1
|
Blaine HC, Simmons LA, Stallings CL. Diverse Mechanisms of Helicase Loading during DNA Replication Initiation in Bacteria. J Bacteriol 2023; 205:e0048722. [PMID: 36877032 PMCID: PMC10128896 DOI: 10.1128/jb.00487-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Initiation of DNA replication is required for cell viability and passage of genetic information to the next generation. Studies in Escherichia coli and Bacillus subtilis have established ATPases associated with diverse cellular activities (AAA+) as essential proteins required for loading of the replicative helicase at replication origins. AAA+ ATPases DnaC in E. coli and DnaI in B. subtilis have long been considered the paradigm for helicase loading during replication in bacteria. Recently, it has become increasingly clear that most bacteria lack DnaC/DnaI homologs. Instead, most bacteria express a protein homologous to the newly described DciA (dnaC/dnaI antecedent) protein. DciA is not an ATPase, and yet it serves as a helicase operator, providing a function analogous to that of DnaC and DnaI across diverse bacterial species. The recent discovery of DciA and of other alternative mechanisms of helicase loading in bacteria has changed our understanding of DNA replication initiation. In this review, we highlight recent discoveries, detailing what is currently known about the replicative helicase loading process across bacterial species, and we discuss the critical questions that remain to be investigated.
Collapse
Affiliation(s)
- Helen C. Blaine
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
2
|
Hayes S, Wang W, Rajamanickam K, Chu A, Banerjee A, Hayes C. Lambda gpP-DnaB Helicase Sequestration and gpP-RpoB Associated Effects: On Screens for Auxotrophs, Selection for Rif(R), Toxicity, Mutagenicity, Plasmid Curing. Viruses 2016; 8:E172. [PMID: 27338450 PMCID: PMC4926192 DOI: 10.3390/v8060172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 12/03/2022] Open
Abstract
The bacteriophage lambda replication initiation protein P exhibits a toxic effect on its Escherichia coli (E. coli) host, likely due to the formation of a dead-end P-DnaB complex, sequestering the replicative DnaB helicase from further activity. Intracellular expression of P triggers SOS-independent cellular filamentation and rapidly cures resident ColE1 plasmids. The toxicity of P is suppressed by alleles of P or dnaB. We asked whether P buildup within a cell can influence E. coli replication fidelity. The influence of P expression from a defective prophage, or when cloned and expressed from a plasmid was examined by screening for auxotrophic mutants, or by selection for rifampicin resistant (Rif(R)) cells acquiring mutations within the rpoB gene encoding the β-subunit of RNA polymerase (RNAP), nine of which proved unique. Using fluctuation assays, we show that the intracellular expression of P evokes a mutator effect. Most of the Rif(R) mutants remained P(S) and localized to the Rif binding pocket in RNAP, but a subset acquired a P(R) phenotype, lost sensitivity to ColE1 plasmid curing, and localized outside of the pocket. One P(R) mutation was identical to rpo*Q148P, which alleviates the UV-sensitivity of ruv strains defective in the migration and resolution of Holliday junctions and destabilizes stalled RNAP elongation complexes. The results suggest that P-DnaB sequestration is mutagenic and supports an earlier observation that P can interact with RNAP.
Collapse
Affiliation(s)
- Sidney Hayes
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Wen Wang
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Karthic Rajamanickam
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Audrey Chu
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Anirban Banerjee
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Connie Hayes
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
3
|
Bell SP, Kaguni JM. Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a010124. [PMID: 23613349 DOI: 10.1101/cshperspect.a010124] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loading of the replicative DNA helicase at origins of replication is of central importance in DNA replication. As the first of the replication fork proteins assemble at chromosomal origins of replication, the loaded helicase is required for the recruitment of the rest of the replication machinery. In this work, we review the current knowledge of helicase loading at Escherichia coli and eukaryotic origins of replication. In each case, this process requires both an origin recognition protein as well as one or more additional proteins. Comparison of these events shows intriguing similarities that suggest a similar underlying mechanism, as well as critical differences that likely reflect the distinct processes that regulate helicase loading in bacterial and eukaryotic cells.
Collapse
Affiliation(s)
- Stephen P Bell
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
4
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
5
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
6
|
Three-dimensional structure of N-terminal domain of DnaB helicase and helicase-primase interactions in Helicobacter pylori. PLoS One 2009; 4:e7515. [PMID: 19841750 PMCID: PMC2761005 DOI: 10.1371/journal.pone.0007515] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022] Open
Abstract
Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 A resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.
Collapse
|
7
|
You Z, Masai H. Cdt1 forms a complex with the minichromosome maintenance protein (MCM) and activates its helicase activity. J Biol Chem 2008; 283:24469-77. [PMID: 18606811 DOI: 10.1074/jbc.m803212200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mcm4/6/7 forms a complex possessing DNA helicase activity, suggesting that Mcm may be a central component for the replicative helicase. Although Cdt1 is known to be essential for loading of Mcm onto the chromatin, its precise role in pre-RC formation and replication initiation is unknown. Using purified proteins, we show that Cdt1 forms a complex with Mcm4/6/7, Mcm2/3/4/5/6/7, and Mcm2/4/6/7 in glycerol gradient fractionation through interaction with Mcm2 and Mcm4/6. In the glycerol gradient fractionation, Mcm4/6/7-Cdt1 forms a complex (speculated to be a (Mcm4/6/7)2-Cdt13 assembly) in the presence of ATP, which is significantly larger than the Mcm4/6/7-Cdt1 complex generated in its absence. Furthermore, DNA binding and helicase activities of Mcm4/6/7 are significantly stimulated by Cdt1 protein in vitro. We generated a Cdt1 mutant, which fails to stimulate DNA binding and helicase activities of Mcm4/6/7. This mutant Cdt1 showed reduced interaction with Mcm and is deficient in the formation of a high molecular weight complex with Mcm. Thus, a productive interaction between Cdt1 and MCM appears to be essential for efficient loading of MCM onto template DNA, as well as for the efficient unwinding reaction.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, 18-22 Honkomagome 3-chome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | |
Collapse
|
8
|
North SH, Nakai H. Host factors that promote transpososome disassembly and the PriA-PriC pathway for restart primosome assembly. Mol Microbiol 2005; 56:1601-16. [PMID: 15916609 DOI: 10.1111/j.1365-2958.2005.04639.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Initiation of bacteriophage Mu DNA replication by transposition requires the disassembly of the transpososome that catalyses strand exchange and the assembly of a replisome promoted by PriA, PriB, PriC and DnaT proteins, which function in the host to restart stalled replication forks. Once the molecular chaperone ClpX weakens the very tight binding of the transpososome to the Mu ends, host disassembly factors (MRFalpha-DF) promote the dissociation of the transpososome from the DNA template and the assembly of a new nucleoprotein complex. Prereplisome factors (MRFalpha-PR) further alter the complex, allowing PriA binding and loading of major replicative helicase DnaB onto the template promoted by the restart proteins. MRFalpha-PR is essential for DnaB loading by restart proteins even on the deproteinized Mu fork whereas MRFalpha-DF is not required on the deproteinized template. When the transition from transpososome to replisome was reconstituted using MRFalpha-DF and MRFalpha-PR, initiation of Mu DNA replication was strictly dependent upon added PriC and PriA helicase. In contrast, initiation on the deproteinized template was predominantly dependent upon PriB and did not require PriA's helicase activity. The results indicate that transition mechanisms beginning with the transpososome disassembly can determine the pathway of replisome assembly by restart proteins.
Collapse
Affiliation(s)
- Stella H North
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Room 331 Basic Science Bldg., 3900 Reservoir Road NW, Washington, DC 20057-1455, USA
| | | |
Collapse
|
9
|
Galletto R, Jezewska MJ, Bujalowski W. Interactions of the Escherichia coli DnaB helicase hexamer with the replication factor the DnaC protein. Effect of nucleotide cofactors and the ssDNA on protein-protein interactions and the topology of the complex. J Mol Biol 2003; 329:441-65. [PMID: 12767828 DOI: 10.1016/s0022-2836(03)00435-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Quantitative studies of interactions between the Escherichia coli replication factor DnaC protein and the DnaB helicase have been performed using sedimentation velocity and fluorescence energy transfer techniques. The applied novel analysis of the sedimentation data allows us to construct thermodynamic rigorous binding isotherms without any assumption as to the relationship between the observed molecular property of the complexes formed, the average sedimentation coefficient, or the degree of binding. Experiments have been performed with the fluorescein-modified DnaB helicase, which allows an exclusive monitoring of the DnaB-DnaC complex formation. The DnaC binding to the unmodified helicase has been characterized in competition experiments. The data establish that, in the presence of the ATP analog AMP-PNP, or ADP, a maximum of six DnaC monomers bind cooperatively to the DnaB hexamer. The positive cooperative interactions are limited to the two neighboring DnaC molecules. Analyses using a statistical thermodynamic hexagon model indicate that, under the solution conditions examined, the affinity is characterized by the intrinsic binding constant K=1.4(+/-0.5)x10(5)M(-1) and cooperativity parameter sigma=21+/-5. These data suggest strongly that the DnaC-DnaB complex exists in vivo as a mixture of complexes with a different number of bound DnaC molecules, although the complex with six DnaC molecules bound dominates the distribution. The DnaC nucleotide-binding site is not involved in the stabilization of the complex. Moreover, the hydrolysis of NTP bound to the helicase or the DnaC is not required for the release of the DnaC protein from the complex. The single-stranded DNA (ssDNA) bound to the helicase does not affect the DnaC protein binding. However, in the presence of the DNA, there is a significant difference in the energetics and structure of the ternary complex, DnaC-DnaB-ssDNA, formed in the presence of AMP-PNP as compared to ADP. The topology of the ternary complex DnaC-DnaB-ssDNA has been determined using the fluorescence energy transfer method. In solution, the DnaC protein-binding site is located on the large 33 kDa domain of the DnaB helicase. The significance of the results in the functioning of the DnaB helicase-DnaC protein complex is discussed.
Collapse
Affiliation(s)
- Roberto Galletto
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1053, USA
| | | | | |
Collapse
|
10
|
Konieczny I. Strategies for helicase recruitment and loading in bacteria. EMBO Rep 2003; 4:37-41. [PMID: 12524518 PMCID: PMC1315803 DOI: 10.1038/sj.embor.embor703] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 10/31/2002] [Indexed: 11/10/2022] Open
Abstract
DNA replication initiation in prokaryotes and eukaryotes requires the recruitment and loading of a helicase at the replication origin. To subsequently unwind the double-stranded DNA, the helicase must be properly positioned on the separated DNA strands. Several studies have revealed similarities and differences in the mechanisms used by different autonomously replicating DNA elements (replicons) for recruitment and activation of the appropriate helicase. Of particular interest are plasmid replicons that are adapted for replication in diverse bacterial hosts and are therefore intriguingly able to exploit the helicases of distantly related bacterial species. The different molecular mechanisms by which replicons recruit and load helicases are only just beginning to be understood.
Collapse
Affiliation(s)
- Igor Konieczny
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 24 Kladki, Poland.
| |
Collapse
|
11
|
Carr KM, Kaguni JM. Escherichia coli DnaA protein loads a single DnaB helicase at a DnaA box hairpin. J Biol Chem 2002; 277:39815-22. [PMID: 12161435 DOI: 10.1074/jbc.m205031200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular engine that drives bidirectional replication fork movement from the Escherichia coli replication origin (oriC) is the replicative helicase, DnaB. At oriC, two and only two helicase molecules are loaded, one for each replication fork. DnaA participates in helicase loading; DnaC is also involved, because it must be in a complex with DnaB for delivery of the helicase. Since DnaA induces a local unwinding of oriC, one model is that the limited availability of single-stranded DNA at oriC restricts the number of DnaB molecules that can bind. In this report, we determined that one DnaB helicase or one DnaB-DnaC complex is bound to a single-stranded DNA in a biologically relevant DNA replication system. These results indicate that the availability of single-stranded DNA is not a limiting factor and support a model in which the site of entry for DnaB is altered so that it cannot be reused. We also show that 2-4 DnaA monomers are bound on the single-stranded DNA at a specific site that carries a DnaA box sequence in a hairpin structure.
Collapse
Affiliation(s)
- Kevin M Carr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
12
|
Soultanas P. A functional interaction between the putative primosomal protein DnaI and the main replicative DNA helicase DnaB in Bacillus. Nucleic Acids Res 2002; 30:966-74. [PMID: 11842108 PMCID: PMC100333 DOI: 10.1093/nar/30.4.966] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Gram negative Escherichia coli there are two well-characterised primosomal assembly processes, the PriA- and DnaA-mediated cascades. The presence of PriA and DnaA proteins in Gram positive Bacillus spp. supports the assumption that both the PriA- and DnaA-mediated primosomal assembly cascades also operate in these organisms. However, the lack of sequence homology between the rest of the primosomal proteins indicates significant differences between these two bacterial species. Central to the process of primosomal assembly is the loading of the main hexameric replicative helicase (DnaB in E.coli and DnaC in Bacillus subtilis) on the DNA. This loading is achieved by specialised proteins known as 'helicase loaders'. In E.coli DnaT and DnaC are responsible for loading DnaB onto the DNA during primosome assembly, in the PriA- and DnaA-mediated cascades, respectively. In Bacillus the identity of the helicase loader is still not established unequivocally. In this paper we provide evidence for a functional interaction between the primosomal protein DnaI from B.subtilis and the main hexameric replicative helicase DnaB from Bacillus stearothermophilus. Our results are consistent with the putative role of DnaI as the 'helicase loader' in the Gram positive Bacillus spp.
Collapse
Affiliation(s)
- P Soultanas
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
13
|
Ludlam AV, McNatt MW, Carr KM, Kaguni JM. Essential amino acids of Escherichia coli DnaC protein in an N-terminal domain interact with DnaB helicase. J Biol Chem 2001; 276:27345-53. [PMID: 11333269 DOI: 10.1074/jbc.m101940200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli DnaC protein bound to ATP forms a complex with DnaB protein. To identify the domain of DnaC that interacts with DnaB, a genetic selection was used based on the lethal effect of induced dnaC expression and a model that inviability arises by the binding of DnaC to DnaB to inhibit replication fork movement. The analysis of dnaC alleles that preserved viability under elevated expression revealed an N-terminal domain of DnaC involved in binding to DnaB. Mutant proteins bearing single amino acid substitutions (R10P, L11Q, L29Q, S41P, W32G, and L44P) that reside in regions of predicted secondary structure were inert in DNA replication activity because of their inability to bind to DnaB, but they retained ATP binding activity, as indicated by UV cross-linking to [alpha-(32)P]ATP. These alleles also failed to complement a dnaC28 mutant. Other selected mutations that map to regions carrying Walker A and B boxes are expected to be defective in ATP binding, a required step in DnaB-DnaC complex formation. Lastly, we found that the sixth codon from the N terminus encodes aspartate, resolving a reported discrepancy between the predicted amino acid sequence based on DNA sequencing data and the results from N-terminal amino acid sequencing (Nakayama, N., Bond, M. W., Miyajima, A., Kobori, J., and Arai, K. (1987) J. Biol. Chem. 262, 10475-10480).
Collapse
Affiliation(s)
- A V Ludlam
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
14
|
Nakai H, Doseeva V, Jones JM. Handoff from recombinase to replisome: insights from transposition. Proc Natl Acad Sci U S A 2001; 98:8247-54. [PMID: 11459960 PMCID: PMC37428 DOI: 10.1073/pnas.111007898] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage Mu replicates as a transposable element, exploiting host enzymes to promote initiation of DNA synthesis. The phage-encoded transposase MuA, assembled into an oligomeric transpososome, promotes transfer of Mu ends to target DNA, creating a fork at each end, and then remains tightly bound to both forks. In the transition to DNA synthesis, the molecular chaperone ClpX acts first to weaken the transpososome's interaction with DNA, apparently activating its function as a molecular matchmaker. This activated transpososome promotes formation of a new nucleoprotein complex (prereplisome) by yet unidentified host factors [Mu replication factors (MRF alpha 2)], which displace the transpososome in an ATP-dependent reaction. Primosome assembly proteins PriA, PriB, DnaT, and the DnaB--DnaC complex then promote the binding of the replicative helicase DnaB on the lagging strand template of the Mu fork. PriA helicase plays an important role in opening the DNA duplex for DnaB binding, which leads to assembly of DNA polymerase III holoenzyme to form the replisome. The MRF alpha 2 transition factors, assembled into a prereplisome, not only protect the fork from action by nonspecific host enzymes but also appear to aid in replisome assembly by helping to activate PriA's helicase activity. They consist of at least two separable components, one heat stable and the other heat labile. Although the MRF alpha 2 components are apparently not encoded by currently known homologous recombination genes such as recA, recF, recO, and recR, they may fulfill an important function in assembling replisomes on arrested replication forks and products of homologous strand exchange.
Collapse
Affiliation(s)
- H Nakai
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 331 Basic Science Building, 3900 Reservoir Road NW, Washington, DC 20007, USA.
| | | | | |
Collapse
|
15
|
Caspi R, Pacek M, Consiglieri G, Helinski DR, Toukdarian A, Konieczny I. A broad host range replicon with different requirements for replication initiation in three bacterial species. EMBO J 2001; 20:3262-71. [PMID: 11406602 PMCID: PMC150194 DOI: 10.1093/emboj/20.12.3262] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmid RK2 is unusual in its ability to replicate stably in a wide range of Gram-negative bacteria. The replication origin (oriV) and a plasmid-encoded initiation protein (TrfA; expressed as 33 and 44 kDa forms) are essential for RK2 replication. To examine initiation events in bacteria unrelated to Escherichia coli, the genes encoding the replicative helicase, DnaB, of Pseudomonas putida and Pseudomonas aeruginosa were isolated and used to construct protein expression vectors. The purified proteins were tested for activity along with E.coli DnaB at RK2 oriV. Each helicase could be recruited and activated at the RK2 origin in the presence of the host-specific DnaA protein and the TrfA protein. Escherichia coli or P.putida DnaB was active with either TrfA-33 or TrfA-44, while P.aeruginosa DnaB required TrfA-44 for activation. Moreover, unlike the E.coli DnaB helicase, both Pseudomonas helicases could be delivered and activated at oriV in the absence of an ATPase accessory protein. Thus, a DnaC-like accessory ATPase is not universally required for loading the essential replicative helicase at a replication origin.
Collapse
Affiliation(s)
- Ron Caspi
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Marcin Pacek
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Giac Consiglieri
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Donald R. Helinski
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Aresa Toukdarian
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Igor Konieczny
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| |
Collapse
|
16
|
Seitz H, Weigel C, Messer W. The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol Microbiol 2000; 37:1270-9. [PMID: 10972842 DOI: 10.1046/j.1365-2958.2000.02096.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The initiation of chromosome replication in Escherichia coli requires the recruitment of the replicative helicase DnaB from the DnaBC complex to the unwound region within the replication origin oriC, supported by the oriC-bound initiator protein DnaA. We defined physical contacts between DnaA and DnaB that involve residues 24-86 and 130-148 of DnaA and residues 154-210 and 1-156 of DnaB respectively. We propose that contacts between DnaA and DnaB occur via two interaction sites on each of the proteins. Interaction domain 24-86 of DnaA overlaps with its N-terminal homo-oligomerization domain (residues 1-86). Interaction domain 154-210 of DnaB overlaps or is contiguous with the domains known to interact with plasmid initiator proteins. Loading of the DnaBC helicase in vivo can only be performed by DnaA derivatives containing (in addition to residues 24-86 and the DNA-binding domain 4) a structurally intact domain 3. Nucleotide binding by domain 3 is, however, not required. The parts of DnaA required for replication of pSC101 were clearly different from those used for helicase loading. Domains 1 and 4 of DnaA, but not domain 3, were found to be involved in the maintenance of plasmid pSC101.
Collapse
Affiliation(s)
- H Seitz
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin-Dahlem, Germany
| | | | | |
Collapse
|
17
|
Odegrip R, Schoen S, Haggård-Ljungquist E, Park K, Chattoraj DK. The interaction of bacteriophage P2 B protein with Escherichia coli DnaB helicase. J Virol 2000; 74:4057-63. [PMID: 10756017 PMCID: PMC111919 DOI: 10.1128/jvi.74.9.4057-4063.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage P2 requires several host proteins for lytic replication, including helicase DnaB but not the helicase loader, DnaC. Some genetic studies have suggested that the loading is done by a phage-encoded protein, P2 B. However, a P2 minichromosome containing only the P2 initiator gene A and a marker gene can be established as a plasmid without requiring the P2 B gene. Here we demonstrate that P2 B associates with DnaB. This was done by using the yeast two-hybrid system in vivo and was confirmed in vitro, where (35)S-labeled P2 B bound specifically to DnaB adsorbed to Q Sepharose beads and monoclonal antibodies directed against the His-tagged P2 B protein were shown to coprecipitate the DnaB protein. Finally, P2 B was shown to stabilize the opening of a reporter origin, a reaction that is facilitated by the inactivation of DnaB. In this respect, P2 B was comparable to lambda P protein, which is known to be capable of binding and inactivating the helicase while acting as a helicase loader. Even though P2 B has little similarity to other known or predicted helicase loaders, we suggest that P2 B is required for efficient loading of DnaB and that this role, although dispensable for P2 plasmid replication, becomes essential for P2 lytic replication.
Collapse
Affiliation(s)
- R Odegrip
- Department of Genetics, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Mueser TC, Jones CE, Nossal NG, Hyde CC. Bacteriophage T4 gene 59 helicase assembly protein binds replication fork DNA. The 1.45 A resolution crystal structure reveals a novel alpha-helical two-domain fold. J Mol Biol 2000; 296:597-612. [PMID: 10669611 DOI: 10.1006/jmbi.1999.3438] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacteriophage T4 gene 59 helicase assembly protein is required for recombination-dependent DNA replication, which is the predominant mode of DNA replication in the late stage of T4 infection. T4 gene 59 helicase assembly protein accelerates the loading of the T4 gene 41 helicase during DNA synthesis by the T4 replication system in vitro. T4 gene 59 helicase assembly protein binds to both T4 gene 41 helicase and T4 gene 32 single-stranded DNA binding protein, and to single and double-stranded DNA. We show here that T4 gene 59 helicase assembly protein binds most tightly to fork DNA substrates, with either single or almost entirely double-stranded arms. Our studies suggest that the helicase assembly protein is responsible for loading T4 gene 41 helicase specifically at replication forks, and that its binding sites for each arm must hold more than six, but not more than 12 nucleotides. The 1.45 A resolution crystal structure of the full-length 217-residue monomeric T4 gene 59 helicase assembly protein reveals a novel alpha-helical bundle fold with two domains of similar size. Surface residues are predominantly basic (pI 9.37) with clusters of acidic residues but exposed hydrophobic residues suggest sites for potential contact with DNA and with other protein molecules. The N-terminal domain has structural similarity to the double-stranded DNA binding domain of rat HMG1A. We propose a speculative model of how the T4 gene 59 helicase assembly protein might bind to fork DNA based on the similarity to HMG1, the location of the basic and hydrophobic regions, and the site size of the fork arms needed for tight fork DNA binding. The fork-binding model suggests putative binding sites for the T4 gene 32 single-stranded DNA binding protein and for the hexameric T4 gene 41 helicase assembly.
Collapse
Affiliation(s)
- T C Mueser
- Laboratory of Structural Biology Research, Bldg. 6 Room B2-34A, National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, Bethesda, MD, 20892-2717, USA.
| | | | | | | |
Collapse
|
19
|
Konieczny I, Helinski DR. Helicase delivery and activation by DnaA and TrfA proteins during the initiation of replication of the broad host range plasmid RK2. J Biol Chem 1997; 272:33312-8. [PMID: 9407123 DOI: 10.1074/jbc.272.52.33312] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Specific binding of the plasmid-encoded protein, TrfA, and the Escherichia coli DnaA protein to the origin region (oriV) is required for the initiation of replication of the broad host range plasmid RK2. It has been shown that the DnaA protein which binds to DnaA boxes upstream of the TrfA-binding sites (iterons) cannot by itself form an open complex, but it enhances the formation of the open complex by TrfA (Konieczny, I., Doran, K. S., Helinski, D. R., Blasina, A. (1997) J. Biol. Chem. 272, 20173). In this study an in vitro replication system is reconstituted from purified TrfA protein and E. coli proteins. With this system, a specific interaction between the DnaA and DnaB proteins is required for delivery of the helicase to the RK2 origin region. Although the DnaA protein directs the DnaB-DnaC complex to the plasmid replication origin, it cannot by itself activate the helicase. Both DnaA and TrfA proteins are required for DnaB-induced template unwinding. We propose that specific changes in the nucleoprotein structure mediated by TrfA result in a repositioning of the DnaB helicase within the open origin region and an activation of the DnaB protein for template unwinding.
Collapse
Affiliation(s)
- I Konieczny
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA
| | | |
Collapse
|
20
|
Kruklitis R, Nakai H. Participation of the bacteriophage Mu A protein and host factors in the initiation of Mu DNA synthesis in vitro. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34030-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
22
|
Marszalek J, Kaguni J. DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37627-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
23
|
Marszalek J, Kaguni J. Defective replication activity of a dominant-lethal dnaB gene product from Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41779-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Allen G, Kornberg A. Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54538-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Scherzinger E, Haring V, Lurz R, Otto S. Plasmid RSF1010 DNA replication in vitro promoted by purified RSF1010 RepA, RepB and RepC proteins. Nucleic Acids Res 1991; 19:1203-11. [PMID: 1851552 PMCID: PMC333844 DOI: 10.1093/nar/19.6.1203] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have constructed and analyzed an in vitro system that will efficiently replicate plasmid RSF1010 and its derivatives. The system contains a partially purified extract from E.coli cells and three purified RSF1010-encoded proteins, the products of genes repA, repB (or mobA/repB), and repC. Replication in this system mimics the in vivo mechanism in that it (i) is initiated at oriV, the origin of vegetative DNA replication, (ii) proceeds in a population of plasmid molecules in both directions from this 396-base-pair origin region, and (iii) is absolutely dependent on the presence of each of the three rep gene products. In addition, we find that E.coli DNA gyrase, DnaZ protein (gamma subunit of poIIII holoenzyme) and SSB are required for in vitro plasmid synthesis. The bacterial RNA polymerase, the initiation protein DnaA, and the primosomal proteins DnaB, DnaC, DnaG and DnaT are not required. Furthermore, the replicative intermediates seen in the electron microscope suggest that replication in vitro begins with the simultaneous or non-simultaneous formation of two displacement loops that expand for a short stretch of DNA toward each other, and form a theta-type structure when the two displacing strands pass each other.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- Coliphages/metabolism
- DNA Helicases
- DNA Polymerase II/antagonists & inhibitors
- DNA Polymerase II/metabolism
- DNA Polymerase III
- DNA Replication
- DNA Topoisomerases, Type II/metabolism
- DNA, Bacterial/physiology
- DNA, Bacterial/ultrastructure
- DNA, Superhelical/physiology
- DNA, Superhelical/ultrastructure
- DNA, Viral/physiology
- DNA, Viral/ultrastructure
- DNA-Binding Proteins
- DNA-Directed RNA Polymerases/antagonists & inhibitors
- DNA-Directed RNA Polymerases/metabolism
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/enzymology
- Escherichia coli/metabolism
- Microscopy, Electron
- Plasmids
- Proteins
- Templates, Genetic
- Topoisomerase II Inhibitors
- Trans-Activators
Collapse
Affiliation(s)
- E Scherzinger
- Max-Planck-Institut für Molekulare Genetik, Abteilung Schuster, Berlin, FRG
| | | | | | | |
Collapse
|
26
|
Mallory JB, Alfano C, McMacken R. Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38298-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Wahle E, Lasken RS, Kornberg A. The dnaB-dnaC replication protein complex of Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81636-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Wahle E, Lasken RS, Kornberg A. The dnaB-dnaC replication protein complex of Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81637-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Marians KJ. Enzymology of DNA in replication in prokaryotes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 17:153-215. [PMID: 6097404 DOI: 10.3109/10409238409113604] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review stresses recent developments in the in vitro study of DNA replication in prokaryotes. New insights into the enzymological mechanisms of initiation and elongation of leading and lagging strand DNA synthesis in ongoing studies are emphasized. Data from newly developed systems, such as those replicating oriC containing DNA or which are dependent on the lambda, O, and P proteins, are presented and the information compared to existing mechanisms. Evidence bearing on the coupling of DNA synthesis on both parental strands through protein-protein interactions and on the turnover of the elongation systems are analyzed. The structure of replication origins, and how their tertiary structure affects recognition and interaction with the various replication proteins is discussed.
Collapse
|