1
|
Zhu S, Cheng L, Chen T, Liu X, Zhang C, Aji A, Guo W, Zhu J, Chu Y, Guo D, Li F. Bergapten Ameliorates Psoriatic Skin Lesions and IL-17A-Induced Activation of the NF-κB Signaling Pathway via the Downregulation of CYP1B1. Phytother Res 2025; 39:661-675. [PMID: 39638770 DOI: 10.1002/ptr.8399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Bergapten (BP) is a plant-derived furocoumarin that has a wide range of pharmacological effects. BP serves as a candidate amplifier in phototherapy against skin inflammation, such as psoriasis and atopic dermatitis. However, the anti-inflammatory role of BP remains elusive. We utilized IL-17A-stimulated keratinocyte line and imiquimod-challenged BALB/c mice to imitate psoriasis-like inflammation. Inflammatory phenotypes were determined by expressions of inflammatory genes and cytokines, histopathological changes and activities of nuclear factor-κB (NF-κB) pathway. An RNA-seq analysis of rodent skin was performed to explore possible mechanism lying behind. SiRNAs and antagonist (TMS) against cytochrome P450 family 1 subfamily B member 1 (CYP1B1) were subsequently used to determine the role of CYP1B1 in psoriasis pathogenesis in vitro and in vivo. Overexpression of CYP1B1 with lentivirus further validate therapeutic effect of BP. BP significantly suppressed activation of the NF-κB pathway by inhibiting p65 phosphorylation and improved the inflammatory phenotype both in vitro and in vivo. We revealed the key role of CYP1B1 in regulating the activation of the NF-κB signaling pathway. Knock-down with siRNAs significantly reduce the expression of inflammatory genes and cytokines. An intraperitoneal injection of TMS partially remediated IMQ-induced inflammation, mainly in terms of skin thickness. Overexpression of Cyp1b1 led to increased expression of the CYP1B1 protein and rescued the therapeutic effect of BP in vitro. This study revealed that BP suppressed expression of Cyp1b1 in keratinocytes and inhibited the activation of NF-κB signaling pathway by blocking the phosphorylation of p65.
Collapse
Affiliation(s)
- Shengjie Zhu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linyan Cheng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Abudula Aji
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wanjun Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianyong Zhu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongjie Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Li J, Gao P, Qin M, Wang J, Luo Y, Deng P, Hao R, Zhang L, He M, Chen C, Lu Y, Ma Q, Li M, Tan M, Wang L, Yue Y, Wang H, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. Long-term cadmium exposure induces epithelial-mesenchymal transition in breast cancer cells by activating CYP1B1-mediated glutamine metabolic reprogramming in BT474 cells and MMTV-Erbb2 mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170773. [PMID: 38336054 DOI: 10.1016/j.scitotenv.2024.170773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 μΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 μΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.
Collapse
Affiliation(s)
- Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingke Qin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Junhua Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Miduo Tan
- Department of Breast Surgery, Central Hospital of Zhuzhou City, Central South University, Zhuzhou 412000, Hunan, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Yang Yue
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, China
| | - Hui Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China; State key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Mao X, Li H, Zheng J. Effects of xenobiotics on CYP1 enzyme-mediated biotransformation and bioactivation of estradiol. Drug Metab Rev 2023; 55:1-49. [PMID: 36823774 DOI: 10.1080/03602532.2023.2177671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Endogenous estradiol (E2) exerts diverse physiological and pharmacological activities, commonly used for hormone replacement therapy. However, prolonged and excessive exposure to E2 potentially increases estrogenic cancer risk. Reportedly, CYP1 enzyme-mediated biotransformation of E2 is largely concerned with its balance between detoxification and carcinogenic pathways. Among the three key CYP1 enzymes (CYP1A1, CYP1A2, and CYP1B1), CYP1A1 and CYP1A2 mainly catalyze the formation of nontoxic 2-hydroxyestradiol (2-OH-E2), while CYP1B1 specifically catalyzes the formation of genotoxic 4-hydroxyestradiol (4-OH-E2). 4-OH-E2 can be further metabolized to electrophilic quinone intermediates accompanied by the generation of reactive oxygen species (ROS), triggering DNA damage. Since abnormal alterations in CYP1 activities can greatly affect the bioactivation process of E2, regulatory effects of xenobiotics on CYP1s are essential for E2-associated cancer development. To date, thousands of natural and synthetic compounds have been found to show potential inhibition and/or induction actions on the three CYP1 members. Generally, these chemicals share similar planar polycyclic skeletons, the structural motifs and substituent groups of which are important for their inhibitory/inductive efficiency and selectivity toward CYP1 enzymes. This review comprehensively summarizes these known inhibitors and/or inductors of E2-metabolizing CYP1s based on chemical categories and discusses their structure-activity relationships, which would contribute to better understanding of the correlation between xenobiotic-regulated CYP1 activities and estrogenic cancer susceptibility.
Collapse
Affiliation(s)
- Xu Mao
- Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Liu A, Li X, Hao Z, Cao J, Li H, Sun M, Zhang Z, Liang R, Zhang H. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene. Toxicol Ind Health 2022; 38:127-138. [PMID: 35193440 DOI: 10.1177/07482337211069233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a known human carcinogen and plays a major function in the initiation of lung cancer at its first proximity. However, the underlying molecular mechanisms are less well understood. In this study, we investigated the impact of B[a]P treatment on the DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells (16HBEs), and provide scientific evidence for the mechanism study on the carcinogenesis of B[a]P. We treated 16HBEs with DMSO or concentrations of B[a]P at 1, 2, and 5 mmol/L for 24 h, observed the morphological changes, determined the cell viability, DNA methylation, and mRNA levels of CYP1A1, GSTP1, and GSTM1. Compared to the DMSO controls, B[a]P treatment had significantly increased the neoplastic cell number and cell viability in 16HBEs at all three doses (1, 2, and 5 mmol/L), and had significantly reduced the CYP1A1 and GSTP1 DNA promoter methylation levels. Following B[a]P treatment, the GSTM1 promoter methylation level in 16HBEs was profoundly reduced at low dose group compared to the DMSO controls, yet it was significantly increased at both middle and high dose groups. The mRNA levels of CYP1A1, GSTP1, and GSTM1 were significantly decreased in 16HBEs following B[a]P treatment at all three doses. The findings demonstrate that B[a]P promoted cell proliferation in 16HBEs, which was possibly related to the altered DNA methylations and the inhibited mRNA levels in CYP1A1, GSTP1, and GSTM1.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Health Information Management, 74648Shanxi Medical University Fenyang College, Fenyang, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, 442190Taiyuan Iron and Steel Co Ltd, Taiyuan, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Sun
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Resveratrol Derivative, Trans-3, 5, 4'-Trimethoxystilbene Sensitizes Osteosarcoma Cells to Apoptosis via ROS-Induced Caspases Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8840692. [PMID: 33833855 PMCID: PMC8018847 DOI: 10.1155/2021/8840692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022]
Abstract
Numerous studies have shown that resveratrol can induce apoptosis in cancer cells. Trans-3, 5, 4'-trimethoxystilbene (TMS), a novel derivative of resveratrol, is a more potent anticancer compound than resveratrol and can induce apoptosis in cancer cells. Herein, we examined the mechanisms involved in TMS-mediated sensitization of human osteosarcoma (143B) cells to TNF-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis. Our results showed that cotreatment with TSM and TRAIL activated caspases and increased PARP-1 cleavage in 143B cells. Decreasing cellular ROS levels using NAC reversed TSM- and TRAIL-induced apoptosis in 143B cells. NAC abolished the upregulated expression of PUMA and p53 induced by treatment with TRAIL and TSM. Silencing the expression of p53 or PUMA using RNA interference attenuated TSM-mediated sensitization of 143B cells to TRAIL-induced apoptosis. Knockdown of Bax also reversed TSM-induced sensitization of 143B cell to TRAIL-mediated apoptotic cell death. These results indicate that cotreatment with TRAIL and TSM evaluated intracellular ROS level, promoted DNA damage, and activated the Bax/PUMA/p53 pathway, leading to activation of both mitochondrial and caspase-mediated apoptosis in 143B cells. Orthotopic implantation of 143B cells in mice also demonstrated that cotreatment with TRAIL and TSM reversed resistance to apoptosis in cells without obvious adverse effects in normal cells.
Collapse
|
6
|
Lin YC, Wu CY, Hu CH, Pai TW, Chen YR, Wang WD. Integrated Hypoxia Signaling and Oxidative Stress in Developmental Neurotoxicity of Benzo[a]Pyrene in Zebrafish Embryos. Antioxidants (Basel) 2020; 9:antiox9080731. [PMID: 32796530 PMCID: PMC7464806 DOI: 10.3390/antiox9080731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon formed by the incomplete combustion of organic matter. Environmental B[a]P contamination poses a serious health risk to many organisms because the pollutant may negatively affect many physiological systems. As such, chronic exposure to B[a]P is known to lead to locomotor dysfunction and neurodegeneration in several organisms. In this study, we used the zebrafish model to delineate the acute toxic effects of B[a]P on the developing nervous system. We found that embryonic exposure of B[a]P downregulates shh and isl1, causing morphological hypoplasia in the telencephalon, ventral thalamus, hypothalamus, epiphysis and posterior commissure. Moreover, hypoxia-inducible factors (hif1a and hif2a) are repressed upon embryonic exposure of B[a]P, leading to reduced expression of the Hif-target genes, epo and survivin, which are associated with neural differentiation and maintenance. During normal embryogenesis, low-level oxidative stress regulates neuronal development and function. However, our experiments revealed that embryonic oxidative stress is greatly increased in B[a]P-treated embryos. The expression of catalase was decreased and sod1 expression increased in B[a]P-treated embryos. These transcriptional changes were coincident with increased embryonic levels of H2O2 and malondialdehyde, with the levels in B[a]P-treated fish similar to those in embryos treated with 120-μM H2O2. Together, our data suggest that reduced Hif signaling and increased oxidative stress are involved in B[a]P-induced acute neurotoxicity during embryogenesis.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi City 60004, Taiwan;
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Wen-Der Wang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi City 60004, Taiwan;
- Correspondence:
| |
Collapse
|
7
|
van den Brand AD, Villevoye J, Nijmeijer SM, van den Berg M, van Duursen MBM. Anti-tumor properties of methoxylated analogues of resveratrol in malignant MCF-7 but not in non-tumorigenic MCF-10A mammary epithelial cell lines. Toxicology 2019; 422:35-43. [PMID: 31004704 DOI: 10.1016/j.tox.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
Resveratrol is a plant-derived polyphenol that is known for its anti-inflammatory and anti-tumorigenic properties in in vitro and in vivo models. Recent studies show that some resveratrol analogues might be more potent anti-tumor agents, which may partly be attributed to their ability to activate the aryl hydrocarbon receptor (AHR). Here, the anti-tumorigenic properties of resveratrol and structural analogues oxyresveratrol, pinostilbene, pterostilbene and tetramethoxystilbene (TMS) were studied in vitro, using in the malignant human MCF-7 breast cancer cell line and non-tumorigenic breast epithelial cell line MCF-10A. Cell viability and migration assays showed that methoxylated analogues of resveratrol are more potent anti-tumorigenic compounds than resveratrol and its hydroxylated analogue oxyresveratrol, with 2,3',4,5'-tetramethoxy-trans-stilbene (TMS) being the most potent compound. TMS decreased MCF-7 tumor cell viability with 50% at 3.6 μM and inhibited migration with 37.5 ± 14.8% at 3 μM. In addition, TMS activated the AHR more potently (EC50 in a reporter gene assay 2.0 μM) and induced AHR-mediated induction of cytochrome P450 1A1 (CYP1A1) activity (EC50 value of 0.7 μM) more than resveratrol and the other analogues tested. Cell cycle analysis showed that TMS induced a shift in cell cycle status from the G1 to the G2/M phase causing a cell cycle arrest in the MCF-7 cells, while no effect of TMS was observed in the non-tumorigenic MCF-10A mammary epithelial cell line. Gene expression analysis showed that 3 μM TMS increased gene expression of CYP1A1 (289-fold), CYP1B1 (5-fold) and Nqo1 (2-fold), and decreased gene expression of IL-8 (3-fold) in MCF-7 cells. In MCF-10A cells, 10 μM TMS also increased gene expression of CYP1A1 (5-fold) and CYP1B1 (2-fold), but decreased gene expression of Nqo1 (1.4-fold) in contrast to MCF-7 cells. TMS displays more potent anti-tumorigenic properties and activates the AHR more effectively than resveratrol. In addition, this is the first study to show that TMS, but not resveratrol, selectively inhibits the cell cycle of breast tumor cells and not the non-tumorigenic cells. Our study provides more insight in the anti-tumor properties of the methoxylated analogues of resveratrol in breast cells in vitro.
Collapse
Affiliation(s)
- Annick D van den Brand
- Institute for Risk Assessment Sciences, Toxicology Department, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands.
| | - Judith Villevoye
- Institute for Risk Assessment Sciences, Toxicology Department, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands
| | - Sandra M Nijmeijer
- Institute for Risk Assessment Sciences, Toxicology Department, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands
| | - Martin van den Berg
- Institute for Risk Assessment Sciences, Toxicology Department, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands
| | - Majorie B M van Duursen
- Institute for Risk Assessment Sciences, Toxicology Department, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands
| |
Collapse
|
8
|
Das DN, Panda PK, Naik PP, Mukhopadhyay S, Sinha N, Bhutia SK. Phytotherapeutic approach: a new hope for polycyclic aromatic hydrocarbons induced cellular disorders, autophagic and apoptotic cell death. Toxicol Mech Methods 2017; 27:1-17. [PMID: 27919191 DOI: 10.1080/15376516.2016.1268228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise the major class of cancer-causing chemicals and are ranked ninth among the chemical compounds threatening to humans. Moreover, interest in PAHs has been mainly due to their genotoxic, teratogenic, mutagenic and carcinogenic property. Polymorphism in cytochrome P450 (CYP450) and aryl hydrocarbon receptor (AhR) has the capacity to convert procarcinogens into carcinogens, which is an imperative factor contributing to individual susceptibility to cancer development. The carcinogenicity potential of PAHs is related to their ability to bind to DNA, thereby enhances DNA cross-linking, causing a series of disruptive effects which can result in tumor initiation. They induce cellular toxicity by regulating the generation of reactive oxygen species (ROS), which arbitrate apoptosis. Additionally, cellular toxicity-mediated apoptotic and autophagic cell death and immune suppression by industrial pollutants PAH, provide fertile ground for the proliferation of mutated cells, which results in cancer growth and progression. PAHs play a foremost role in angiogenesis necessary for tumor metastasization by promoting the upregulation of metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) in human cancer cells. This review sheds light on the molecular mechanisms of PAHs induced cancer development as well as autophagic and apoptotic cell death. Besides that authors have unraveled how phytotherapeutics is an alternate potential therapeutics acting as a savior from the toxic effects of PAHs for safer and cost effective perspectives.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | | | - Prajna Paramita Naik
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | | | - Niharika Sinha
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | - Sujit K Bhutia
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| |
Collapse
|
9
|
Wu J, Shi Y, Asweto CO, Feng L, Yang X, Zhang Y, Hu H, Duan J, Sun Z. Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23134-23144. [PMID: 27591886 DOI: 10.1007/s11356-016-7559-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Both ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, thus increasing their chances of exposure to human in the daily life. However, the study on the combined toxicity of UFP and PAHs on respiratory system is still limited. In this study, we examined the potential interactive effects of silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) in bronchial epithelial cells (BEAS-2B). Cells were exposed to SiNPs and B[a]P alone or in combination for 24 h. Co-exposure to SiNPs and B[a]P enhanced the malondialdehyde (MDA) contents and reduced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities significantly, while the reactive oxygen species (ROS) generation had a slight increase in the exposed groups compared to the control but not statistically significant. Cell cycle arrest induced by the co-exposure showed a significant percentage increase in G2/M phase cells and a decrease in G0/G1 phase cells. In addition, there was a significant increase in BEAS-2B cells multinucleation as well as DNA damage. Cellular apoptosis was markedly increased even at the low-level co-exposure. Our results suggest that co-exposure to SiNPs and B[a]P exerts synergistic and additive cytotoxic and genotoxic effects.
Collapse
Affiliation(s)
- Jing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Collins Otieno Asweto
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
10
|
Ba Q, Li J, Huang C, Qiu H, Li J, Chu R, Zhang W, Xie D, Wu Y, Wang H. Effects of benzo[a]pyrene exposure on human hepatocellular carcinoma cell angiogenesis, metastasis, and NF-κB signaling. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:246-54. [PMID: 25325763 PMCID: PMC4348747 DOI: 10.1289/ehp.1408524] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/16/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Benzo[a]pyrene (B[a]P) is a common environmental and foodborne pollutant. Although the carcinogenicity of high-dose B[a]P has been extensively reported, the effects of long-term B[a]P exposure at lower environmental doses on cancer development are less understood. OBJECTIVES We investigated the impact of B[a]P on human hepatocellular carcinoma (HCC) progression at various levels of exposure and identified a potential intervention target. METHODS We used a model based on human HCC cells exposed to various concentrations of B[a]P (i.e., 0.01, 1, or 100 nM) for 1 month to examine the effects of B[a]P on cell growth, migration, invasion, and angiogenicity. A bioluminescent murine model was established to assess tumor metastasis in vivo. RESULTS Chronic B[a]P exposure did not alter HCC cell growth but promoted cell migration and invasion both in vitro and in vivo. There was an negative association between B[a]P exposure and the survival of tumor-bearing mice. In addition, B[a]P-treated HCC cells recruited vascular endothelial cells and promoted tumor angiogenesis, possibly through elevating vascular endothelial growth factor secretion. Furthermore, the NF-κB pathway may be an adverse outcome pathway associated with the cumulative effects of B[a]P on HCC metastasis. CONCLUSIONS These findings a) indicate that B[a]P has effects on HCC progression; b) identify a possible adverse outcome pathway; and c) contribute to a better understanding of the adverse effects of chronic exposure of B[a]P to human health.
Collapse
Affiliation(s)
- Qian Ba
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ba Q, Li J, Huang C, Li J, Chu R, Wu Y, Wang H. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene. Toxicol Appl Pharmacol 2015; 283:83-91. [PMID: 25596431 DOI: 10.1016/j.taap.2015.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong to the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (<48h), and five pathways were enriched only in the medium-term network (6h-48h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene.
Collapse
Affiliation(s)
- Qian Ba
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Junyang Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Huang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingquan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Ruiai Chu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Yongning Wu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
12
|
Pereira TS, Beltrami LS, Rocha JAV, Broto FP, Comellas LR, Salvadori DMF, Vargas VMF. Toxicogenetic monitoring in urban cities exposed to different airborne contaminants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:174-182. [PMID: 23395453 DOI: 10.1016/j.ecoenv.2012.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Microparticles found in the air may be associated with organic matter that contains several compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs) and nitro-PAHs, and may pose a significant risk to human health, possibly leading to DNA mutations and cancers. This study associated genotoxicity assays for evaluating human exposure with the atmospheric air of two urban areas in southern Brazil, that received different atmospheric contributions. Site 1 was under urban-industrial influence and the other was a non-industrial reference, Site 2. Organic extracts from the airborne particulate matter were tested for mutagenicity via the Salmonella/microsome assay and analyzed for PAH composition. Cells samples of people residing in these two cities were evaluated using the comet and micronucleus assay (MN).Concentrations of the individual PAHs ranged from 0.01 ng/m(3) (benzo[a]anthracene) to 5.08 ng/m(3) (benzo[ghi]perylene). As to mutagenicity analysis of airborne, Site 1 presented all the mutagenic responses, which varied from 3.2±1.22 rev/m(3) (TA98 no S9) to 32.6±2.05 rev/m(3) (TA98, S9), while Site 2 ranged from negative to minimal responses. Site 1 presented a high quantity of nitro and amino derivatives of PAHs, and peaked at 56.0±3.68 rev/μg (YG1024 strain). The two groups presented very low DNA damage levels without intergroup difference. Although Site 1 presented high mutagenic responses in the air samples, high PAH levels, healthy people exposed to this environment did not show significative damage in their genetic material. However, the evaluation of different environmental and genetic damage in such population is necessary to monitor possible damages.
Collapse
Affiliation(s)
- Tatiana S Pereira
- Programa de Pesquisas Ambientais, Fundação Estadual de Proteção Ambiental Henrique uís Roessler (FEPAM)-Avenida Dr. Salvador França, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|