1
|
Vázquez KRJ, López-Hernández J, García-Cárdenas E, Pelagio-Flores R, López-Bucio JS, Téxon AC, Ibarra-Laclette E, López-Bucio J. The plant growth promoting rhizobacterium Achromobacter sp. 5B1, rescues Arabidopsis seedlings from alkaline stress by enhancing root organogenesis and hormonal responses. Microbiol Res 2024; 281:127594. [PMID: 38211416 DOI: 10.1016/j.micres.2023.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Soil alkalinity is a critical environmental factor for plant growth and distribution in ecosystems. An alkaline condition (pH > 7) is imposed by the rising concentration of hydroxides and cations, and prevails in semiarid and arid environments, which represent more than 25% of the total arable land of the world. Despite the great pressure exerted by alkalinity for root viability and plant survival, scarce information is available to understand how root microbes contribute to alkaline pH adaptation. Here, we assessed the effects of alkalinity on shoot and root biomass production, chlorophyll content, root growth and branching, lateral root primordia formation, and the expression of CYCB1, TOR kinase, and auxin and cytokinin-inducible trangenes in shoots and roots of Arabidopsis seedlings grown in Petri plates with agar-nutrient medium at pH values of 7.0, 7.5, 8.0, 8.5, and 9.0. The results showed an inverse correlation between the rise of pH and most growth, hormonal and genetic traits analyzed. Noteworthy, root inoculation with Achromobacter sp. 5B1, a beneficial rhizospheric bacterium, with plant growth promoting and salt tolerance features, increased biomass production, restored root growth and branching and enhanced auxin responses in WT seedlings and auxin-related mutants aux1-7 and eir1, indicating that stress adaptation operates independently of canonical auxin transporter proteins. Sequencing of the Achromobacter sp. 5B1 genome unveiled 5244 protein-coding genes, including genes possibly involved in auxin biosynthesis, quorum-sensing regulation and stress adaptation, which may account for its plant growth promotion attributes. These data highlight the critical role of rhizobacteria to increase plant resilience under high soil pH conditions potentially through genes for adaptation to an extreme environment and bacteria-plant communication.
Collapse
Affiliation(s)
- Kirán Rubí Jiménez Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico
| | - José López-Hernández
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzuntzan 173; Col. Matamoros, 58240 Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- Catedrático CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico
| | - Anahí Canedo Téxon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, C.P. 91070, Xalapa, Ver, Mexico; Departamento de la Conservación de la Biodiversidad, El Colegio de la Frontera Sur., Carretera Villahermosa-Reforma Km 15.5, Ranchería el Guineo, Sección II C.P., 86280 Villahermosa, Tabasco, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, C.P. 91070, Xalapa, Ver, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico.
| |
Collapse
|
2
|
Mano Y, Nemoto K, Suzuki M, Seki H, Fujii I, Muranaka T. The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:25-32. [PMID: 19887500 DOI: 10.1093/jxb/erp292] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Novel genes that function in the conversion of indole-3-acetamide (IAM) into indole-3-acetic acid (IAA), which were previously thought to exist only in the bacterial genome, have been isolated from plants. The finding of the AtAMI1 gene in Arabidopsis thaliana and the NtAMI1 gene in Nicotiana tabacum, which encode indole-3-acetamide hydrolase, indicates the existence of a new pathway for auxin biosynthesis in plants. This review summarizes the characteristics of these genes involved in auxin biosynthesis and discusses the possibility of the AMI1 gene family being widely distributed in the plant kingdom. Its evolutionary relationship to bacterial indole-3-acetamide hydrolase, based on phylogenetic analyses, is also discussed.
Collapse
Affiliation(s)
- Yoshihiro Mano
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
Maor R, Haskin S, Levi-Kedmi H, Sharon A. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 2004; 70:1852-4. [PMID: 15006816 PMCID: PMC368304 DOI: 10.1128/aem.70.3.1852-1854.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene utilizes external tryptophan to produce indole-3-acetic acid (IAA) through the intermediate indole-3-acetamide (IAM). We studied the effects of tryptophan, IAA, and IAM on IAA biosynthesis in fungal axenic cultures and on in planta IAA production by the fungus. IAA biosynthesis was strictly dependent on external tryptophan and was enhanced by tryptophan and IAM. The fungus produced IAM and IAA in planta during the biotrophic and necrotrophic phases of infection. The amounts of IAA produced per fungal biomass were highest during the biotrophic phase. IAA production by this plant pathogen might be important during early stages of plant colonization.
Collapse
Affiliation(s)
- Rudy Maor
- Department of Plant Sciences, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
4
|
Abstract
Agrobacterium tumefaciens C58F is a variant of strain C58 which generates a high proportion of avirulent mutants in the presence of the virulence (vir) gene inducer acetosyringone. These mutants are altered in the Ti plasmid and do not respond to the acetosyringone signal (C. Fortin, E. W. Nester, and P. Dion, J. Bacteriol. 174:5676-5685, 1992). The physical organization of the Ti plasmid was compared in strain C58 and its variant. One feature distinguishing pTiC58F from its parent plasmid was the presence of the insertion element IS426. Three copies of this element were detected in the strain C58 chromosome, whereas two additional copies were found in strain C58F, including one copy in the Ti plasmid. This particular copy of IS426 was associated with the region of arginine and nopaline catabolism of pTiC58F. Most of the avirulent mutants recovered following growth of strain C58F in the presence of acetosyringone were complemented by clones carrying either virA or virG. Element IS426 was no longer found in the arginine and nopaline catabolism region of the Ti plasmids from the virA and virG mutants, but it resided in the particular KpnI fragment containing the modified vir locus. Behavior of a strain C58F derivative, which was inactivated in a chromosomal component required for the response to acetosyringone, was consistent with the possibility that vir gene induction is essential to the massive production of avirulent mutants.
Collapse
Affiliation(s)
- C Fortin
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
5
|
Fedoroff NV, Smith DL. A versatile system for detecting transposition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1993; 3:273-89. [PMID: 8220445 DOI: 10.1111/j.1365-313x.1993.tb00178.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The maize transposable element Activator (Ac) has been shown to be active in a number of dicots, including Arabidopsis thaliana, whose small genome and short generation time have favored its wide adoption as a model organism for molecular genetic approaches to plant physiology and development. Using the Ac element and several bacterial and plant marker genes, we have devised a versatile system for identifying plants in which a transposon has excised and reinserted elsewhere in the genome. The transposons have been designed to facilitate the identification of insertions downstream of promoters and in the vicinity of enhancers by the inclusion of a beta-glucuronidase (GUS) gene either lacking a promoter or having a minimal promoter sequence. The system permits the transposon and the source of transposase to be maintained either stably in separate plants or in the same plant. Plants in which transposition is occurring can be identified by the frequent somatic activation of the GUS gene. The herbicide chlorsulfuron is used as a selective agent to identify progeny plants in which the transposon has excised from its original insertion site within a chlorsulfuron-resistant acetolactate synthase gene. Additional selectable markers permit the identification of plants containing a transposed element, but lacking transposase. Here we describe our initial characterization of the system and demonstrate its reliability and efficiency in identifying plants with transposed elements.
Collapse
Affiliation(s)
- N V Fedoroff
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210
| | | |
Collapse
|
6
|
Feng XH, Dube SK, Bottino PJ, Kung SD. Restoration of shooty morphology of a nontumorous mutant of Nicotiana glauca x N. langsdorffii by cytokinin and the isopentenyltransferase gene. PLANT MOLECULAR BIOLOGY 1990; 15:407-20. [PMID: 2103461 DOI: 10.1007/bf00019158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The shooty morphology of a nontumorous amphidiploid mutant of Nicotiana glauca Grah. x N. langsdorffii Weinm. was restored by cytokinins, whether exogenously applied or endogenously produced by transformation of the mutant with a transfer DNA (T-DNA) cytokinin-biosynthesis gene (isopentenyltransferase; ipt). Auxins alone did not confer this effect. Similar transformation was not achieved for the parental species. In the case of transformation with the ipt gene, selection of the transformed tissues was based on its hormone-independent growth in the presence of the antibiotic kanamycin. Transformed tissues exhibited a shooty morphology, indistinguishable from that of wildtype genetic tumors N. glauca x N. langsdorffii. This altered phenotype was caused by the presence and constitutive expression of the ipt gene. The insertion and expression of this gene in transformed tissues was confirmed by using the polymerase chain reaction (PCR) technique as well as conventional molecular hybridization analysis. Expression of the ipt gene led to an elevated level of cytokinin in the transformed mutant tissues. This evidence supports the notion that genetic tumors are caused, at least in part, by elevated levels of cytokinin in interspecific hybrids.
Collapse
Affiliation(s)
- X H Feng
- Center for Agricultural Biotechnology, University of Maryland, College Park 20742
| | | | | | | |
Collapse
|
7
|
Bonnard G, Vincent F, Otten L. Sequence and distribution of IS866, a novel T region-associated insertion sequence from Agrobacterium tumefaciens. Plasmid 1989; 22:70-81. [PMID: 2550985 DOI: 10.1016/0147-619x(89)90037-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have identified a new insertion sequence, IS866, located in the auxin synthesis gene TA iaaH of Tm4, a wide host range biotype III octopine/cucumopine type Agrobacterium tumefaciens strain with two T regions on its tumor-inducing (Ti) plasmid, TA, and TB. IS866 is 2716 bp long, has inverted repeats of 27 bp with three mismatches, and generates 8-bp direct repeats upon integration. In addition to IS866, pTiTm4 carries two copies of a related element, IS867, associated with TA and TB, respectively. A systematic study of 92 virulent Agrobacterium strains has shown that among the three biotypes all octopine/cucumopine and vitopine biotype III isolates contain IS866-like elements. The various octopine/cucumopine Ti plasmids always carry IS866 and IS867 at the same position as in pTiTm4. The chromosomes of the bacteria which contain these Ti plasmids also carry IS866 and IS867 copies but in varying numbers and locations.
Collapse
Affiliation(s)
- G Bonnard
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| | | | | |
Collapse
|
8
|
De Meirsman C, Croes C, Desair J, Verreth C, Van Gool A, Vanderleyden J. Identification of insertion sequence element IS427 in pTiT37 plasmid DNA of an Agrobacterium tumefaciens T37 isolate. Plasmid 1989; 21:129-37. [PMID: 2544912 DOI: 10.1016/0147-619x(89)90056-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The isolation and characterization of an insertion sequence (IS) element, IS427, from Agrobacterium tumefaciens T37 is described. IS427 is present in three nonidentical copies on the pTiT37 plasmid. The copy that was isolated through transposition on the entrapment vector pUCD800 contains at its ends a 16-bp imperfect inverted repeat and generates a 2-bp duplication of the target DNA. IS427 does not show homology with previously characterized IS elements of A. tumefaciens, based on hybridization experiments and/or sequence comparison.
Collapse
Affiliation(s)
- C De Meirsman
- F. A. Janssens Memorial Laboratory for Genetics, University of Leuven,Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Nutter R, Everett N, Pierce D, Panganiban L, Okubara P, Lachmansingh R, Mascarenhas D, Welch H, Mettler I, Pomeroy L, Johnson J, Howard J. Factors affecting the level of kanamycin resistance in transformed sunflower cells. PLANT PHYSIOLOGY 1987; 84:1185-92. [PMID: 16665582 PMCID: PMC1056749 DOI: 10.1104/pp.84.4.1185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A 230 base pair DNA segment containing the sequences 5' to the 700 to 750 nucleotide (nt) transcript 7' (ORF 3; RF Barker, KB Idler, DV Thompson, JD Kemp 1983 Plant Mol Biol 2: 335-350) of the octopine tumor inducing plasmid pTiA6 has been isolated. This region has (a) 180 base pairs of DNA upstream of the TATA box, (b) the start of RNA synthesis, and (c) the entire 5' untranslated region of the gene. We have fused this presumed promoter fragment to the neomycin phosphotransferase II (NPTII) gene from Tn5 in a plant expression cassette. After recombination into a tumor inducing plasmid delivery plasmid, this cassette confers selectable kanamycin resistance to transformed sunflower cells. Removal of the out-of-frame ATG in the 5' leader sequence of the NPTII gene by two different modifications increased both the levels of NPTII enzyme activity and the ID(50) for kanamycin in the tumor cells. The promoter region of the transcript 7 gene gives levels of kanamycin resistance equivalent to the nopaline synthase promoter and octopine synthase promoter when used in the same constructions and assayed in the same tissues.
Collapse
Affiliation(s)
- R Nutter
- Department of Agricultural Biotechnology, Stauffer Chemical Company, Richmond, California 94804
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Binns AN, Labriola J, Black RC. Initiation of auxin autonomy in Nicotiana glutinosa cells by the cytokinin-biosynthesis gene from Agrobacterium tumefaciens. PLANTA 1987; 171:539-548. [PMID: 24225718 DOI: 10.1007/bf00392304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/1987] [Accepted: 04/10/1987] [Indexed: 06/02/2023]
Abstract
Agrobacteria carrying mutations at the auxin-biosynthesizing loci (iaaH and iaaM of the Ti plasmid) induce shoot-forming tumors on many plant species. In some cases, e.g. Nicotiana glutinosa L., tumors induced by such mutant strains exhibit an unorganized and fully autonomous phenotype. These characteristics are stable in culture at both the tissue and cellular level. We demonstrate that the cytokinin-biosynthesis gene (ipt) of the Ti plasmid is responsble for the induction of both auxin and cytokinin autonomy in N. glutinosa. Cloned cell lines carrying an ipt gene but lacking iaaH and iaaM are capable of accumulating indole-3-acetic acid. Interestingly, non-transformed N. glutinosa tissues exhibit an auxin-requiring phenotype when they are grown on medium supplemented with an exogenous supply of cytokinin. These results strongly indicate that exogenously supplied cytokinin does not mimic all the effects of the expression of the ipt gene in causing the auxin-autonomous growth of N. glutinosa cells.
Collapse
Affiliation(s)
- A N Binns
- Department of Biology, University of Pennsylvania, 19104-6018, Philadelphia, PA
| | | | | |
Collapse
|
11
|
Trifonov EN. Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16 S rRNA nucleotide sequences. J Mol Biol 1987; 194:643-52. [PMID: 2443708 DOI: 10.1016/0022-2836(87)90241-5] [Citation(s) in RCA: 179] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein coding sequences carry an additional message in the form of a universal three-base periodical pattern (G-non-G-N)n, which is expressed as a strong preference for guanines in the first positions of the codons in mRNA and lack of guanines in the second positions. This periodicity appears immediately after the initiation codon and is maintained along the mRNA as far as the termination triplet, where it disappears abruptly. Known cases of ribosome slippage during translation (leaky frameshifts, out-of-frame gene fusion) are analyzed. At the sites of the slippage the G-periodical pattern is found to be interrupted. It reappears downstream from the slippage sites, in a new frame that corresponds to the new translation frame. This suggests that the (G-non-G-N)n pattern in the mRNA may be responsible for monitoring the correct reading frame during translation. Several sites with complementary C-periodical structure are found in the Escherichia coli 16 S rRNA sequence. Only three of them are exposed to various interactions at the surface of the small ribosomal subunit: (517)gcCagCagCegC, (1395)caCacCgcC and (1531)auCacCucC. A model of a frame-monitoring mechanism is suggested based on the weak complementarity of G-periodical mRNA to the C-periodical sites in the ribosomal RNA. The model is strongly supported by the fact that the hypothetical frame-monitoring sites in the 16 S rRNA that are derived from the nucleotide sequence analysis are also the only sites known to be actually involved or implicated in rRNA-mRNA interactions.
Collapse
Affiliation(s)
- E N Trifonov
- Department of Polymer Research, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Pengelly WL, Vijayaraghavan SJ, Sciaky D. Neoplastic progression in crown gall in tobacco without elevated auxin levels. PLANTA 1986; 169:454-461. [PMID: 24232660 DOI: 10.1007/bf00392144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/1986] [Accepted: 07/21/1986] [Indexed: 06/02/2023]
Abstract
We have isolated two stable variants from a crown-gall teratoma tissue of tobacco (Nicotiana tabacum L.) transformed by Agrobacterium tumefaciens strain A66, a mutant of the virulent A6 strain containing an insertion sequence in the tumor-inducing (Ti) plasmid at the locus coding for auxin biosynthesis. Normally tobacco cells transformed by strain A66 spontaneously form shoots in culture and will not grow on hormone-free medium unless shoots develop. The variant tissue lines, isolated from the teratoma tissue after prolonged culture in the dark, grew as friable and unorganized tissues on hormone-free growth medium. Growth of the variants was more sensitive to auxin feeding than growth of the parental teratoma line, and the auxin dose-response curves of the variant lines were similar to those obtained with A6-transformed tobacco cells. Southern blot analysis of DNA from the parental teratoma line and one of the variants showed no differences in copy number or organization of the oncogenic DNA sequence (T-DNA) transferred from the bacterium, indicating that the variant phenotype did not result from reversion of the A66 mutation. Radio-immunoassay analysis showed similar levels of indole-3-acetic acid (IAA) in the variants and parental teratoma line (3-50 and 38-42 pmol·(gFW)(-1), respectively), whereas an A6-transformed cell line contained much higher IAA levels (150-1200 pmol·(g FW)(-1)). Low levels of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid in the variants and the parental teratoma line (<5 nmol·(g FW)(-1)) as compared with that found in the A6-transformed line (>100 nmol· (g FW)(-1)) provided additional, indirect evidence for low auxin levels in the variant lines. These results indicate that crown-gall teratoma tissues of tobacco may switch to the unorganized, auxin-sensitive phenotype without an increase in auxin content.
Collapse
Affiliation(s)
- W L Pengelly
- Department of Chemical, Biological, and Environmental Sciences, Oregon Graduate Center, 19600 N.W. Von Neumann Drive, 97006, Beaverton, OR
| | | | | |
Collapse
|
13
|
Lacks SA, Mannarelli BM, Springhorn SS, Greenberg B. Genetic basis of the complementary DpnI and DpnII restriction systems of S. pneumoniae: an intercellular cassette mechanism. Cell 1986; 46:993-1000. [PMID: 3019562 DOI: 10.1016/0092-8674(86)90698-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells of S. pneumoniae contain either DpnI, a restriction endonuclease that cleaves only the methylated DNA sequence 5'-GmeATC-3', or DpnII, which cleaves the same sequence when not methylated. A chromosomal DNA segment containing DpnII genes was cloned in S. pneumoniae. Nucleotide sequencing of this segment revealed genes encoding the methylase and endonuclease and a third protein of unknown function. When the plasmid was introduced into DpnI cells, recombination during chromosomal facilitation of its establishment substituted genes encoding the DpnI endonuclease and another protein in place of the DpnII genes. DNA hybridization and sequencing showed that the DpnI and DpnII segments share homology on either side but not between themselves or with other regions of the chromosome. Thus, the complementary restriction systems are found on nonhomologous and mutually exclusive cassettes that can be inserted into a particular point in the chromosome of S. pneumoniae on the basis of neighboring homology.
Collapse
|
14
|
Vanderleyden J, Desair J, De Meirsman C, Michiels K, Van Gool AP, Chilton MD, Jen GC. Nucleotide sequence of an insertion sequence (IS) element identified in the T-DNA region of a spontaneous variant of the Ti-plasmid pTiT37. Nucleic Acids Res 1986; 14:6699-709. [PMID: 3018677 PMCID: PMC311674 DOI: 10.1093/nar/14.16.6699] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have identified and determined the nucleotide sequence of an IS element (IS136) of Agrobacterium tumefaciens. This is the first IS element isolated and sequenced from a nopaline type Ti-plasmid. Our IS element has 32/30 bp inverted repeats with 6 mismatches, is 1,313 bp long and generates 9 bp direct repeats upon integration. IS136 has 3 main open reading frames (ORF's). Only ORF1 (159 codons) is preceded by sequences that are proposed to serve functional roles in transcriptional and translational initiation. No DNA sequence homology was found between IS136 and IS66, an IS element isolated from an octopine type Ti-plasmid.
Collapse
|
15
|
Goodman TC, Montoya AL, Williams S, Chilton MD. Sustained ethylene production in Agrobacterium-transformed carrot disks caused by expression of the T-DNA tms gene products. J Bacteriol 1986; 167:387-8. [PMID: 3722126 PMCID: PMC212889 DOI: 10.1128/jb.167.1.387-388.1986] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Agrobacterium-infected carrot disks continually produced elevated levels of ethylene. Ethylene production was mediated by the elevated levels of auxin synthesized in transformed tissues.
Collapse
|
16
|
Vijayaraghavan SJ, Pengelly WL. Bound auxin metabolism in cultured crown-gall tissues of tobacco. PLANT PHYSIOLOGY 1986; 80:315-21. [PMID: 16664620 PMCID: PMC1075111 DOI: 10.1104/pp.80.2.315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bound auxin metabolism in cultured crown-gall tumor cells and pith callus of tobacco was examined by feeding radiolabeled auxins and auxin conjugates. In all tissues fed [(14)C]indoleacetic acid (IAA), at least one-third of the IAA was decarboxylated, and most of the remaining radiolabel occurred in a compound(s) which did not release IAA with alkaline hydrolysis. In cells transformed by the A6 strain of Agrobacterium tumefaciens, the only detectable IAA conjugate was indole-3-acetylaspartic acid (IAAsp), whereas cells transformed by the gene 2 mutant strain A66 produced an unidentified amide conjugate but no IAAsp. By contrast, cells fed [(14)C]naphthaleneacetic acid (NAA) accumulated several amide and ester conjugates. The major NAA metabolite in A6-transformed cells was naphthaleneacetylaspartic acid (NAAsp), whereas the major metabolites in A66-transformed cells were NAA esters. In addition, A66-transformed cells produced an amide conjugate of NAA which was not found in A6-transformed cells and which showed chromatographic properties similar to the unknown IAA conjugate. Pith callus fed [(14)C] NAA differed from both tumor lines in that it preferentially accumulated amide conjugates other than NAAsp. Differences in the accumulation of IAA and NAA conjugates were attributed in part to the high capacity of tobacco cells to oxidize IAA and in part to the specificity of bound auxin hydrolases. All tissues readily metabolized IAAsp and indole-3-acetyl-myo-inositol, but hydrolyzed NAAsp very slowly. Indirect evidence is provided which suggests that ester conjugates of NAA are poorly hydrolyzed as well. Analysis of tissues fed [(14)C]NAA together with high concentrations of unlabeled IAA or NAA indicates that tissue-specific differences in NAA metabolism were not the result of variation in endogenous auxin levels. Our results support the view that bound auxin hydrolysis is highly specific and an important factor controlling bound auxin accumulation.
Collapse
Affiliation(s)
- S J Vijayaraghavan
- Department of Chemical, Biological, and Environmental Sciences, Oregon Graduate Center, Beaverton, Oregon 97006-1999
| | | |
Collapse
|
17
|
Black RC, Kuleck GA, Binns AN. The Initiation of Auxin Autonomy in Tissue from Tobacco Plants Carrying the Auxin Biosynthesizing Genes from the T-DNA of Agrobacterium tumefaciens. PLANT PHYSIOLOGY 1986; 80:145-51. [PMID: 16664572 PMCID: PMC1075073 DOI: 10.1104/pp.80.1.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tobacco (Nicotiana tabacum cv Havana 425) plants containing the indole-3-acetic acid biosynthesizing genes (1 and 2) from the T-DNA of Agrobacterium tumefaciens strain T37-ADH(2) (mutated at the cytokinin biosynthesis gene 4) were used to study the physiological basis of the suppression and reinitiation of the auxin autonomous phenotype. The plants, though normal in appearance and cross-fertile with nontransformed, wild type tobacco, are shown to contain multiple copies of genes 1 and 2. Plants carrying these genes respond to inoculation by Agrobacterium strains mutated at genes 1 and 2 in a virulent fashion. Despite the presence and potential in planta activity of these genes, pith explants from such plants require auxin or tryptophan for growth in vitro, as does wild type tobacco. In both cases the indole-3-acetic acid levels increase rapidly in pith explants cultured on tryptophan-containing medium. However, only the tissues containing genes 1 and 2 grow subsequently on auxin-free medium and accumulate indole-3-acetic acid to levels that support growth. The capacity of such tissues to utilize naphthalene acetamide as an auxin suggests that gene 2 is rapidly activated during the reinitiation process.
Collapse
Affiliation(s)
- R C Black
- Department of Biology, Pennsylvania State University, Media, Pennsylvania 19063
| | | | | |
Collapse
|
18
|
Kemper E, Wafenschmidt S, Weiler EW, Rausch T, Schröder J. T-DNA-encoded auxin formation in crown-gall cells. PLANTA 1985; 163:257-62. [PMID: 24249348 DOI: 10.1007/bf00393516] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/1984] [Accepted: 07/24/1984] [Indexed: 05/03/2023]
Abstract
The T-region of Ti plasmids expresses two genes (No. 1 and 2) in crown-gall cells which are essential for auxin effects. It has been shown that gene 2 (=IaaH) codes for an amidohydrolase which converts indole-3-acetamide into indole-3-acetic acid and which is functional in bacteria and in crown-gall cells (Schröder et al. (1984), Eur. J. Biochem. 138, 387-391). In this report we describe a quantitative assay for the enzyme and its application to analyze the properties of the enzyme as expressed in plant cells and in Escherichia coli. The enzyme requires no cofactors, and the temperature optimum (30-37°C), pH optimum (8.5-9.5), and Km (about 1 μM) were very similar in both systems. Besides indole-3-acetamide, the enzyme also hydrolyzed indole-3-acetonitrile, esters of indole-3-acetic acid with glucose and myo-inositol, a-naphthaleneacetamide, and phenylacetamide, indicating that it may have a general function in converting substances of low auxin activity into those with high auxin activity. The results are discussed in relation to the possible function of T-DNA gene 1 which cooperates with gene 2 in evoking auxin effects in crown-gall cells.
Collapse
Affiliation(s)
- E Kemper
- Abt. Schell, Max-Planck-Institut für Züchtungsforschung, D-5000, Köln 30
| | | | | | | | | |
Collapse
|
19
|
Abstract
When a DNA fragment containing a marker gene was ligated to random chromosomal fragments of Streptococcus pneumoniae and used to transform a recipient strain lacking that gene, the gene was integrated at various locations in the chromosome. Such ectopic integration was demonstrated for the malM gene, and its molecular basis was analyzed with defined donor molecules consisting of ligated fragments containing the malM and sul genes of S. pneumoniae. In a recipient strain deleted in the mal region of its chromosome, these constructs gave Mal+ transformants in which the malM and sul genes were now linked, with malM located between duplicate sul segments. Ectopic integration was unstable under nonselective conditions; mal(sul) ectopic insertions were lost at a rate of 0.05% per generation. Several possible mechanisms of ectopic integration were examined. The donor molecule is most likely to be a circular form of ligated homologous and nonhomologous fragments that, after entry into the cell, undergoes circular synapsis with the recipient chromosome at the site of homology, followed by repair and additive integration.
Collapse
|
20
|
Machida Y, Sakurai M, Kiyokawa S, Ubasawa A, Suzuki Y, Ikeda JE. Nucleotide sequence of the insertion sequence found in the T-DNA region of mutant Ti plasmid pTiA66 and distribution of its homologues in octopine Ti plasmid. Proc Natl Acad Sci U S A 1984; 81:7495-9. [PMID: 6095299 PMCID: PMC392173 DOI: 10.1073/pnas.81.23.7495] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The octopine tumor-inducing (Ti) plasmid pTiA66 has an insertion mutation in its T region (the DNA region incorporated into the plant genome) that results in the slow growth of crown gall tumors. These tumors exhibit hormonal autonomy different from that of the crown gall tumors caused by wild-type Ti plasmids. In the present study, the nucleotide sequences of both the DNA segment inserted into pTiA66 and its target site have been determined. The inserted segment is 2548 base pairs long and has 20-base-pair terminal inverted repeats. An 8-base-pair sequence at the target site is duplicated at both integration junctions. These structural features of the insert suggest that it is a bacterial insertion sequence (IS) element, which we have named IS66. Blot-hybridization analyses using IS66 probes revealed that genomes of octopine Ti plasmids contain at least three sequences homologous to IS66: two homologues are located in the virulence region and one is located between the left-hand (TL-DNA) and right-hand (TR-DNA) portions of T-DNA. The chromosome of Agrobacterium tumefaciens A66 also contains two sequences highly homologous to IS66. These results suggest that the mutant pTiA66 plasmid was generated by translocation of one of the sequences showing homology with IS66 into the T region. The fact that a sequence homologous to IS66 is present between TL-DNA and TR-DNA also suggests that the octopine T region was split into two portions, TL-DNA and TR-DNA, by translocation of IS66 or its relatives. Thus, IS66 may cause genetic and structural variations of the T region and the vir region of the octopine Ti plasmids.
Collapse
|
21
|
Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A 1984; 81:5994-8. [PMID: 6091129 PMCID: PMC391845 DOI: 10.1073/pnas.81.19.5994] [Citation(s) in RCA: 263] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Phytohormone overproduction in crown gall tumors is due to the expression of several T-DNA genes. The data strongly suggest that the tmr gene (transcript 4) is responsible for cytokinin overproduction by encoding dimethylallyl-pyrophosphate:AMP dimethylallyltransferase (DMA transferase), an enzyme directly involved in cytokinin biosynthesis. Cell-free extracts of Escherichia coli strains containing the tmr gene from pTiA6NC had DMA transferase activity. No activity was present in the control strain containing only the plasmid vector. The cytokinins synthesized were isopentenyladenine, isopentenyladenosine, and isopentenyladenosine 5'-monophosphate. DMA transferase activity was also detected in cloned crown gall tumors incited by Agrobacterium tumefaciens wild-type A6NC and a tms mutant. Enzymatic activity in cell-free extracts of E. coli and tumors could be abolished by transposon insertion within the tmr gene.
Collapse
|
22
|
Thomashow LS, Reeves S, Thomashow MF. Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci U S A 1984; 81:5071-5. [PMID: 6089175 PMCID: PMC391639 DOI: 10.1073/pnas.81.16.5071] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stable incorporation of tumor-inducing (Ti) plasmid sequences, the T-DNA, into the genomes of dicotyledonous plants results in the formation of crown gall tumors. Previous genetic studies have suggested that the products of the genes encoding transcripts 1 and 2, which are encoded by the TL-DNA region of pTiA6, are responsible for inducing the auxin-independent phenotype of crown gall tissues. Here we report the construction of a plasmid, pMTlacT2, which directs the synthesis of the Mr 49,800 polypeptide encoded by the transcript 2 gene. Cell-free extracts prepared from Escherichia coli harboring this plasmid converted indoleacetamide to indoleacetic acid, the natural auxin of plants; extracts prepared from plasmidless strains of E. coli or strains harboring the cloning vehicle pBR322 did not carry out this reaction. We conclude that the transcript 2 gene of pTiA6 codes for an enzyme that participates in auxin biosynthesis, probably an indoleacetamide hydrolase.
Collapse
|