G. The CLE gene family in Populus trichocarpa. PLANT SIGNALING & BEHAVIOR 2016; 11:e1191734. [PMID: 27232947 PMCID: PMC4973754 DOI: 10.1080/15592324.2016.1191734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa. The potential roles of PtCLE genes were studied by comparative analysis and transcriptional profiling. Among fifty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These findings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants.
Collapse
Affiliation(s)
- Zhijun Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Nan Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanting Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lixia Pan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shuo Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- CONTACT Dr. Guodong Wang Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
29
|
Kucukoglu M, Nilsson O. CLE peptide signaling in plants - the power of moving around. PHYSIOLOGIA PLANTARUM 2015; 155:74-87. [PMID: 26096704 DOI: 10.1111/ppl.12358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 05/25/2023]
Abstract
The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) gene family encodes small secreted peptide ligands in plants. These peptides function non-cell autonomously through interactions with plasma membrane-associated LEUCINE-RICH REPEAT RECEPTOR-LIKE KINASEs (LRR-RLKs). These interactions are critical for cell-to-cell communications and control a variety of developmental and physiological processes in plants, such as regulation of stem cell proliferation and differentiation in the meristems, embryo and endosperm development, vascular development and autoregulation of nodulation. Here, we review the current knowledge in the field of CLE polypeptide signaling.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| |
Collapse
|
30
|
Richards S, Wink RH, Simon R. Mathematical modelling of WOX5- and CLE40-mediated columella stem cell homeostasis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5375-84. [PMID: 26019259 PMCID: PMC4526915 DOI: 10.1093/jxb/erv257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The root meristem of Arabidopsis thaliana harbours a pool of stem cells, which divide to give rise to the differentiated cells of the various root tissues. Regulatory networks of inter-cellular signalling molecules control the homeostasis of stem cell number and position so that both stem and differentiated cells are consistently available. This work focuses on the transcription factor WUSCHEL-RELATED HOMEOBOX 5 (WOX5), the signalling peptide CLAVATA3/EMBRYO-SURROUNDING REGION 40 (CLE40) and the feedback loops involving them, which maintain the columella stem cells (CSCs). WOX5 signals from the quiescent centre (QC) to promote stem cell fate, while CLE40 is secreted from the differentiated columella cells (CCs) to promote differentiation. Our analyses of mathematical models of this network show that, when cell fate is controlled primarily by antagonistic factors, homeostasis requires a spatial component and inter-cellular signalling. We have also found that WOX5 contributes to, but is not absolutely necessary for, CSC maintenance. Furthermore, our modelling led us to postulate an additional signalling molecule that promotes CSC maintenance. We propose that this WOX5-independent signal originates in the QC, is targeted by CLE40 signalling and is capable of maintaining CSCs.
Collapse
Affiliation(s)
- Sarah Richards
- Institute of Developmental Genetics, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rene H Wink
- Institute of Developmental Genetics, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rüdiger Simon
- Institute of Developmental Genetics, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Satbhai SB, Ristova D, Busch W. Underground tuning: quantitative regulation of root growth. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1099-112. [PMID: 25628329 DOI: 10.1093/jxb/eru529] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation.
Collapse
Affiliation(s)
- Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
32
|
Wang G, Zhang G, Wu M. CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2015; 6:1211. [PMID: 26779239 PMCID: PMC4703810 DOI: 10.3389/fpls.2015.01211] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 05/07/2023]
Abstract
The CLE (CLAVATA3/Endosperm surrounding region-related) peptide family is one of the best-studied secreted peptide families in plants. Accumulated data have revealed that CLE genes play vital roles on stem cell homeostasis in different types of meristems. Additionally, CLE genes have been found to perform various biological roles in plant growth and development, and in response to environmental stimuli. With recent advances on our understanding of CLE peptide function, it is showing that the existence of potential crosstalks of CLE peptides with phytohormones and external stimuli. Complex interactions exist in which CLE petides coordinate with hormones to regulate plant growth and development, and in response to external stimuli. In this article, we present recent advances in cell-cell communication that is mediated by CLE peptides combining with phytohormones and external stimuli, and suggest additional Arabidopsis CLE genes that are likely to be controlled by hormones and environmental cues.
Collapse
|