1
|
Zhou M, Liu Z, Zhang B, Hu B. Defense systems of soil microorganisms in response to compound contamination by arsenic and polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175364. [PMID: 39117226 DOI: 10.1016/j.scitotenv.2024.175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Arsenic and PAHs impose environmental stress on soil microorganisms, yet their compound effects remain poorly understood. While soil microorganisms possess the ability to metabolize As and PAHs, the mechanisms of microbial response are not fully elucidated. In our study, we established two simulated soil systems using soil collected from Xixi Wetland Park grassland, Hangzhou, China. The As-600 Group was contaminated with 600 mg/kg sodium arsenite, while the As-600-PAHs-30 Group received both 600 mg/kg sodium arsenite and 30 mg/kg PAHs (phenanthrene:fluoranthene:benzo[a]pyrene = 1:1:1). These systems were operated continuously for 270 days, and microbial responses were assessed using high-throughput sequencing and metagenomic analysis. Our findings revealed that compound contamination significantly promoted the abundance of microbial defense-related genes, with general defense genes increasing by 11.07 % ∼ 74.23 % and specific defense genes increasing by 44.13 % ∼ 55.74 %. The dominate species Rhodococcus adopts these general and specific defense mechanisms to resist compound pollution stress and gain ecological niche advantages, making it a candidate strain for soil remediation. Our study contributes to the assessment of ecological damage caused by As and PAHs from a microbial perspective and provides valuable insights for soil remediation.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zishu Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
2
|
Alarcón-Herrera N, Gómez-Arroyo S, Flores-Maya S, Flores-Márquez AR, Abrica-González P. Assessment of genotoxic damage induced by exposure to binary mixtures of polycyclic aromatic hydrocarbons and three heavy metals in male mice. Toxicol Mech Methods 2024; 34:955-969. [PMID: 38863169 DOI: 10.1080/15376516.2024.2365434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) exposition has been associated with health problems. Therefore, this research evaluated genotoxicity induced in male mice strain CD-1 exposed to benzo[a]anthracene (B[a]A) and benzo[a]pyrene (B[a]P) and their interaction with Fe, Pb, and Al. METHODS Groups of animals were exposed intraperitoneally to HM, PAHs, and mixtures of both. Peripheral blood samples were taken from 0 to 96 h at 24 h intervals; genotoxicity was determined by micronucleus tests and comet assay. Additionally, toxicity and viability were evaluated. RESULTS HM and PAHs individually were genotoxic. About toxicity, only Al altered polychromatic erythrocytes number and did not change leukocytes viability. Concerning mixtures, Fe + B[a]P, Fe + B[a]A, Pb + B[a]P increased genotoxicity. There were no changes with Pb + B[a]A. Finally, Al mixtures with both PAHs damage was decreased. CONCLUSIONS Exposure to HM and PAH caused genetic damage. Fe, Al, and B[a]A, established a genotoxic potential. Every metal can interact with PAHs in different ways. Also, the micronucleus test and the comet assay demonstrated their high capacity and reliability to determine the genotoxic potential of the compounds evaluated in this work.
Collapse
Affiliation(s)
- Norberto Alarcón-Herrera
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Saúl Flores-Maya
- Laboratorio de Recursos Naturales, UBIPRO, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla, Estado de México, México
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Paulina Abrica-González
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
3
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
4
|
Mathur J, Panwar R. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21012-21027. [PMID: 38383928 DOI: 10.1007/s11356-024-32499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The environment in India is contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the occurrence of large anthropogenic activities, i.e., fuel combustion, mineral roasting, and biomass burning. Hence, 13 toxic PAHs were detected: phenanthrene, anthracene, fluoranthene, pyrene, and benz(a) anthracene, ben-zo; (b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene, benzo(ghi)perylene, dibenz (ah) anthracene, indeno1,2,3-(cd) pyrene, coronene and coronene in the environment (i.e., ambient particulate matter, road dust, sludge, and sewage) of the most industrialized area. Pollutants such as heavy metals and polycyclic aromatic hydrocarbons co-contaminate the soil and pose a significant hazard to the ecosystem because these pollutants are harmful to both humans and the environment. Phytoremediation is an economical plant-based natural approach for soil clean-up that has no negative impact on ecosystems. The aim of this study was to investigate the effects of pyrene (500 mg kg-1), Zn (150 mg kg-1), Pb (150 mg kg-1), and Cd (150 mg kg-1) alone and in combination on the phytoextraction efficiency of Medicago sativa growing in contaminated soil. Plant biomass, biochemical activities, translocation factors, accumulation of heavy metals, and pyrene removal were determined. After 60 days of planting, compared with those of the control plants, the growth parameters, biomass, and chlorophyll content of the M. sativa plants were significantly lower, and the reactive oxygen species activity, such as proline and polyphenol content and metallothionein protein content, was markedly greater in the pyrene and heavy metal-polluted soils. Furthermore, the combined toxicity of pyrene and all three metals on M. sativa growth and biochemical parameters was significantly greater than that of pyrene, Zn, Pb, or Cd alone, indicating the synergistic effect of pyrene and heavy metals on cytotoxicity. Pyrene stress increased Cd accumulation in M. sativa. After pyrene exposure alone or in combination with Zn-pyrene, a greater pyrene removal rate (85.5-81.44%) was observed than that in Pb-pyrene, Cd-pyrene, and Zn-Pb-Cd-pyrene polluted soils (62.78-71.27%), indicating that zinc can enhance the removal of pyrene from contaminated soil. The resulting hypotheses demonstrated that Medicago sativa can be used as a promising phytoremediation agent for co-contaminated soil.
Collapse
Affiliation(s)
- Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India.
| | - Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
5
|
Liu X, Zhang X, Zhou W, Liang L, Zhang J, Wen C, Li Y, Xu X, Liu G. Combined toxicity of oil-based PAH4 mixtures on HL-7702 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169038. [PMID: 38056657 DOI: 10.1016/j.scitotenv.2023.169038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) as a group of prevalent persistent organic pollutants in the environment are always found as mixtures. The combined toxicity of oil-based PAH4 seems seldom to be mentioned. To evaluate the combined toxicity of oil-based PAH4 mixtures on HL-7702 cells, the effects of single, binary, ternary, and quaternary mixtures on cell viability were examined, and the concentration addition model and combination index (CI)-isobologram model were selected to predict the toxicological interactions of the mixtures. The results showed that the PAH4 mixtures had a concentration-dependent effect on cell viability. The CI model was more suitable for elucidating the toxicity interactions of mixtures. In addition, the combined toxicity of BaA + BaP and BaA + Chr + BbF + BaP was antagonistic, BaA + Chr, BaA + BbF, Chr + BbF, and BaA + Chr + BbF was synergistic, and the remaining mixtures shifted from antagonistic to synergistic. Antagonistic effects were observed in all mixtures containing BaP, indicating that oil-based PAH4 mixtures containing BaP had a mitigating effect on cytotoxicity. Furthermore, BbF was identified as playing a key role in the synergistic effects in binary and ternary mixtures. This study provided a new acknowledgment to assess the interactions of PAH4 mixtures which is helpful for further study of the toxicity risks in the environment.
Collapse
Affiliation(s)
- Xiaofang Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xu Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wanli Zhou
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
6
|
Castel R, Tassistro V, Claeys-Bruno M, Malleret L, Orsière T. In Vitro Genotoxicity Evaluation of PAHs in Mixtures Using Experimental Design. TOXICS 2023; 11:toxics11050470. [PMID: 37235284 DOI: 10.3390/toxics11050470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Settled dusts are sinks for environmental pollutants, including Polycyclic Aromatic Hydrocarbons (PAHs) that are ubiquitous, persistent, and carcinogenic. To assess their toxicity in mixtures, Toxic Equivalent Factors (TEFs) are routinely used and based on the hypothesis of additive effects, although PAH interactions may occur and remain an open issue. This study investigated genotoxic binary interaction effects for six PAHs in mixtures using two in vitro assays and estimated Genotoxic Equivalent Factors (GEFs) to roughly predict the genotoxicity of PAH in mixtures. The Design of the Experiment approach was used with the micronucleus assay for cytostasis and micronuclei frequency and the alkaline comet assay for DNA damage. GEFs were determined for each PAH independently and in a mixture. For the cytostasis endpoint, no PAHs interaction was noted. BbF and BaP had a synergistic effect on DNA damage. All the PAH interacted between them regarding chromosomal damage. Although the calculated GEFs were similar to the TEFs, the latter may underestimate the genotoxic potential of a PAH mixture. GEFs calculated for PAH alone were lower than GEFs for PAHs in mixtures; thus, mixtures induce greater DNA/chromosomal damage than expected. This research helps to advance the challenging issue of contaminant mixtures' effects on human health.
Collapse
Affiliation(s)
- Rebecca Castel
- Institut Méditerranéen de Biodiversité et Ecologie, Aix Marseille University, Avignon University, CNRS, IRD, IMBE, FR ECCOREV, ITEM, 13005 Marseille, France
- Laboratoire Chimie Environnement, Aix Marseille University, CNRS, LCE, FR ECCOREV, ITEM, 13545 Aix-en-Provence, France
| | - Virginie Tassistro
- Institut Méditerranéen de Biodiversité et Ecologie, Aix Marseille University, Avignon University, CNRS, IRD, IMBE, FR ECCOREV, ITEM, 13005 Marseille, France
| | - Magalie Claeys-Bruno
- Institut Méditerranéen de Biodiversité et Ecologie, Aix Marseille University, Avignon University, CNRS, IRD, IMBE, FR ECCOREV, ITEM, 13005 Marseille, France
| | - Laure Malleret
- Laboratoire Chimie Environnement, Aix Marseille University, CNRS, LCE, FR ECCOREV, ITEM, 13545 Aix-en-Provence, France
| | - Thierry Orsière
- Institut Méditerranéen de Biodiversité et Ecologie, Aix Marseille University, Avignon University, CNRS, IRD, IMBE, FR ECCOREV, ITEM, 13005 Marseille, France
| |
Collapse
|
7
|
Tavares AM, Viegas S, Louro H, Göen T, Santonen T, Luijten M, Kortenkamp A, Silva MJ. Occupational Exposure to Hexavalent Chromium, Nickel and PAHs: A Mixtures Risk Assessment Approach Based on Literature Exposure Data from European Countries. TOXICS 2022; 10:431. [PMID: 36006111 PMCID: PMC9414170 DOI: 10.3390/toxics10080431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium (Cr(VI)), nickel (Ni) and polycyclic aromatic hydrocarbons (PAHs) are genotoxic co-occurring lung carcinogens whose occupational health risk is still understudied. This study, conducted within the European Human Biomonitoring Initiative (HBM4EU), aimed at performing a mixtures risk assessment (MRA) based on published human biomonitoring (HBM) data from Cr(VI), Ni and/or PAHs occupational co-exposure in Europe. After data extraction, Risk Quotient (RQ) and Sum of Risk Quotients (SRQ) were calculated for binary and ternary mixtures to characterise the risk. Most selected articles measured urinary levels of Cr and Ni and a SRQ > 1 was obtained for co-exposure levels in welding activities, showing that there is concern regarding co-exposure to these substances. Similarly, co-exposure to mixtures of Cr(VI), Ni and PAHs in waste incineration settings resulted in SRQ > 1. In some studies, a low risk was estimated based on the single substances’ exposure level (RQ < 1), but the mixture was considered of concern (SRQ > 1), highlighting the relevance of considering exposure to the mixture rather than to its single components. Overall, this study points out the need of using a MRA based on HBM data as a more realistic approach to assess and manage the risk at the workplace, in order to protect workers’ health.
Collapse
Affiliation(s)
- Ana Maria Tavares
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (A.M.T.); (H.L.)
- ToxOmics–Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal;
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (A.M.T.); (H.L.)
- ToxOmics–Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Thomas Göen
- Institute of Occupational, Social and Environmental Medicine (IPASUM), University Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany;
| | - Tiina Santonen
- Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland;
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands;
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London UB8 3PH, UK;
| | - Maria João Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (A.M.T.); (H.L.)
- ToxOmics–Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
8
|
Yılmaz ZK, Özdemir Ö, Aslim B, Suludere Z, Şahin E. A new bio-active asymmetric-Schiff base: synthesis and evaluation of calf thymus DNA interaction, topoisomerase IIα inhibition, in vitro antiproliferative activity, SEM analysis and molecular docking studies. J Biomol Struct Dyn 2022; 41:2804-2822. [PMID: 35179080 DOI: 10.1080/07391102.2022.2039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, the asymmetric-Schiff base 2-(4-(2-hydroxybenzylideneamino)benzylideneamino)benzoic acid (SB-2) was newly synthesized and characterized by various spectroscopic methods. The interaction of SB-2 with calf thymus DNA was investigated by UV-vis, fluorescence spectroscopy and molecular docking methods. It was determined that SB-2 effectively binds to DNA via the intercalation mode. DNA electrophoretic mobility experiments displayed that topoisomerase IIα could not cleave pBR322 plasmid DNA in the presence of SB-2, confirming that the Schiff base acts as a topo II suppressor. In the molecular docking studies, SB-2 was found to show an affinity for both the DNA-topoisomerase IIα complex and the DNA. In vitro antiproliferative activity of SB-2 was screened against HT-29 (colorectal) and HeLa (cervical) human tumor cell lines by MTT assay. SB-2 diminished the cell viability in a concentration- and incubation time-dependent manner. The ability of SB-2 to measure DNA damage in tumor cells was evaluated with cytokinesis-block micronucleus assay after incubation 24 h and 48 h. Light and scanning electron microscopy experiments of tumor cells demonstrated an incubation time-dependent increase in the proportion of apoptotic cells (nuclear condensation and apoptotic bodies) suggesting that autophagy and apoptosis play a role in the death of cells. Based on the obtained results, it may be considered that SB-2 is a candidate for DNA-targeting antitumor drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zehra Kübra Yılmaz
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Özlem Özdemir
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Egemen Şahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Wang Z. Mechanisms of the synergistic lung tumorigenic effect of arsenic and benzo(a)pyrene combined- exposure. Semin Cancer Biol 2021; 76:156-162. [PMID: 33971262 PMCID: PMC9000133 DOI: 10.1016/j.semcancer.2021.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Humans are often exposed to mixtures of environmental pollutants especially environmental chemical carcinogens, representing a significant environmental health issue. However, our understanding on the carcinogenic effects and mechanisms of environmental carcinogen mixture exposures is limited and mostly relies on the findings from studying individual chemical carcinogens. Both arsenic and benzo(a)pyrene (BaP) are among the most common environmental carcinogens causing lung cancer and other types of cancer in humans. Millions of people are exposed to arsenic via consuming arsenic-contaminated drinking water and even more people are exposed to BaP via cigarette smoking and consuming BaP-contaminated food. Thus arsenic and BaP combined-exposure in humans is common. Previous epidemiology studies indicated that arsenic-exposed people who were cigarette smokers had significantly higher lung cancer risk than those who were non-smokers. Since BaP is one of the major carcinogens in cigarette smoke, it has been speculated that arsenic and BaP combined-exposure may play important roles in the increased lung cancer risk observed in arsenic-exposed cigarette smokers. In this review, we summarize important findings and inconsistencies about the co-carcinogenic effects and underlying mechanisms of arsenic and BaP combined-exposure and propose new areas for future studies. A clear understanding on the mechanism of co-carcinogenic effects of arsenic and BaP combined exposure may identify novel targets to more efficiently treat and prevent lung cancer resulting from arsenic and BaP combined-exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44109, USA.
| |
Collapse
|
10
|
Torres-Ávila JF, Espitia-Pérez L, Bonatto D, Silva FRD, Oliveira IMD, Silva LFO, Corrêa DS, Dias JF, Silva JD, Henriques JAP. Systems chemo-biology analysis of DNA damage response and cell cycle effects induced by coal exposure. Genet Mol Biol 2020; 43:e20190134. [PMID: 32609278 PMCID: PMC7315349 DOI: 10.1590/1678-4685-gmb-2019-0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Abstract
Cell cycle alterations are among the principle hallmarks of cancer. Consequently, the study of cell cycle regulators has emerged as an important topic in cancer research, particularly in relation to environmental exposure. Particulate matter and coal dust around coal mines have the potential to induce cell cycle alterations. Therefore, in the present study, we performed chemical analyses to identify the main compounds present in two mineral coal samples from Colombian mines and performed systems chemo-biology analysis to elucidate the interactions between these chemical compounds and proteins associated with the cell cycle. Our results highlight the role of oxidative stress generated by the exposure to the residues of coal extraction, such as major inorganic oxides (MIOs), inorganic elements (IEs) and polycyclic aromatic hydrocarbons (PAH) on DNA damage and alterations in the progression of the cell cycle (blockage and/or delay), as well as structural dysfunction in several proteins. In particular, IEs such as Cr, Ni, and S and PAHs such as benzo[a]pyrene may have influential roles in the regulation of the cell cycle through DNA damage and oxidative stress. In this process, cyclins, cyclin-dependent kinases, zinc finger proteins such as TP53, and protein kinases may play a central role.
Collapse
Affiliation(s)
- Jose F Torres-Ávila
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil.,Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Lyda Espitia-Pérez
- Universidad del Sinú, Grupo de Investigación Biomédica y Biología Molecular, Montería, Córdoba, Colombia
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS, Brazil
| | | | - Iuri Marques de Oliveira
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil
| | - Luís F O Silva
- Universidad de la Costa, Civil and Environmental Department, Barranquilla, Colombia
| | - Dione Silva Corrêa
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Centro de Pesquisa de Produtos e Desenvolvimento, Canoas, RS, Brazil
| | - Johnny Ferraz Dias
- Universidade Federal do Rio Grande do Sul, Instituto de Física, Laboratório de Implantação de Íons, Porto Alegre, RS, Brazil
| | - Juliana da Silva
- Universidade Luterana do Brasil, Laboratório de Toxicologia Genética, Canoas, RS, Brazil.,Universidade La Salle, Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil.,Universidade de Caxias do Sul, Instituto de Biotecnologia, Laboratório de Genômica, Proteômica e Reparo de DNA, RS, Brazil
| |
Collapse
|
11
|
Johann S, Goßen M, Behnisch PA, Hollert H, Seiler TB. Combining Different In Vitro Bioassays to Evaluate Genotoxicity of Water-Accommodated Fractions from Petroleum Products. TOXICS 2020; 8:toxics8020045. [PMID: 32604793 PMCID: PMC7355774 DOI: 10.3390/toxics8020045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
Genotoxicity assessment is of high relevance for crude and refined petroleum products, since oil compounds are known to cause DNA damage with severe consequences for aquatic biota as demonstrated in long-term monitoring studies. This study aimed at the optimization and evaluation of small-scale higher-throughput assays (Ames fluctuation, micronucleus, Nrf2-CALUX®) covering different mechanistic endpoints as first screening tools for genotoxicity assessment of oils. Cells were exposed to native and chemically dispersed water-accommodated fractions (WAFs) of three oil types varying in their processing degree. Independent of an exogenous metabolic activation system, WAF compounds induced neither base exchange nor frame shift mutations in bacterial strains. However, significantly increased chromosomal aberrations in zebrafish liver (ZF-L) cells were observed. Oxidative stress was indicated for some treatments and was not correlated with observed DNA damage. Application of a chemical dispersant increased the genotoxic potential rather by the increased bioavailability of dissolved and particulate oil compounds. Nonetheless, the dispersant induced a clear oxidative stress response, indicating a relevance for general toxic stress. Results showed that the combination of different in vitro assays is important for a reliable genotoxicity assessment. Especially, the ZF-L capable of active metabolism and DNA repair seems to be a promising model for WAF testing.
Collapse
Affiliation(s)
- Sarah Johann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Correspondence: (S.J.); (T.-B.S.)
| | - Mira Goßen
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Peter A. Behnisch
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, The Netherlands;
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; (M.G.); (H.H.)
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Correspondence: (S.J.); (T.-B.S.)
| |
Collapse
|
12
|
Nemcakova I, Jirka I, Doubkova M, Bacakova L. Heat treatment dependent cytotoxicity of silicalite-1 films deposited on Ti-6Al-4V alloy evaluated by bone-derived cells. Sci Rep 2020; 10:9456. [PMID: 32528137 PMCID: PMC7289882 DOI: 10.1038/s41598-020-66228-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022] Open
Abstract
A silicalite-1 film (SF) deposited on Ti-6Al-4V alloy was investigated in this study as a promising coating for metallic implants. Two forms of SFs were prepared: as-synthesized SFs (SF-RT), and SFs heated up to 500 °C (SF-500) to remove the excess of template species from the SF surface. The SFs were characterized in detail by X-ray photoelectron spectroscopy (XPS), by Fourier transform infrared spectroscopy (FTIR), by scanning electron microscopy (SEM) and water contact angle measurements (WCA). Two types of bone-derived cells (hFOB 1.19 non-tumor fetal osteoblast cell line and U-2 OS osteosarcoma cell line) were used for a biocompatibility assessment. The initial adhesion of hFOB 1.19 cells, evaluated by cell numbers and cell spreading area, was better supported by SF-500 than by SF-RT. While no increase in cell membrane damage, in ROS generation and in TNF-alpha secretion of bone-derived cells grown on both SFs was found, gamma H2AX staining revealed an elevated DNA damage response of U-2 OS cells grown on heat-treated samples (SF-500). This study also discusses differences between osteosarcoma cell lines and non-tumor osteoblastic cells, stressing the importance of choosing the right cell type model.
Collapse
Affiliation(s)
- Ivana Nemcakova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Ivan Jirka
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejskova 3, 182 23, Prague 8, Czech Republic
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic.,Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
13
|
Guo X, Seo JE, Li X, Mei N. Genetic toxicity assessment using liver cell models: past, present, and future. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:27-50. [PMID: 31746269 DOI: 10.1080/10937404.2019.1692744] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
14
|
Jirka I, Kopová I, Kubát P, Tabor E, Bačáková L, Bouša M, Sajdl P. The Photodynamic Properties and the Genotoxicity of Heat-Treated Silicalite-1 Films. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E567. [PMID: 30769806 PMCID: PMC6416588 DOI: 10.3390/ma12040567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/10/2019] [Indexed: 11/17/2022]
Abstract
We investigated the use of a supported silicalite-1 film (SF) as a promising coating for metallic materials used in the fabrication of prostheses. The role of carbonaceous residua present on high-temperature calcined-SF in generating singlet oxygen for future use as a sterilization method has also been addressed, and the potential genotoxicity of these residua in osteoblast-like cells has been investigated. Calcination of as-synthesized SF induced the appearance of a rather complicated mixture of aliphatic and aromatic species on its outer surface. A series of variously volatile polycyclic aromatic hydrocarbons (PAH), including naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene, were identified in micromole concentrations. Irradiation of these PAHs on calcined-SF immersed in air-saturated chloroform led to the formation of very low concentrations of singlet oxygen. However, an increased level of DNA damage was observed on calcined-SF by immunofluorescence staining of phosphorylated histone H2AX analyzed by flow cytometry.
Collapse
Affiliation(s)
- Ivan Jirka
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Ivana Kopová
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Edyta Tabor
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Milan Bouša
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Petr Sajdl
- Power Engineering Department, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
15
|
Genotoxicity evaluation of multi-component mixtures of polyaromatic hydrocarbons (PAHs), arsenic, cadmium, and lead using flow cytometry based micronucleus test in HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:9-18. [DOI: 10.1016/j.mrgentox.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
|
16
|
Espitia-Pérez L, da Silva J, Espitia-Pérez P, Brango H, Salcedo-Arteaga S, Hoyos-Giraldo LS, de Souza CT, Dias JF, Agudelo-Castañeda D, Valdés Toscano A, Gómez-Pérez M, Henriques JAP. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM 10 and PM 2.5 levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:453-466. [PMID: 29102906 DOI: 10.1016/j.ecoenv.2017.10.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Epidemiological studies indicate that living in proximity to coal mines is correlated with numerous diseases including cancer, and that exposure to PM10 and PM2.5 components could be associated with this phenomenon. However, the understanding of the mechanisms by which PM exerts its adverse effects is still incomplete and comes mainly from studies in occupationally exposed populations. The aims of this study were to: (1) evaluate DNA damage in lymphocytes assessing the cytokinesis-block micronucleus cytome assay (CBMN-cyt) parameters; (2) identify aneugenic or clastogenic effects in lymphocytes of exposed populations using CREST immunostaining for micronuclei; (3) evaluate multi-elemental composition of atmospheric particulate matter; and (4) verify relation between the DNA damage and PM2.5 and PM10 levels around the mining area. Analysis revealed a significant increase in micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells of individuals with residential proximity to open-pit coal mines compared to residents from non-mining areas. Correlation analysis demonstrated a highly significant association between PM2.5 levels, MNBN frequencies and CREST+ micronuclei induction in exposed residents. These results suggest that PM2.5 fraction generated in coal mining activities may induce whole chromosome loss (aneuploidy) preferentially, although there are also chromosome breaks. Analysis of the chemical composition of PM2.5 by PIXE demonstrated that Si, S, K and Cr concentrations varied significantly between coal mining and reference areas. Enrichment factor values (EF) showed that S, Cr and Cu were highly enriched in the coal mining areas. Compared to reference area, mining regions had also higher concentrations of extractable organic matter (EOM) related to nonpolar and polar compounds. Our results demonstrate that PM2.5 fraction represents the most important health risk for residents living near open-pit mines, underscoring the need for incorporation of ambient air standards based on PM2.5 measures in coal mining areas.
Collapse
Affiliation(s)
- Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia; Departamento de Ciencias Básicas - Facultad de Ciencias e Ingenierías, Universidad del Sinú, Montería, Córdoba, Colombia; Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil, ULBRA, Canoas, RS, Brazil.
| | - Pedro Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Hugo Brango
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Shirley Salcedo-Arteaga
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Luz Stella Hoyos-Giraldo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Claudia T de Souza
- Programa de Pós Graduação em Química - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Johnny F Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Dayana Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla, Colombia
| | - Ana Valdés Toscano
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Miguel Gómez-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - João A P Henriques
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Yauk CL, Buick JK, Williams A, Swartz CD, Recio L, Li H, Fornace AJ, Thomson EM, Aubrecht J. Application of the TGx-28.65 transcriptomic biomarker to classify genotoxic and non-genotoxic chemicals in human TK6 cells in the presence of rat liver S9. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:243-60. [PMID: 26946220 PMCID: PMC5021161 DOI: 10.1002/em.22004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 05/05/2023]
Abstract
In vitro transcriptional signatures that predict toxicities can facilitate chemical screening. We previously developed a transcriptomic biomarker (known as TGx-28.65) for classifying agents as genotoxic (DNA damaging) and non-genotoxic in human lymphoblastoid TK6 cells. Because TK6 cells do not express cytochrome P450s, we confirmed accurate classification by the biomarker in cells co-exposed to 1% 5,6 benzoflavone/phenobarbital-induced rat liver S9 for metabolic activation. However, chemicals may require different types of S9 for activation. Here we investigated the response of TK6 cells to higher percentages of Aroclor-, benzoflavone/phenobarbital-, or ethanol-induced rat liver S9 to expand TGx-28.65 biomarker applicability. Transcriptional profiles were derived 3 to 4 hr following a 4 hr co-exposure of TK6 cells to test chemicals and S9. Preliminary studies established that 10% Aroclor- and 5% ethanol-induced S9 alone did not induce the TGx-28.65 biomarker genes. Seven genotoxic and two non-genotoxic chemicals (and concurrent solvent and positive controls) were then tested with one of the S9s (selected based on cell survival and micronucleus induction). Relative survival and micronucleus frequency was assessed by flow cytometry in cells 20 hr post-exposure. Genotoxic/non-genotoxic chemicals were accurately classified using the different S9s. One technical replicate of cells co-treated with dexamethasone and 10% Aroclor-induced S9 was falsely classified as genotoxic, suggesting caution in using high S9 concentrations. Even low concentrations of genotoxic chemicals (those not causing cytotoxicity) were correctly classified, demonstrating that TGx-28.65 is a sensitive biomarker of genotoxicity. A meta-analysis of datasets from 13 chemicals supports that different S9s can be used in TK6 cells, without impairing classification using the TGx-28.65 biomarker.
Collapse
Affiliation(s)
- Carole L. Yauk
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Julie K. Buick
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carol D. Swartz
- Integrated Laboratory Systems IncResearch Triangle ParkNorth Carolina
| | - Leslie Recio
- Integrated Laboratory Systems IncResearch Triangle ParkNorth Carolina
| | - Heng‐Hong Li
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Errol M. Thomson
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Jiri Aubrecht
- Drug Safety Research and Development, Pfizer IncGrotonConnecticut
| |
Collapse
|
18
|
Muthusamy S, Peng C, Ng JC. The binary, ternary and quaternary mixture toxicity of benzo[ a]pyrene, arsenic, cadmium and lead in HepG2 cells. Toxicol Res (Camb) 2016; 5:703-713. [PMID: 30090384 PMCID: PMC6062251 DOI: 10.1039/c5tx00425j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/04/2016] [Indexed: 01/22/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heavy metal/loid(s) are common environmental pollutants. Toxicological interaction data on benzo[a]pyrene (B[a]P) and heavy metal/loid(s) are lacking. In this study, we have determined the combined toxicity of B[a]P, arsenic (As), cadmium (Cd) and lead (Pb) in HepG2 cells. The binary, ternary and quaternary mixture toxicity of B[a]P and heavy metal/loid(s) was predicted by using the combination index (CI)-isobologram method. This method is useful to predict the quantitative nature of an interaction between chemicals at different effect (inhibitory concentration) levels from 0.1 to 99% using computerised quantitation. A total of 11 mixtures including six binary mixtures, four ternary and one quaternary mixtures of B[a]P and heavy metal/loid(s) were evaluated for their interactions. The cytotoxicity of individual and multi-component mixtures was evaluated by MTS assay. The selected concentrations for the individual dose response study were 0-100 μM - B[a]P; 0-40 μM - Cd; 0-400 μM - As and Pb. The individual dose response results showed that all four chemicals were toxic to liver cells with Cd being the most potent toxicant. Mixtures of B[a]P and heavy metal/loid(s) were prepared based on their individual Dm concentration using a 1 : 1 ratio and exposed to HepG2 cells. By using the CI-isobologram method, the predicted interactions between these chemicals were synergism, additivity or antagonism at different effect levels. All the mixtures except the ternary mixture of B[a]P + As + Pb displayed synergism at a lower effect level (IC10-IC30), and additivity, synergism or antagonism at 50-90% effect levels. Among these mixtures, mixtures of heavy metal/loid(s) (both binary and ternary combinations) and a quaternary mixture of B[a]P + As + Cd + Pb showed a strong synergistic response at lower effect levels compared to other mixtures. The predicted interaction response by the CI method was compared with classical models of concentration addition and independent action. The CI method displayed an improved prediction power compared to classical models. The predicted synergistic interaction between B[a]P and heavy metal/loid(s) may have important implications in the human health risk assessment of these mixed chemical mixtures at contaminated sites.
Collapse
Affiliation(s)
- Sasikumar Muthusamy
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| | - Cheng Peng
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| | - Jack C Ng
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| |
Collapse
|
19
|
Vaz S Silva S, Dias AHC, Dutra ES, Pavanin AL, Morelli S, Pereira BB. The impact of water pollution on fish species in southeast region of Goiás, Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 79:8-16. [PMID: 26699803 DOI: 10.1080/15287394.2015.1099484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The rivers from the region of Catalão, Southeast Goiás State, Brazil, are exposed to intense anthropogenic influences including agricultural activities, industry, and urban waste. The aim of this study was to determine the severity of water pollution by conducting an experiment involving in situ biomonitoring of water constituents on genotoxicity in fish inhabiting these sites. The genotoxicity of three sites of the region were analyzed utilizing the micronucleus (MN) test. It was of interest to determine whether there were differences between sampling sites such as urban perimeter, agriculture, and fertilizer industry in control, and monitored species including Astyanax fasciatus, Astyanax altiparanae, and Characidium fasciatum. Data demonstrated that the species at sites 1, 2, and 3 exhibited a marked increase in frequency of MN compared to fish from site 4. Significant elevation in frequency of MN occurred in erythrocytes of A. fasciatus and A. altiparanae at sites 1 and 2. At site 3 higher frequencies of MN were observed in C. fasciatum. MN induction in C. fasciatum was correlated with chromium levels in water and sediment, while A. fasciatum and A. altiparanae showed an association with zinc in water and sediment. Data suggest that benthic and nektonic fish species display different sensitivities in relation to anthropogenic contaminant influences.
Collapse
Affiliation(s)
- Sabrina Vaz S Silva
- a Department of Genetics and Biochemistry , Federal University of Uberlândia, Umuarama Campus , Uberlândia , Minas Gerais , Brazil
| | - Aurélio Henrique C Dias
- a Department of Genetics and Biochemistry , Federal University of Uberlândia, Umuarama Campus , Uberlândia , Minas Gerais , Brazil
| | - Elaine S Dutra
- b Department of Agronomy , Biological and Applied Social Studies, State University of Mato Grosso, Campus of Nova Xavantina , Nova Xavantina , Mato Grosso State , Brazil
| | - Alfredo L Pavanin
- c Department of Chemistry , Laboratory of Chemical Analysis, Federal University of Uberlândia, Santa Mônica Campus , Uberlândia , Minas Gerais , Brazil
| | - Sandra Morelli
- a Department of Genetics and Biochemistry , Federal University of Uberlândia, Umuarama Campus , Uberlândia , Minas Gerais , Brazil
| | - Boscolli B Pereira
- d Department of Environmental Health , Laboratory of Vigilance in Environmental Health, Federal University of Uberlândia, Santa Mônica Campus , Uberlândia , Minas Gerais , Brazil
| |
Collapse
|
20
|
Stępnik M, Spryszyńska S, Smok-Pieniążek A, Ferlińska M, Roszak J, Nocuń M. The modulating effect of ATM, ATR, DNA-PK inhibitors on the cytotoxicity and genotoxicity of benzo[a]pyrene in human hepatocellular cancer cell line HepG2. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:988-996. [PMID: 26595742 DOI: 10.1016/j.etap.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The effect of inhibitors of phosphatidylinositol-3-kinase-related kinases (PIKK): ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK) on response of HepG2 human liver cancer cells to benzo[a]pyrene (BaP) was investigated. PIKK inhibitors: KU55933 (5 μM), NU7026 (10 μM) or caffeine (1 and 2mM) when used as single agents or in combinations (KU55933/NU7026 and caffeine/NU7026) did not significantly influence the BaP (3 μM) cytotoxicity (MTT reduction test). BaP induced a weak proapoptotic effect which was moderately enhanced by both inhibitor combinations. HepG2 cells exposed to BaP showed a strong S-phase arrest which was considerably diminished by both inhibitor combinations. The DNA damage (comet assay) induced after continuous 24h exposure to BaP was significantly diminished by both inhibitor combinations. Weak induction of reactive oxygen species by BaP was observed, which was not modulated by the inhibitor combinations. Similarly, no modulation of the glutathione levels was observed.
Collapse
Affiliation(s)
- Maciej Stępnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Sylwia Spryszyńska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Anna Smok-Pieniążek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Magdalena Ferlińska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Joanna Roszak
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Marek Nocuń
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| |
Collapse
|