1
|
Khan MA. Iron responsive elements mRNA regulate Alzheimer's amyloid precursor protein translation through iron sensing. Front Aging Neurosci 2025; 17:1483913. [PMID: 40438504 PMCID: PMC12116395 DOI: 10.3389/fnagi.2025.1483913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Iron responsive element (IREs) mRNA and iron regulatory proteins (IRPs) regulate iron homeostasis. 5'-untranslated region motifs of APP IREs fold into RNA stem loops bind to IRP to control translation. Through the 5'-UTR APP IREs, iron overload accelerated the translation of the Alzheimer's amyloid precursor protein (APP). The protein synthesis activator eIF4F and the protein synthesis repressor IRP1 are the two types of proteins that IREs bind. Iron regulates the competitive binding of eIF4F and IRP1 to IRE. Iron causes the IRE and eIF4F to associate with one other, causing the dissociation of IRPs and altered translation. In order to control IRE-modulated expression of APP, messenger RNAs are becoming attractive targets for the development of small molecule therapeutics. Many mRNA interference strategies target the 2-D RNA structure, but messenger RNAs like rRNAs and tRNAs can fold into complicated, three-dimensional structures that add another level of complexity. IREs family is one of the few known 3-D mRNA regulatory elements. In this review, I present IREs structural and functional characteristics. For iron metabolism, the mRNAs encoding the proteins are controlled by this family of similar base sequences. Iron has a similar way of controlling the expression of Alzheimer's APP as ferritin IRE RNA in their 5ÚTR. Further, iron mis regulation by IRPs can be investigated and contrasted using measurements of expression levels of APP, amyloid-β and tau formation. Accordingly, IRE-modulated APP expression in Alzheimer's disease has great therapeutic potential through targeting mRNA structures.
Collapse
Affiliation(s)
- Mateen A. Khan
- Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Amereh M, Seyfoori A, Shojaei S, Lane S, Zhao T, Shokrollahi Barough M, Lum JJ, Walter P, Akbari M. Tumoroid Model Reveals Synergistic Impairment of Metabolism by Iron Chelators and Temozolomide in Chemo-Resistant Patient-derived Glioblastoma Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412505. [PMID: 40285641 PMCID: PMC12120723 DOI: 10.1002/advs.202412505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Chemoresistance poses a significant clinical challenge in managing glioblastoma (GBM), limiting the long-term success of traditional treatments. Here, a 3D tumoroid model is used to investigate the metabolic sensitivity of temozolomide (TMZ)-resistant GBM cells to iron chelation by deferoxamine (DFO) and deferiprone (DFP). This work shows that TMZ-resistant GBM cells acquire stem-like characteristics, higher intracellular iron levels, higher expression of aconitase, and elevated reliance on oxidative phosphorylation and proteins associated with iron metabolism. Using a microphysiological model of GBM-on-a-chip consisting of extracellular matrix (ECM)-incorporated tumoroids, this work demonstrates that the combination of iron chelators with TMZ induces a synergistic effect on an in vitro tumoroid model of newly diagnosed and recurrent chemo-resistant patient-derived GBM and reduced their size and invasion. Investigating downstream metabolic variations reveal reduced intracellular iron, increased reactive oxygen species (ROS), upregulated hypoxia-inducible factor-1α, reduced viability, increased autophagy, upregulated ribonucleotide reductase (RRM2), arrested proliferation, and induced cell death in normoxic TMZ-resistant cells. Hypoxic cells, while showing similar results, display reduced responses to iron deficiency, less blebbing, and an induced autophagic flux, suggesting an adaptive mechanism associated with hypoxia. These findings show that co-treatment with iron chelators and TMZ induces a synergistic effect, making this combination a promising GBM therapy.
Collapse
Affiliation(s)
- Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Shahla Shojaei
- Department of Human Anatomy and Cell ScienceMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegMBR3T 2N2Canada
| | - Sarah Lane
- Department of BiologyUniversity of VictoriaBCCanada
| | - Tian Zhao
- Trev and Joyce Deeley Research CentreBC CancerVictoriaBCV8R 6V5Canada
| | - Mahdieh Shokrollahi Barough
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Julian J. Lum
- Trev and Joyce Deeley Research CentreBC CancerVictoriaBCV8R 6V5Canada
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCV8W 2Y2Canada
| | | | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Terasaki Institute for Biomedical InnovationsLos AngelesCA91367USA
| |
Collapse
|
3
|
Liu ZH, Zhai Y, Zhang J, Huang W, Li W, Qin W. Mitochondrial iron deficiency mediated inhibition of ecdysone synthesis underlies lead (Pb) induced developmental toxicity in Drosophila melanogaster. Toxicol Appl Pharmacol 2025; 497:117283. [PMID: 40020975 DOI: 10.1016/j.taap.2025.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Lead (Pb) is a pervasive heavy metal possessing developmental toxicity, at least in part, by disrupting iron homeostasis. In this study, we aimed to elucidate the underlying mechanism of iron deficiency mediated developmental defects in Pb exposed Drosophila melanogaster, mainly focusing on iron-dependent synthesis of ecdysone signaling, which plays a key role in the development of insects. Herein, we found Pb exposure resulted in iron deficiency in mitochondria by inhibiting expression of mitoferrin (evidenced by qPCR assay), the mitochondrial iron importer. Further study demonstrated that biosynthesis of ecdysone, a hormone synthesized with the help of iron-containing cytochrome P450s in mitochondria, was inhibited following Pb exposure. Ecdysone supplementation, to some extent, rescued Pb induced developmental delay and reproductive defects in Drosophila melanogaster. Furthermore, we found that disruption of mitoferrin and ecdysone synthesis was restored by NAC (N-Acetylcysteine, a well-known ROS scavenger), suggesting that oxidative stress plays a key role in Pb mediated mitochondrial iron dys-homeostasis and developmental toxicity. This study therefore revealed that mitochondrial iron deficiency mediated inhibition of ecdysone synthesis is a key event associated with iron dys-homeostasis mediated developmental defects caused by Pb exposure. Meanwhile, our study indicated that mitochondria may act as an important target of Pb, thus providing potential protective strategies against Pb toxicity.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| | - YuYin Zhai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jiakai Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Wei Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Wanrong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Wenting Qin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| |
Collapse
|
4
|
Hartness EM, Shevalye H, Skeie JM, Eggleston T, Field MG, Schmidt GA, Phruttiwanichakun P, Salem AK, Greiner MA. Iron-Sulfur Clusters and Iron Responsive Element Binding Proteins Mediate Iron Accumulation in Corneal Endothelial Cells in Fuchs Dystrophy. Invest Ophthalmol Vis Sci 2025; 66:23. [PMID: 40202733 PMCID: PMC11993131 DOI: 10.1167/iovs.66.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Evidence suggests that corneal endothelial cell (CEC) death in Fuchs endothelial corneal dystrophy (FECD) is due to ferroptosis, an iron-mediated cell death. Iron-sulfur cluster (ISC)-containing aconitases and the iron responsive element binding proteins IREBP1 and IREBP2 are known mediators of iron homeostasis. This study investigates mechanisms underlying iron dysregulation in CECs and proposes a role for ISCs and IREBPs in the context of FECD pathogenesis. Methods We studied gene expression of proteins responsible for ISC synthesis and iron homeostasis in human and mouse CECs and analyzed published RNA sequencing datasets. We validated a subset of transcriptional changes between FECD and control tissues using microfluidic Western blotting with human CEC tissues. Finally, we silenced proteins involved in ISC synthesis or iron homeostasis in cell cultures and assessed ferroptosis susceptibility. Results RNA-seq and qPCR data demonstrated significantly decreased transcription of genes required for ISC synthesis in FECD tissues (P < 0.05). Protein quantification revealed a significant decrease in mitochondrial aconitase (P < 0.05), ferredoxin 1 (P < 0.001), and mitofusin (P < 0.05), and a significant increase in cysteine desulfurase (P < 0.05), cytosolic aconitase/IREBP1, and IREBP2 (P < 0.05) in FECD tissues. Silencing studies revealed increased susceptibility to ferroptosis upon siRNA knockdown of ferredoxin 1 (P < 0.05). Conclusions We identified differential gene expression of proteins responsible for ISC synthesis, ISC-containing proteins, IREBPs that mediate cellular iron homeostasis, and mitofusin, which promotes mitochondrial fusion in FECD. We also identified increased susceptibility to ferroptosis after ferredoxin 1 knockdown in CECs. These results advance an ISC- and IREBP-mediated mechanism of iron accumulation in FECD CECs.
Collapse
Affiliation(s)
- Emma M. Hartness
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
| | - Hanna Shevalye
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Jessica M. Skeie
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Timothy Eggleston
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Matthew G. Field
- Minnesota Eye Consultants, Minneapolis, Minnesota, United States
| | | | - Pornpoj Phruttiwanichakun
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| | - Aliasger K. Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| | - Mark A. Greiner
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| |
Collapse
|
5
|
Khan MA. α-Synuclein Iron-Responsive-Element RNA and Iron Regulatory Protein Affinity Is Specifically Reduced by Iron in Parkinson's Disease. Biomolecules 2025; 15:214. [PMID: 40001517 PMCID: PMC11853559 DOI: 10.3390/biom15020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
α-Synuclein (α-Syn) is implicated in the pathophysiology of Parkinson's disease (PD) and plays a significant role in neuronal degeneration. Iron response proteins (IRPs) bind to iron response elements (IREs) found in the 5'-untranslated regions (5'-UTRs) of the messenger RNA that encode the α-Syn gene. This study used multi-spectroscopic approach techniques to investigate the impact of iron on α-Syn IRE RNA binding to IRP1. The formation of a stable complex between α-Syn RNA and IRP1 was suggested by fluorescence quenching results. Fluorescence measurements showed that α-Syn RNA and IRP1 had a strong interaction, with a binding constant (Ka) of 21.0 × 106 M-1 and 1:1 binding stoichiometry. About one binding site per IRP1 molecule was suggested by the α-Syn RNA binding. The Ka for α-Syn RNA•IRP1 with added Fe2+ (50 μM) was 6.4 μM-1. When Fe2+ was added, the Ka of α-Syn RNA•IRP1 was reduced by 3.3 times. These acquired Ka values were used to further understand the thermodynamic characteristics of α-Syn RNA•IRP1 interactions. The thermodynamic properties clearly suggested that α-Syn RNA binding to IRP1 was an entropy-favored and enthalpy-driven event, with significant negative ΔH and small positive ΔS. For α-Syn RNA•IRP1, the Gibbs free energy (ΔG) was -43.7 ± 2.7 kJ/mol, but in the presence of Fe2+, it was -36.3 ± 2.1 kJ/mol. These thermodynamic calculations indicated that hydrogen bonding as well as van der Waals interactions might help to stabilize the complex formation. Additionally, far-UV CD spectra verified α-Syn RNA•IRP1 complex formation, and α-Syn RNA and Fe2+ induce secondary structural alteration of IRP1. According to our findings, iron alters the hydrogen bonding in α-Syn RNA•IRP1 complexes and induces a structural change in IRP1. This suggests that iron selectively affects the thermodynamics of these RNA-protein interactions.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Life Sciences, College of Science & General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
6
|
Khan MA. Targeting Iron Responsive Elements (IREs) of APP mRNA into Novel Therapeutics to Control the Translation of Amyloid-β Precursor Protein in Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:1669. [PMID: 39770511 PMCID: PMC11677800 DOI: 10.3390/ph17121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The hallmark of Alzheimer's disease (AD) is the buildup of amyloid-β (Aβ), which is produced when the amyloid precursor protein (APP) misfolds and deposits as neurotoxic plaques in the brain. A functional iron responsive element (IRE) RNA stem loop is encoded by the APP 5'-UTR and may be a target for regulating the production of Alzheimer's amyloid precursor protein. Since modifying Aβ protein expression can give anti-amyloid efficacy and protective brain iron balance, targeted regulation of amyloid protein synthesis through modulation of 5'-UTR sequence function is a novel method for the prospective therapy of Alzheimer's disease. Numerous mRNA interference strategies target the 2D RNA structure, even though messenger RNAs like tRNAs and rRNAs can fold into complex, three-dimensional structures, adding even another level of complexity. The IRE family is among the few known 3D mRNA regulatory elements. This review seeks to describe the structural and functional aspects of IREs in transcripts, including that of the amyloid precursor protein, that are relevant to neurodegenerative diseases, including AD. The mRNAs encoding the proteins involved in iron metabolism are controlled by this family of similar base sequences. Like ferritin IRE RNA in their 5'-UTR, iron controls the production of APP in their 5'-UTR. Iron misregulation by iron regulatory proteins (IRPs) can also be investigated and contrasted using measurements of the expression levels of tau production, Aβ, and APP. The development of AD is aided by iron binding to Aβ, which promotes Aβ aggregation. The development of small chemical therapeutics to control IRE-modulated expression of APP is increasingly thought to target messenger RNAs. Thus, IRE-modulated APP expression in AD has important therapeutic implications by targeting mRNA structures.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
7
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 244.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
8
|
Connell GJ, Abasiri IM, Chaney EH. A temporal difference in the stabilization of two mRNAs with a 3' iron-responsive element during iron deficiency. RNA (NEW YORK, N.Y.) 2023; 29:1117-1125. [PMID: 37160355 PMCID: PMC10351883 DOI: 10.1261/rna.079665.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The interactions of iron regulatory proteins (IRPs) with mRNAs containing an iron-responsive element (IRE) maintain cellular iron homeostasis and coordinate it with metabolism and possibly cellular behavior. The mRNA encoding transferrin receptor-1 (TFRC, TfR1), which is a major means of iron importation, has five IREs within its 3' UTR, and IRP interactions help maintain cytosolic iron through the protection of the TfR1 mRNA from degradation. An IRE within the 3' UTR of an mRNA splice variant encoding human cell division cycle 14A (CDC14A) has the potential to coordinate the cellular iron status with cellular behavior through a similar IRP-mediated mechanism. However, the stability of the CDC14A splice variant was reported earlier to be unaffected by the cellular iron status, which suggested that the IRE is not functional. We labeled newly synthesized mRNA in HEK293 cells with 5-ethynyl uridine and found that the stability of the CDC14A variant is responsive to iron deprivation, but there are two major differences from the regulation of TfR1 mRNA stability. First, the decay of the CDC14A mRNA does not utilize the Roquin-mediated reaction that acts on the TfR1 mRNA, indicating that there is flexibility in the degradative machinery antagonized by the IRE-IRP interactions. Second, the stabilization of the CDC14A mRNA is delayed relative to the TfR1 mRNA and does not occur until IRP binding activity has been induced. The result is consistent with a hierarchy of IRP interactions in which the maintenance of cellular iron through the stabilization of the TfR1 mRNA is initially prioritized.
Collapse
Affiliation(s)
- Gregory J Connell
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Elizabeth H Chaney
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
9
|
Rogers JT, Cahill CM. Iron Responsiveness to Lysosomal Disruption: A Novel Pathway to Alzheimer's Disease. J Alzheimers Dis 2023; 96:41-45. [PMID: 37781810 DOI: 10.3233/jad-230953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Familial Alzheimer's disease (fAD) mutations in the amyloid-β protein precursor (AβPP) enhance brain AβPP C-Terminal Fragment (CTF) levels to inhibit lysosomal v-ATPase. Consequent disrupted acidification of the endolysosomal pathway may trigger brain iron deficiencies and mitochondrial dysfunction. The iron responsive element (IRE) in the 5'Untranslated-region of AβPP mRNA should be factored into this cycle where reduced bioavailable Fe-II would decrease IRE-dependent AβPP translation and levels of APP-CTFβ in a cycle to adaptively restore iron homeostasis while increases of transferrin-receptors is evident. In healthy younger individuals, Fe-dependent translational modulation of AβPP is part of the neuroprotective function of sAβPPα with its role in iron transport.
Collapse
Affiliation(s)
- Jack T Rogers
- Neurochemistry Laboratory, Massachusetts General Hospital (East), and Harvard Medical School, Charlestown, MA, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Massachusetts General Hospital (East), and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|