1
|
Huang L, Luo Y. AZD6738 Attenuates LPS-Induced Corneal Inflammation and Fibrosis by Modulating Macrophage Function and Polarization. Inflammation 2025:10.1007/s10753-025-02251-2. [PMID: 39903421 DOI: 10.1007/s10753-025-02251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
This study aimed to evaluate the therapeutic potential of AZD6738, an ATR inhibitor, in LPS-induced bacterial keratitis (BK) by targeting macrophage function and polarization. A murine model of LPS-induced BK was established, with AZD6738 (100 µM) administered subconjunctivally and topically. Corneal opacity, edema, and inflammation were assessed using slit-lamp microscopy and histological analysis. Macrophage infiltration and fibrosis were evaluated via immunofluorescence, qPCR, and Western blotting. In vitro, RAW264.7 cells were treated with 2.5 µM AZD6738 to examine its effects on cell viability, oxidative stress, and inflammation-related gene expression. AZD6738 significantly reduced corneal opacity, thickness, and neovascularization in LPS-treated mice. It suppressed macrophage infiltration, collagen deposition, and pro-inflammatory cytokine expression. In RAW264.7 cells, AZD6738 induced cell death, elevated ROS production, and downregulated inflammatory markers. ATR inhibition mitigated NF-κB activation and modulated macrophage polarization, attenuating M1 pro-inflammatory responses. AZD6738 effectively alleviates LPS-induced corneal inflammation and fibrosis by regulating macrophage function and polarization via the NF-κB signaling pathway. ATR inhibition represents a promising therapeutic strategy for the treatment of corneal inflammation.
Collapse
Affiliation(s)
- Longxiang Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Youfang Luo
- Department of Rehabilitation, Fuzhou Second General Hospital, Fuzhou, China
| |
Collapse
|
2
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kobayashi Y, Oguro A, Imaoka S. Feedback of hypoxia-inducible factor-1alpha (HIF-1alpha) transcriptional activity via redox factor-1 (Ref-1) induction by reactive oxygen species (ROS). Free Radic Res 2021; 55:154-164. [PMID: 33410354 DOI: 10.1080/10715762.2020.1870685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is important for adaptation to hypoxia. Hypoxia is a common feature of cancer and inflammation, by which HIF-1alpha increases. However, prolonged hypoxia decreases HIF-1alpha, and the underlying mechanisms currently remain unclear. Cellular reactive oxygen species (ROS) increases in cancer and inflammation. In the present study, we demonstrated that prolonged hypoxia increased ROS, which induced prolyl hydroxylase domain-containing protein 2 (PHD2) and factor inhibiting HIF-1 (FIH-1), major regulators of HIF-1alpha. Cellular stress response (CSR) increased HIF-1alpha transcriptional activity by scavenging endogenous ROS. PHD2 and FIH-1 were induced by external hydrogen peroxide (H2O2) but were suppressed by ROS-scavenging catalase. We investigated the mechanisms by which PHD2 and FIH-1 are regulated by ROS. The knockdown of HIF-1alpha decreased PHD2 and FIH-1 mRNA levels, suggesting their regulation by HIF-1alpha. We then focused on redox factor-1 (Ref-1), which is a regulator of HIF-1alpha transcriptional activity. The knockdown of Ref-1 decreased PHD2 and FIH-1. Ref-1 was regulated by ROS. Prolonged hypoxia and the addition of H2O2 induced the expression of Ref-1. Furthermore, the knockdown of p65, a component of kappa-light-chain enhancer of activated B cells (NF-κB), efficiently inhibited the induction of Ref-1 by ROS. Collectively, the present results showed that prolonged hypoxia or increased ROS levels induced Ref-1, leading to the activation of HIF-1alpha transcriptional activity, while the activation of HIF-1alpha via Ref-1 induced PHD2 and FIH-1, causing the feedback of HIF-1alpha. To the best of our knowledge, this is the first study to demonstrate the regulation of HIF-1alpha via Ref-1 by ROS.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
4
|
Transcriptional regulation of ataxia–telangiectasia and Rad3-related protein by activated p21-activated kinase-1 protects keratinocytes in UV-B-induced premalignant skin lesions. Oncogene 2017; 36:6154-6163. [DOI: 10.1038/onc.2017.218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/16/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022]
|
5
|
Jayappa KD, Portell CA, Gordon VL, Capaldo BJ, Bekiranov S, Axelrod MJ, Brett LK, Wulfkuhle JD, Gallagher RI, Petricoin EF, Bender TP, Williams ME, Weber MJ. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL. Blood Adv 2017; 1:933-946. [PMID: 29034364 PMCID: PMC5637393 DOI: 10.1182/bloodadvances.2016004176] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
De novo resistance and rapid recurrence often characterize responses of B-cell malignancies to ibrutinib (IBR), indicating a need to develop drug combinations that block compensatory survival signaling and give deeper, more durable responses. To identify such combinations, we previously performed a combinatorial drug screen and identified the Bcl-2 inhibitor venetoclax (VEN) as a promising partner for combination with IBR in Mantle Cell Lymphoma (MCL). We have opened a multi-institutional clinical trial to test this combination. However, analysis of primary samples from patients with MCL as well as chronic lymphocytic leukemia (CLL) revealed unexpected heterogeneous de novo resistance even to the IBR+VEN combination. In the current study, we demonstrate that resistance to the combination can be generated by microenvironmental agonists: IL-10, CD40L and, most potently, CpG-oligodeoxynucleotides (CpG-ODN), which is a surrogate for unmethylated DNA and a specific agonist for TLR9 signaling. Incubation with these agonists caused robust activation of NF-κB signaling, especially alternative NF-κB, which led to enhanced expression of the anti-apoptotic proteins Mcl-1, Bcl-xL, and survivin, thus decreasing dependence on Bcl-2. Inhibitors of NF-κB signaling blocked overexpression of these anti-apoptotic proteins and overcame resistance. Inhibitors of Mcl-1, Bcl-xL, or survivin also overcame this resistance, and showed synergistic benefit with the IBR+VEN combination. We conclude that microenvironmental factors, particularly the TLR9 agonist, can generate de novo resistance to the IBR+VEN combination in CLL and MCL cells. This signaling pathway presents targets for overcoming drug resistance induced by extrinsic microenvironmental factors in diverse B-cell malignancies.
Collapse
Affiliation(s)
- Kallesh D Jayappa
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Craig A Portell
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Vicki L Gordon
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brian J Capaldo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Mark J Axelrod
- Gilead Sciences, 199 E. Blaine St., Seattle, WA, United States
| | - L Kyle Brett
- Utica Park Clinic, Medical Oncology, 1245 S Utica Ave Suite #100, Tulsa, OK, United States
| | - Julia D Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Timothy P Bender
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA, United States
| | - Michael E Williams
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Michael J Weber
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
6
|
Sumi H, Inazuka M, Morimoto M, Hibino R, Hashimoto K, Ishikawa T, Kuida K, Smith PG, Yoshida S, Yabuki M. An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924). Biochem Biophys Res Commun 2016; 480:380-386. [PMID: 27771247 DOI: 10.1016/j.bbrc.2016.10.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 01/12/2023]
Abstract
Inhibitors of apoptosis proteins (IAPs) are antiapoptotic regulators that block cell death, and are frequently overexpressed in several human cancers, where they facilitate evasion of apoptosis and promote cell survival. IAP antagonists are also known as second mitochondria-derived activator of caspase (SMAC)-mimetics, and have recently been considered as novel therapeutic agents for inducing apoptosis, alone and in combination with other anticancer drugs. In this study, we showed that T-3256336, the orally available IAP antagonist has synergistically enhances the antiproliferative effects of the NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/MLN4924), and these effects were attenuated by a TNFα-neutralizing antibody. In the present mechanistic analyses, pevonedistat induced TNFα mRNA and triggered IAP antagonist-dependent extrinsic apoptotic cell death in cancer cell lines. Furthermore, synergistic effects of the combination of T-3256336 and pevonedistat were demonstrated in a HL-60 mouse xenograft model. Our findings provide mechanistic evidence of the effects of IAP antagonists in combination with NAE inhibitors, and demonstrate the potential of a new combination therapy for cancer.
Collapse
Affiliation(s)
- Hiroyuki Sumi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Masakazu Inazuka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Megumi Morimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryosuke Hibino
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kentaro Hashimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tomoyasu Ishikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Keisuke Kuida
- Discovery, Millennium Pharmaceuticals, Inc., Cambridge, MA, 02139, USA
| | - Peter G Smith
- Discovery, Millennium Pharmaceuticals, Inc., Cambridge, MA, 02139, USA
| | - Sei Yoshida
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masato Yabuki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
7
|
Srivastava AK, Mishra S, Ali W, Shukla Y. Protective effects of lupeol against mancozeb-induced genotoxicity in cultured human lymphocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:714-724. [PMID: 27235710 DOI: 10.1016/j.phymed.2016.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Lup-20(29)-en-3H-ol (Lupeol), a dietary pentacyclic triterpenoid has been shown to possess multiple medicinal activities including anti-inflammatory, anti-oxidant and anti-carcinogenic effects. Mancozeb is a widely used broad-spectrum fungicide with well-known carcinogenic hazards in rodents. PURPOSE The present study has been designed to investigate the protective effects of lupeol against mancozeb-induced genotoxicity and apoptosis in cultured human lymphocytes (CHLs). METHODS The genotoxic effect of mancozeb was evaluated by chromosomal aberration and micronucleus assays. The cell cycle kinetics and intracellular reactive oxygen species (ROS) generation was measured by flow cytometry. The levels of anti-oxidant enzymes and lipid peroxidation (LPO) were estimated by enzymatic assays. The localization of p65NF-κB was measured by immunocytochemical analysis. The differential expression of genes associated with genotoxicity was measured by qRT-PCR. RESULTS Mancozeb exposure (5µg/ml) for 24h caused significant induction of chromosomal aberrations (CAs) and micronuclei (MN) formation in CHLs. Pre-and post-treatment (25 and 50µg/ml) of lupeol for 24h significantly (p<0.05) reduced the frequency of CAs and MN induction, in a dose-dependent manner in mancozeb treated CHLs. Concomitantly, lupeol pre-treatment for 24h significantly increased the levels of anti-oxidant enzymes, superoxide dismutase (SOD) and catalase and decreased ROS generation and LPO. Additionally, lupeol pre-treatment significantly reduced mancozeb-induced apoptosis as shown by Sub-G1 peak analysis and annexin V-PI assay, in a dose dependent manner. Moreover, pre-treatment with lupeol attenuated mancozeb-induced NF-κB activation in CHLs. Furthermore, the results of qRT-PCR showed that lupeol pre-treatment significantly (p<0.05) decreased mancozeb-induced expression of DNA damage (p53, MDM2, COX-2, GADD45α and p21) and increased expression of DNA repair responsive genes (hOGG1 and XRCC1) in CHLs. CONCLUSION Taken together, our findings suggest that lupeol could attenuate mancozeb-induced oxidative stress, which in turn could inhibit NF-κB activation and thus provide protection against mancozeb-induced genotoxicity and apoptosis. So, lupeol could be used as a potent anti-oxidant regimen against pesticide induced genotoxicity in agricultural farm workers.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Sanjay Mishra
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Wahid Ali
- Department of Pathology, Chatrapati Shahuji Maharaj Medical University, Lucknow Chowk, Lucknow U.P. India- 226003
| | - Yogeshwer Shukla
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.
| |
Collapse
|
8
|
Abstract
DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.
Collapse
Affiliation(s)
- Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Adam D Thomas
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
9
|
Widel M, Lalik A, Krzywon A, Poleszczuk J, Fujarewicz K, Rzeszowska-Wolny J. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status. Mutat Res 2015; 778:61-70. [PMID: 26099456 DOI: 10.1016/j.mrfmmm.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/15/2015] [Accepted: 06/07/2015] [Indexed: 01/18/2023]
Abstract
Radiation-induced bystander effect, appearing as different biological changes in cells that are not directly exposed to ionizing radiation but are under the influence of molecular signals secreted by irradiated neighbors, have recently attracted considerable interest due to their possible implication for radiotherapy. However, various cells present diverse radiosensitivity and bystander responses that depend, inter alia, on genetic status including TP53, the gene controlling the cell cycle, DNA repair and apoptosis. Here we compared the ionizing radiation and bystander responses of human colorectal carcinoma HCT116 cells with wild type or knockout TP53 using a transwell co-culture system. The viability of exposed to X-rays (0-8 Gy) and bystander cells of both lines showed a roughly comparable decline with increasing dose. The frequency of micronuclei was also comparable at lower doses but at higher increased considerably, especially in bystander TP53-/- cells. Moreover, the TP53-/- cells showed a significantly elevated frequency of apoptosis, while TP53+/+ counterparts expressed high level of senescence. The cross-matched experiments where irradiated cells of one line were co-cultured with non-irradiated cells of opposite line show that both cell lines were also able to induce bystander effects in their counterparts, however different endpoints revealed with different strength. Potential mediators of bystander effects, IL-6 and IL-8, were also generated differently in both lines. The knockout cells secreted IL-6 at lower doses whereas wild type cells only at higher doses. Secretion of IL-8 by TP53-/- control cells was many times lower than that by TP53+/+ but increased significantly after irradiation. Transcription of the NFκBIA was induced in irradiated TP53+/+ mainly, but in bystanders a higher level was observed in TP53-/- cells, suggesting that TP53 is required for induction of NFκB pathway after irradiation but another mechanism of activation must operate in bystander cells.
Collapse
Affiliation(s)
- Maria Widel
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland.
| | - Anna Lalik
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Aleksandra Krzywon
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Jan Poleszczuk
- College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 93 Zwirki i Wigury Street, 02-089 Warsaw, Poland; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Krzysztof Fujarewicz
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Joanna Rzeszowska-Wolny
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| |
Collapse
|
10
|
Chishti AA, Baumstark-Khan C, Hellweg CE, Reitz G. Imaging of nuclear factor κB activation induced by ionizing radiation in human embryonic kidney (HEK) cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:599-610. [PMID: 24880906 DOI: 10.1007/s00411-014-0541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Ionizing radiation modulates several signaling pathways resulting in transcription factor activation. Nuclear factor kappa B (NF-κB) is one of the most important transcription factors that respond to changes in the environment of a mammalian cell. NF-κB plays a key role not only in inflammation and immune regulation but also in cellular radiation response. In response to DNA damage, NF-κB might inhibit apoptosis and promote carcinogenesis. Our previous studies showed that ionizing radiation is very effective in inducing biological damages. Therefore, it is important to understand the radiation-induced NF-κB signaling cascade. The current study aims to improve existing mammalian cell-based reporter assays for NF-κB activation by the use of DD-tdTomato which is a destabilized variant of red fluorescent protein tdTomato. It is demonstrated that exposure of recombinant human embryonic kidney cells (HEK/293 transfected with a reporter constructs containing NF-κB binding sites in its promoter) to ionizing radiation induces NF-κB-dependent DD-tdTomato expression. Using this reporter assays, NF-κB signaling in mammalian cells was monitored by flow cytometry and fluorescence microscopy. Activation of NF-κB by the canonical pathway was found to be quicker than by the genotoxin- and stress-induced pathway. X-rays activate NF-κB in HEK cells in a dose-dependent manner, and the extent of NF-κB activation is higher as compared to camptothecin.
Collapse
Affiliation(s)
- Arif Ali Chishti
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Linder Höhe, 51147, Köln, Germany,
| | | | | | | |
Collapse
|
11
|
Kumari A, Cacan E, Greer SF, Garnett-Benson C. Turning T cells on: epigenetically enhanced expression of effector T-cell costimulatory molecules on irradiated human tumor cells. J Immunother Cancer 2013; 1:17. [PMID: 24829753 PMCID: PMC4019910 DOI: 10.1186/2051-1426-1-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sub-lethal doses of radiation can alter the phenotype of target tissue by modulating gene expression and making tumor cells more susceptible to T-cell-mediated immune attack. We have previously shown that sub-lethal tumor cell irradiation enhances killing of colorectal carcinoma cells by tumor-specific cytotoxic T cells by unknown mechanisms. Recent data from our lab indicates that irradiation of tumor cells results in the upregulation of OX40L and 41BBL, and that T cells incubated with irradiated tumor cells displayed improved CTL survival, activation and effector activity. The objective of this current study was to determine the mechanism of enhanced OX40L and 41BBL expression in human colorectal tumor cells. METHODS Two colorectal carcinoma cell lines, HCT116 and SW620, were examined for changes in the expression of 41BBL and OX40L in response to inhibition of histone deacetylases (using TSA) and DNA methyltransferases (using 5-Aza-2'-deoxycytidine) to evaluate if epigenetic mechanisms of gene expression can modulate these genes. Tumor cells were treated with radiation, TSA, or 5-Aza-dC, and subsequently evaluated for changes in gene expression using RT-qPCR and flow cytometry. Moreover, we assessed levels of histone acetylation at the 41BBL promoter using chromatin immunoprecipitation assays in irradiated HCT116 cells. RESULTS Our data indicate that expression of 41BBL and OX40L can indeed be epigenetically regulated, as inhibition of histone deacetylases and of DNA methyltransferases results in increased OX40L and 41BBL mRNA and protein expression. Treatment of tumor cells with TSA enhanced the expression of these genes more than treatment with 5-Aza-dC, and co-incubation of T cells with TSA-treated tumor cells enhanced T-cell survival and activation, similar to radiation. Furthermore, chromatin immunoprecipitation experiments revealed significantly increased histone H3 acetylation of 41BBL promoters specifically following irradiation. CONCLUSIONS Full understanding of specific mechanisms of immunogenic modulation (altered expression of immune relevant genes) of irradiated tumor cells will be required to determine how to best utilize radiation as a tool to enhance cancer immunotherapy approaches. Overall, our results suggest that radiation can be used to make human tumors more immunogenic through epigenetic modulation of genes stimulatory to effector T-cells.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Biology, Center for Inflammation, Infection and Immunity, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, USA
| | - Ercan Cacan
- Department of Biology, Center for Inflammation, Infection and Immunity, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, USA
| | - Susanna F Greer
- Department of Biology, Center for Inflammation, Infection and Immunity, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, USA
| | - Charlie Garnett-Benson
- Department of Biology, Center for Inflammation, Infection and Immunity, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, USA
| |
Collapse
|
12
|
Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 2013; 339:456-60. [PMID: 23258410 PMCID: PMC8782153 DOI: 10.1126/science.1230835] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bats are the only mammals capable of sustained flight and are notorious reservoir hosts for some of the world's most highly pathogenic viruses, including Nipah, Hendra, Ebola, and severe acute respiratory syndrome (SARS). To identify genetic changes associated with the development of bat-specific traits, we performed whole-genome sequencing and comparative analyses of two distantly related species, fruit bat Pteropus alecto and insectivorous bat Myotis davidii. We discovered an unexpected concentration of positively selected genes in the DNA damage checkpoint and nuclear factor κB pathways that may be related to the origin of flight, as well as expansion and contraction of important gene families. Comparison of bat genomes with other mammalian species has provided new insights into bat biology and evolution.
Collapse
Affiliation(s)
- Guojie Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Christopher Cowled
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Zhengli Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | - James W. Wynne
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | | | - Michelle L. Baker
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Wei Zhao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Mary Tachedjian
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | | | - Peng Zhou
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Justin Ng
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Lan Yang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Lijun Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin Xiao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yue Feng
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | | | - Glenn A. Marsh
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Gary Crameri
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kenneth G. Frey
- Naval Medical Research Center and Henry M. Jackson Foundation, Fort Detrick, MD 21702, USA
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| |
Collapse
|
13
|
Kaur N, Ranjan A, Tiwari V, Aneja R, Tandon V. DMA, a bisbenzimidazole, offers radioprotection by promoting NFκB transactivation through NIK/IKK in human glioma cells. PLoS One 2012; 7:e39426. [PMID: 22745752 PMCID: PMC3382165 DOI: 10.1371/journal.pone.0039426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/21/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ionizing radiation (IR) exposure often occurs for human beings through occupational, medical, environmental, accidental and/or other sources. Thus, the role of radioprotector is essential to overcome the complex series of overlapping responses to radiation induced DNA damage. METHODS AND RESULTS Treatment of human glioma U87 cells with DMA (5- {4-methylpiperazin-1-yl}-2-[2'-(3, 4-dimethoxyphenyl)-5'-benzimidazolyl] in the presence or absence of radiation uncovered differential regulation of an array of genes and proteins using microarray and 2D PAGE techniques. Pathway construction followed by relative quantitation of gene expression of the identified proteins and their interacting partners led to the identification of MAP3K14 (NFκB inducing kinase, NIK) as the candidate gene affected in response to DMA. Subsequently, over expression and knock down of NIK suggested that DMA affects NFκB inducing kinase mediated phosphorylation of IKKα and IKKβ both alone and in the presence of ionizing radiation (IR). The TNF-α induced NFκB dependent luciferase reporter assay demonstrated 1.65, 2.26 and 3.62 fold increase in NFκB activation at 10, 25 and 50 µM DMA concentrations respectively, compared to control cells. This activation was further increased by 5.8 fold in drug + radiation (50 µM +8.5 Gy) treated cells in comparison to control. We observed 51% radioprotection in control siRNA transfected cells that attenuated to 15% in siRNA NIK treated U87 cells, irradiated in presence of DMA at 24 h. CONCLUSIONS Our studies show that NIK/IKK mediated NFκB activation is more intensified in cells over expressing NIK and treated with DMA, alone or in combination with ionizing radiation, indicating that DMA promotes NIK mediated NFκB signaling. This subsequently leads to the radioprotective effect exhibited by DMA.
Collapse
Affiliation(s)
- Navrinder Kaur
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Atul Ranjan
- Department of Chemistry, University of Delhi, Delhi, India
| | - Vinod Tiwari
- Department of Chemistry, University of Delhi, Delhi, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Vibha Tandon
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
14
|
Welsby I, Hutin D, Leo O. Complex roles of members of the ADP-ribosyl transferase super family in immune defences: looking beyond PARP1. Biochem Pharmacol 2012; 84:11-20. [PMID: 22402301 DOI: 10.1016/j.bcp.2012.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/25/2022]
Abstract
ADP ribosylation has been recently recognised as an important posttranslational modification regulating numerous cellular processes. This enzymatic activity is shared by two major families of enzymes, the extracellular ADP-ribosyl-transferases, or ecto-ARTS and the poly-ADP-ribosyltranferases, whose denomination derives from the capacity of its founding member, PARP1, to synthesise large linear or branched polymers of ADP-ribose on target proteins. This latter post-translational modification has recently attracted much interest based on its role in the cellular response to genotoxic and oxidative stress. Accordingly, a series of PARP-specific pharmacological inhibitors have demonstrated cell survival and anti-inflammatory properties in vivo, promoting a renewed interest in the potential immunoregulatory role of this gene family. More recently, the role of ADP-ribosylation in regulating several aspects of intracellular signalling and gene transcription has been uncovered, in particular within cells of the immune system, revealing the potential immunomodulatory role of several members of this family in addition to PARP1. We review herein the experimental evidence illustrating the complex role played by this gene family in regulating multiple aspects of the immune response, including cell survival, cytokine gene transcription and antiviral innate defences. In particular, the unexpected potential anti-inflammatory role of members of this family (including in particular PARP5a, 5b and PARP14) will be briefly discussed, raising some concern on the use of pan-specific PARP inhibitors to treat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Iain Welsby
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|
15
|
Fenouille N, Grosso S, Yunchao S, Mary D, Pontier-Bres R, Imbert V, Czerucka D, Caroli-Bosc FX, Peyron JF, Lagadec P. Calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance in colorectal cancer xenografts. J Pathol 2012; 227:118-29. [PMID: 22069124 DOI: 10.1002/path.3034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/20/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
CPT-11 (irinotecan), the first-line chemotherapy for advanced stage colorectal cancer, remains inactive in about half of patients (primary chemoresistance) and almost all initial responders develop secondary resistance after several courses of treatment (8 months on average). Nude mice bearing HT-29 colon cancer xenografts were treated with CPT-11 and/or an NF-κB inhibitor for two courses. We confirm that NF-κB inhibition potentiated CPT-11 anti-tumoural effect after the first course of treatment. However, tumours grew again at the end of the second course of treatment, generating resistant tumours. We observed an increase in the basal NF-κB activation in resistant tumours and in two resistant sublines, either obtained from resistant HT-29 tumours (HT-29R cells) or generated in vitro (RSN cells). The decrease of NF-κB activation in HT-29R and RSN cells by stable transfections with the super-repressor form of IκBα augmented their sensitivity to CPT-11. Comparing gene expression profiles of HT-29 and HT-29R cells, we identified the S100A10/Annexin A2 complex and calpain 2 as over-expressed potential NF-κB inducers. SiRNA silencing of calpain 2 but not of S100A10 and/or annexin A2, resulted in a decrease in NF-κB activation, an increase in cellular levels of IκBα and a partial restoration of the CPT-11 sensitivity in both HT-29R and RSN cells, suggesting that calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance. Thus, targeted therapies directed against calpain 2 may represent a novel strategy to enhance the anti-cancer efficacy of CPT-11.
Collapse
Affiliation(s)
- Nina Fenouille
- INSERM, U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Inflammation, Cancer, Cellules Souches Cancéreuses, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 2012; 332:237-48. [PMID: 22261329 DOI: 10.1016/j.canlet.2012.01.007] [Citation(s) in RCA: 678] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/10/2012] [Indexed: 01/22/2023]
Abstract
DNA damaging agents are potent inducers of cell death triggered by apoptosis. Since these agents induce a plethora of different DNA lesions, it is firstly important to identify the specific lesions responsible for initiating apoptosis before the apoptotic executing pathways can be elucidated. Here, we describe specific DNA lesions that have been identified as apoptosis triggers, their repair and the signaling provoked by them. We discuss methylating agents such as temozolomide, ionizing radiation and cisplatin, all of them are important in cancer therapy. We show that the potentially lethal events for the cell are O(6)-methylguanine adducts that are converted by mismatch repair into DNA double-strand breaks (DSBs), non-repaired N-methylpurines and abasic sites as well as bulky adducts that block DNA replication leading to DSBs that are also directly induced following ionizing radiation. Transcriptional inhibition may also contribute to apoptosis. Cells are equipped with sensors that detect DNA damage and relay the signal via kinases to executors, who on their turn evoke a process that inhibits cell cycle progression and provokes DNA repair or, if this fails, activate the receptor and/or mitochondrial apoptotic cascade. The main DNA damage recognition factors MRN and the PI3 kinases ATM, ATR and DNA-PK, which phosphorylate a multitude of proteins and thus induce the DNA damage response (DDR), will be discussed as well as the downstream players p53, NF-κB, Akt and survivin. We review data and models describing the signaling from DNA damage to the apoptosis executing machinery and discuss the complex interplay between cell survival and death.
Collapse
Affiliation(s)
- Wynand P Roos
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
17
|
Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes. J Virol 2011; 86:1911-21. [PMID: 22156527 DOI: 10.1128/jvi.06266-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in diverse cell functions governing development and disease. β-Catenin, a central mediator of this pathway, binds to members of the TCF/LEF family of transcription factors to modulate hundreds of genes. Active Wnt/β-catenin/TCF-4 signaling plays a significant role in repression of HIV-1 replication in multiple cell targets, including astrocytes. To determine the mechanism by which active β-catenin/TCF-4 leads to inhibition of HIV replication, we knocked down β-catenin or TCF/LEF members in primary astrocytes and astrocytomas transiently transfected with an HIV long terminal repeat (LTR)-luciferase reporter that contained an integrated copy of the HIV LTR-luciferase construct. Knockdown of either β-catenin or TCF-4 induced LTR activity by 2- to 3-fold under both the episomal and integrated conditions. This knockdown also increased presence of serine 2-phosphorylated RNA polymerase II (Pol II) on the HIV LTR as well as enhanced its processivity. Knockdown of β-catenin/TCF-4 also impacted tethering of other transcription factors on the HIV promoter. Specifically, knockdown of TCF-4 enhanced binding of C/EBPβ, C/EBPδ, and NF-κB to the HIV LTR, while β-catenin knockdown increased binding of C/EBPβ and C/EBPδ but had no effect on NF-κB. Approximately 150 genes in astrocytes were impacted by β-catenin knockdown, including genes involved in inflammation/immunity, uptake/transport, vesicular transport/exocytosis, apoptosis/cellular stress, and cytoskeleton/trafficking. These findings indicate that modulation of the β-catenin/TCF-4 axis impacts the basal level of HIV transcription in astrocytes, which may drive low level/persistent HIV in astrocytes that can contribute to ongoing neuroinflammation, and this axis also has profound effects on astrocyte biology.
Collapse
|
18
|
Ji Q, Hui K, Zhang L, Sun X, Li W, Duan M. The effect of hydrogen-rich saline on the brain of rats with transient ischemia. J Surg Res 2011; 168:e95-101. [PMID: 21435662 DOI: 10.1016/j.jss.2011.01.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/11/2011] [Accepted: 01/28/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Due to its antioxidant and anti-inflammatory properties, hydrogen gas (H(2)) has protective effects on a variety of organs from damage induced by ischemia/reperfusion (I/R). In this study, we tested the protective effect of hydrogen-rich saline on the brain in a global cerebral I/R model. MATERIALS AND METHODS We used a four-vessel occlusion model of global cerebral ischemia (15 min) and reperfusion with rats. The rats were divided into four groups (n = 96): sham, I/R plus physiologic saline injected intraperitoneally, I/R plus hydrogen-rich saline injected intraperitoneally at the beginning of reperfusion, and I/R plus hydrogen-rich saline injected intraperitoneally 6 h after reperfusion began. One group of rats was sacrificed after 24 h of reperfusion. Malondialdehyde (MDA) was measured to quantify the oxidative stress. Caspase-3 was measured to indicate the status of apoptosis. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nuclear factor-κB (NF-κB) were measured to monitor the inflammation. Another group of rats was sacrificed after 72 h of reperfusion to measure the histologic damages in hippocampus by hematoxylin and eosin staining and Nissl staining. RESULTS Compared with rats with I/R only, hydrogen-rich saline treatment significantly improved the amount of surviving cells. NF-κB, TNF-α, IL-6, MDA, and caspase-3 were all increased significantly by I/R injury. Hydrogen-rich saline reduced all these markers. CONCLUSIONS Our data demonstrate that intraperitoneal injection of hydrogen-rich saline has strong protective effect on the transient global cerebral ischemia-reperfusion rats.
Collapse
Affiliation(s)
- Qing Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, P. R. China
| | | | | | | | | | | |
Collapse
|
19
|
Queisser N, Oteiza PI, Stopper H, Oli RG, Schupp N. Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells. Mol Carcinog 2010; 50:123-35. [PMID: 21229609 DOI: 10.1002/mc.20710] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/13/2010] [Accepted: 10/22/2010] [Indexed: 12/12/2022]
Abstract
An increase of the mineralocorticoid aldosterone is induced by a stimulated renin-angiotensin system in a subgroup of hypertensive patients. Epidemiological studies find higher cancer mortality in hypertensive patients and an increased risk to develop kidney cancer. This work investigated the involvement of oxidants in the genotoxicity of aldosterone and on a potential activation of transcription factor nuclear factor-κB (NF-κB) in kidney tubule cells. Aldosterone, at concentrations as low as 1 nM caused a significant increase of DNA damage, as assessed by comet assay and micronucleus frequency test. Aldosterone also led to a dose-dependent activation of NF-κB. Time courses of DNA damage and NF-κB-activation showed that these effects already occurred after 5 and 3 min of aldosterone exposure, respectively, suggesting non-genomic events of the hormone. Antioxidants prevented aldosterone-induced DNA damage and NF-κB-activation, indicating the involvement of oxidants. In fact, aldosterone caused an increase in intracellular oxidant levels, and in particular of superoxide anions. As a consequence, increased levels of the oxidized DNA modification 7,8-dihydro-8-oxo-guanine were observed in aldosterone-treated kidney cells. Aldosterone-induced DNA damage and NF-κB-activation was dependent on the involvement of the mineralocorticoid receptor. The induction of oxidant-mediated genotoxic effects, and of a long-term activation of the potentially oncogenic cell signal NF-κB by aldosterone could contribute to the increased kidney cancer incidence in hypertensive patients.
Collapse
Affiliation(s)
- Nina Queisser
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Shlomai J. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication. Antioxid Redox Signal 2010; 13:1429-76. [PMID: 20446770 DOI: 10.1089/ars.2009.3029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.
Collapse
Affiliation(s)
- Joseph Shlomai
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Tropical and Infectious Diseases, Institute for Medical Research Canada-Israel, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
21
|
Abstract
The NF-kappaB pathway is a ubiquitous stress response that activates the NF-kappaB family of transcription factors. Antigen receptors, receptors of the innate immune system, and certain intracellular stressors are potent activators of this pathway. The transcriptional program that is activated is both antiapoptotic and highly proinflammatory. Indeed, any compromise in engagement of the pathway results in immunodeficiency, whereas constitutive activation generates a sustained inflammatory response that may promote malignancy. As such, NF-kappaB activation is under tight regulation by a number of post-translational modifications, including phosphorylation and ubiquitination. This article attempts to synthesize our current knowledge regarding the regulation of NF-kappaB signaling by ubiquitination, specifically highlighting the biochemical basis for both positive and negative feedback loops that function in unison to generate coordinated signals that are essential for the viability of metazoan animals.
Collapse
Affiliation(s)
- Ingrid E Wertz
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA.
| | | |
Collapse
|
22
|
Narayanan D, Xi Q, Pfeffer LM, Jaggar JH. Mitochondria control functional CaV1.2 expression in smooth muscle cells of cerebral arteries. Circ Res 2010; 107:631-41. [PMID: 20616314 DOI: 10.1161/circresaha.110.224345] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Physiological functions of mitochondria in contractile arterial myocytes are poorly understood. Mitochondria can uptake calcium (Ca(2+)), but intracellular Ca(2+) signals that regulate mitochondrial Ca(2+) concentration ([Ca(2+)](mito)) and physiological functions of changes in [Ca(2+)](mito) in arterial myocytes are unclear. OBJECTIVE To identify Ca(2+) signals that regulate [Ca(2+)](mito), examine the significance of changes in [Ca(2+)](mito), and test the hypothesis that [Ca(2+)](mito) controls functional ion channel transcription in myocytes of resistance-size cerebral arteries. METHODS AND RESULTS Endothelin (ET)-1 activated Ca(2+) waves and elevated global Ca(2+) concentration ([Ca(2+)](i)) via inositol 1,4,5-trisphosphate receptor (IP(3)R) activation. IP(3)R-mediated sarcoplasmic reticulum (SR) Ca(2+) release increased [Ca(2+)](mito) and induced mitochondrial depolarization, which stimulated mitochondrial reactive oxygen species (mitoROS) generation that elevated cytosolic ROS. In contrast, a global [Ca(2+)](i) elevation did not alter [Ca(2+)](mito), mitochondrial potential, or mitoROS generation. ET-1 stimulated nuclear translocation of nuclear factor (NF)-kappaB p50 subunit and ET-1-induced IP(3)R-mediated mitoROS elevated NF-kappaB-dependent transcriptional activity. ET-1 elevated voltage-dependent Ca(2+) (Ca(V)1.2) channel expression, leading to an increase in both pressure (myogenic tone)- and depolarization-induced vasoconstriction. Baseline Ca(V)1.2 expression and the ET-1-induced elevation in Ca(V)1.2 expression were both reduced by IP(3)R inhibition, mitochondrial electron transport chain block, antioxidant treatment, and NF-kappaB subunit knockdown, leading to vasodilation. CONCLUSIONS IP(3)R-mediated SR Ca(2+) release elevates [Ca(2+)](mito), which induces mitoROS generation. MitoROS activate NF-kappaB, which stimulates Ca(V)1.2 channel transcription. Thus, mitochondria sense IP(3)R-mediated SR Ca(2+) release to control NF-kappaB-dependent Ca(V)1.2 channel expression in arterial myocytes, thereby modulating arterial contractility.
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | | | | | | |
Collapse
|
23
|
Bauerle KT, Schweppe RE, Haugen BR. Inhibition of nuclear factor-kappa B differentially affects thyroid cancer cell growth, apoptosis, and invasion. Mol Cancer 2010; 9:117. [PMID: 20492683 PMCID: PMC2887796 DOI: 10.1186/1476-4598-9-117] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/21/2010] [Indexed: 01/28/2023] Open
Abstract
Background Nuclear factor-κB (NF-κB) is constitutively activated in many cancers and plays a key role in promoting cell proliferation, survival, and invasion. Our understanding of NF-κB signaling in thyroid cancer, however, is limited. In this study, we have investigated the role of NF-κB signaling in thyroid cancer cell proliferation, invasion, and apoptosis using selective genetic inhibition of NF-κB in advanced thyroid cancer cell lines. Results Three pharmacologic inhibitors of NF-κB differentially inhibited growth in a panel of advanced thyroid cancer cell lines, suggesting that these NF-κB inhibitors may have off-target effects. We therefore used a selective genetic approach to inhibit NF-κB signaling by overexpression of a dominant-negative IκBα (mIκBα). These studies revealed decreased cell growth in only one of five thyroid cancer cell lines (8505C), which occurred through a block in the S-G2/M transition. Resistance to TNFα-induced apoptosis was observed in all cell lines, likely through an NF-κB-dependent mechanism. Inhibition of NF-κB by mIκBα sensitized a subset of cell lines to TNFα-induced apoptosis. Sensitive cell lines displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pathway, defining a potential mechanism of response. Finally, NF-κB inhibition by mIκBα expression differentially reduced thyroid cancer cell invasion in these thyroid cancer cell lines. Sensitive cell lines demonstrated approximately a two-fold decrease in invasion, which was associated with differential expression of MMP-13. MMP-9 was reduced by mIκBα expression in all cell lines tested. Conclusions These data indicate that selective inhibition of NF-κB represents an attractive therapeutic target for the treatment of advanced thyroid. However, it is apparent that global regulation of thyroid cancer cell growth and invasion is not achieved by NF-κB signaling alone. Instead, our findings suggest that other important molecular processes play a critical role in defining the extent of NF-κB function within cancer cells.
Collapse
Affiliation(s)
- Kevin T Bauerle
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Research Complex I, South Tower, Mail Stop 8106, 12801 East 17th Avenue, PO Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
24
|
Smac mimetics increase cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death Differ 2010; 17:1645-54. [PMID: 20431601 DOI: 10.1038/cdd.2010.44] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Second mitochondria-derived activator of caspase (Smac) is a mitochondrial protein released into the cytosol during apoptosis. Smac mimetics have recently been touted as a novel therapeutic to induce apoptosis in cancer cells. The ability of Smac mimetics to induce apoptosis in vitro has been shown to be dependent upon both XIAP neutralization and cancer cell autocrine tumor necrosis factor-α (TNF-α) production. In this study we provide new evidence for the utility of Smac mimetics in combination with conventional chemotherapy agents to exacerbate caspase activation and induce cancer cell death. Furthermore, we find that the combination effect is because of a multifaceted mechanism involving both inhibition of cell proliferation by the chemotherapy agents and an enhanced autocrine TNF-α feedback loop by the Smac mimetic/chemotherapy agent combination. Surprisingly, although genotoxic agents typically induce apoptosis through the mitochondrial intrinsic pathway, we show that this synergism is mediated through a TNF-α/RIP1-dependent pathway, leading to activation of the extrinsic apoptotic pathway. Finally, we report that autocrine TNF-α contributes to Smac mimetic-induced tumor regression as a single agent or in combination with chemotherapeutics in xenograft mouse models. Collectively, we provide mechanistic and applicable data to support translational studies in the use of a Smac mimetic/chemotherapy antineoplasm modality.
Collapse
|
25
|
De Siervi A, De Luca P, Moiola C, Gueron G, Tongbai R, Chandramouli GVR, Haggerty C, Dzekunova I, Petersen D, Kawasaki E, Kil WJ, Camphausen K, Longo D, Gardner K. Identification of new Rel/NFkappaB regulatory networks by focused genome location analysis. Cell Cycle 2009; 8:2093-100. [PMID: 19502793 DOI: 10.4161/cc.8.13.8926] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NFkappaB is an inducible transcription factor that controls kinetically complex patterns of gene expression. Several studies reveal multiple pathways linking NFkappaB to the promotion and progression of various cancers. Despite extensive interest and characterization, many NFkappaB controlled genes still remain to be identified. We used chromatin immunoprecipitation combined with microarray technology (ChIP/chip) to investigate the dynamic interaction of NFkappaB with the promoter regions of 100 genes known to be expressed in mitogen-induced T-cells. Six previously unrecognized NFkappaB controlled genes (ATM, EP300, TGFbeta, Selectin, MMP-1 and SFN) were identified. Each gene is induced in mitogen-stimulated T-cells, repressed by pharmacological NFkappaB blockade, reduced in cells deficient in the p50 NFkappaB subunit and dramatically repressed by RNAi specifically designed against cRel. A coregulatory role for Ets transcription factors in the expression of the NFkappaB controlled genes was predicted by comparative promoter analysis and confirmed by ChIP and by functional disruption of Ets. NFkappaB deficiency produces a deficit in ATM function and DNA repair indicating an active role for NFkappaB in maintaining DNA integrity. These results define new potential targets and transcriptional networks governed by NFkappaB and provide novel functional insights for the role of NFkappaB in genomic stability, cell cycle control, cell-matrix and cell-cell interactions during tumor progression.
Collapse
Affiliation(s)
- Adriana De Siervi
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Batsi C, Markopoulou S, Vartholomatos G, Georgiou I, Kanavaros P, Gorgoulis VG, Marcu KB, Kolettas E. Chronic NF-kappaB activation delays RasV12-induced premature senescence of human fibroblasts by suppressing the DNA damage checkpoint response. Mech Ageing Dev 2009; 130:409-19. [PMID: 19406145 DOI: 10.1016/j.mad.2009.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 03/31/2009] [Accepted: 04/17/2009] [Indexed: 01/08/2023]
Abstract
Normal cells divide for a limited number of generations, after which they enter a state of irreversible growth arrest termed replicative senescence. While replicative senescence is due to telomere erosion, normal human fibroblasts can undergo stress-induced senescence in response to oncogene activation, termed oncogene-induced senescence (OIS). Both, replicative and OIS, initiate a DNA damage checkpoint response (DDR) resulting in the activation of the p53-p21(Cip1/Waf1) pathway. However, while the nuclear factor-kappaB (NF-kappaB) signaling pathway has been implicated in DDR, its role in OIS has not been investigated. Here, we show that oncogenic Ha-RasV12 promoted premature senescence of IMR-90 normal human diploid fibroblasts by activating DDR, hence verifying the classical model of OIS. However, enforced expression of a constitutively active IKKbeta T-loop mutant protein (IKKbetaca), significantly delayed OIS of IMR-90 cells by suppressing Ha-RasV12 instigated DDR. Thus, our experiments have uncovered an important selective advantage in chronically activating canonical NF-kappaB signaling to overcome the anti-proliferative OIS response of normal primary human fibroblasts.
Collapse
Affiliation(s)
- Christina Batsi
- Cell and Molecular Physiology Unit, Laboratory of Physiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|