1
|
Wu J, Wu J, Clabaugh G, Wang Y. Replication Studies of Alkyl Phosphotriester Lesions in Human Cells. Chem Res Toxicol 2024; 37:451-454. [PMID: 38417054 PMCID: PMC10947855 DOI: 10.1021/acs.chemrestox.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Alkyl phosphotriester (alkyl-PTE) lesions in DNA are shown to be poorly repaired; however, little is known about how these lesions impact DNA replication in human cells. Here, we investigated how the SP and RP diastereomers of four alkyl-PTE lesions (alkyl = Me, Et, nPr, or nBu) at the TT site perturb DNA replication in HEK293T cells. We found that these lesions moderately impede DNA replication and that their replicative bypass is accurate. Moreover, CRISPR-Cas9-mediated depletion of Pol η or Pol ζ resulted in significantly attenuated bypass efficiencies for both diastereomers of nPr- and nBu-PTE adducts, and the SP diastereomer of Et-PTE. Diminished bypass efficiencies were also detected for the Rp diastereomer of nPr- and nBu-PTE lesions upon ablation of Pol κ. Together, our study uncovered the impact of the alkyl-PTE lesions on DNA replication in human cells and revealed the roles of individual translesion synthesis DNA polymerases in bypassing these lesions.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Jiabin Wu
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| | - Garrit Clabaugh
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
2
|
Ma B, Villalta PW, Hochalter JB, Stepanov I, Hecht SS. Methyl DNA phosphate adduct formation in lung tumor tissue and adjacent normal tissue of lung cancer patients. Carcinogenesis 2020; 40:1387-1394. [PMID: 30873516 DOI: 10.1093/carcin/bgz053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 11/14/2022] Open
Abstract
The formation of methyl DNA adducts is a critical step in carcinogenesis initiated by the exposure to methylating carcinogens. Methyl DNA phosphate adducts, formed by methylation of the oxygen atoms of the DNA phosphate backbone, have been detected in animals treated with methylating carcinogens. However, detection of these adducts in human tissues has not been reported. We developed an ultrasensitive liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method for detecting methyl DNA phosphate adducts. Using 50 μg of human lung DNA, a limit of quantitation of two adducts/1010 nucleobases was achieved. Twenty-two structurally unique methyl DNA phosphate adducts were detected in human lung DNA. The adduct levels were measured in both tumor and adjacent normal tissues from 30 patients with lung cancer, including 13 current smokers and 17 current non-smokers, as confirmed by measurements of urinary cotinine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Levels of total methyl DNA phosphate adducts in normal lung tissues were higher in smokers than non-smokers, with an average of 13 and 8 adducts/109 nucleobases, respectively. Methyl DNA phosphate adducts were also detected in lung tissues from untreated rats with steady-state levels of 5-7 adducts/109 nucleobases over a period of 70 weeks. This is the first study to report the detection of methyl DNA phosphate adducts in human lung tissues. The results provide new insights toward using these DNA adducts as potential biomarkers to study human exposure to environmental methylating carcinogens.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Abstract
Genome integrity is constantly challenged by endogenous or exogenous genotoxic agents, which can give rise to various DNA adducts. After metabolic activation, tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) can lead to pyridyloxobutylphosphotriesters (POB-PTEs) in DNA. Here, we synthesized oligodeoxyribonucleotides containing a site-specifically inserted SP- or RP-POB-PTE flanked by two thymidines, and we examined the impact that these lesions have on DNA replication in Escherichia coli cells. We found that these two lesions are not strong impediments to DNA replication, and their replicative bypass is not modulated by genetic depletion of the three SOS-induced DNA polymerases or Ada protein. In addition, neither SP- nor RP-POB-PTEs was mutagenic in E. coli cells. Together, our study unveiled, for the first time, the influence of tobacco-specific nitrosamine-induced POB-PTE lesions on DNA replication in vivo.
Collapse
|
4
|
Wu J, Wang P, Wang Y. Cytotoxic and mutagenic properties of alkyl phosphotriester lesions in Escherichia coli cells. Nucleic Acids Res 2019. [PMID: 29514270 PMCID: PMC5934668 DOI: 10.1093/nar/gky140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exposure to many endogenous and exogenous agents can give rise to DNA alkylation, which constitutes a major type of DNA damage. Among the DNA alkylation products, alkyl phosphotriesters have relatively high frequencies of occurrence and are resistant to repair in mammalian tissues. However, little is known about how these lesions affect the efficiency and fidelity of DNA replication in cells or how the replicative bypass of these lesions is modulated by translesion synthesis DNA polymerases. In this study, we synthesized oligodeoxyribonucleotides containing four pairs (Sp and Rp) of alkyl phosphotriester lesions at a defined site, and examined how these lesions are recognized by DNA replication machinery in Escherichia coli cells. We found that the Sp diastereomer of the alkyl phosphotriester lesions could be efficiently bypassed, whereas the Rp counterparts moderately blocked DNA replication. Moreover, the Sp-methyl phosphotriester induced TT→GT and TT→GC mutations at the flanking TT dinucleotide site, and the induction of these mutations required Ada protein, which is known to remove efficiently the methyl group from the Sp-methyl phosphotriester. Together, our study provided a comprehensive understanding about the recognition of alkyl phosphotriester lesions by DNA replication machinery in cells, and revealed for the first time the Ada-dependent induction of mutations at the Sp-methyl phosphotriester site.
Collapse
Affiliation(s)
- Jiabin Wu
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, CA 92521-0403, USA
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, CA 92521-0403, USA
| |
Collapse
|
5
|
Li Y, Ma B, Cao Q, Balbo S, Zhao L, Upadhyaya P, Hecht SS. Mass Spectrometric Quantitation of Pyridyloxobutyl DNA Phosphate Adducts in Rats Chronically Treated with N'-Nitrosonornicotine. Chem Res Toxicol 2019; 32:773-783. [PMID: 30740971 DOI: 10.1021/acs.chemrestox.9b00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tobacco-specific carcinogens N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) require metabolic activation to exert their carcinogenicity. NNN and NNK are metabolized to the same reactive diazonium ions, which alkylate DNA forming pyridyloxobutyl (POB) DNA base and phosphate adducts. We have characterized the formation of both POB DNA base and phosphate adducts in NNK-treated rats and the formation of POB DNA base adducts in NNN-treated rats. However, POB DNA phosphate adducts in NNN-treated rats are still uncharacterized. In this study, we quantified the levels of POB DNA phosphate adducts in tissues of rats chronically treated with ( S)-NNN or ( R)-NNN for 10, 30, 50, and 70 weeks during a carcinogenicity study. The highest amounts of POB DNA phosphate adducts were observed in the esophagus of the ( S)-NNN-treated rats, with a maximum level of 5400 ± 317 fmol/mg DNA at 50 weeks. The abundance of POB DNA phosphate adducts in the esophagus was consistent with the results of the carcinogenicity study showing that the esophagus was the primary site of tumor formation from treatment with ( S)-NNN. Compared to the ( R)-NNN group, the levels of POB DNA phosphate adducts were higher in the oral mucosa, esophagus, and liver, while lower in the nasal mucosa of the ( S)-NNN-treated rats. Among 10 combinations of all isomers of POB DNA phosphate adducts, Ap(POB)C and combinations with thymidine predominated across all the rat tissues examined. In the primary target tissue, esophageal mucosa, Ap(POB)C accounted for ∼20% of total phosphate adducts in the ( S)-NNN treatment group throughout the 70 weeks, with levels ranging from 780 ± 194 to 1010 ± 700 fmol/mg DNA. The results of this study showed that POB DNA phosphate adducts were present in high levels and persisted in target tissues of rats chronically treated with ( S)- or ( R)-NNN. These results improve our understanding of DNA damage during NNN-induced carcinogenesis. The predominant POB DNA phosphate isomers observed, such as Ap(POB)C, may serve as biomarkers for monitoring chronic exposure of tobacco-specific nitrosamines in humans.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Bin Ma
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Qing Cao
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Silvia Balbo
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Virus Oncology, College of Life Science and Bioengineering , Beijing University of Technology , Beijing 100124 , China
| | - Pramod Upadhyaya
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Stephen S Hecht
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
6
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Upadhyaya P, Stepanov I, Hecht SS. Methyl DNA Phosphate Adduct Formation in Rats Treated Chronically with 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of Its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2018; 31:48-57. [PMID: 29131934 PMCID: PMC5770887 DOI: 10.1021/acs.chemrestox.7b00281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/29/2022]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in tobacco users. NNK is stereoselectively and reversibly metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a lung carcinogen. Both NNK and NNAL undergo metabolic activation by α-hydroxylation on their methyl groups to form pyridyloxobutyl and pyridylhydroxybutyl DNA base and phosphate adducts, respectively. α-Hydroxylation also occurs on the α-methylene carbons of NNK and NNAL to produce methane diazohydroxide, which reacts with DNA to form methyl DNA base adducts. DNA adducts of NNK and NNAL are important in their mechanisms of carcinogenesis. In this study, we characterized and quantified methyl DNA phosphate adducts in the lung of rats treated with 5 ppm of NNK, (S)-NNAL, or (R)-NNAL in drinking water for 10, 30, 50, and 70 weeks, by using a novel liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method. A total of 23, 21, and 22 out of 32 possible methyl DNA phosphate adducts were detected in the lung tissues of rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. Levels of the methyl DNA phosphate adducts were 2290-4510, 872-1120, and 763-1430 fmol/mg DNA, accounting for 15-38%, 8%, and 5-9% of the total measured DNA adducts in rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. The methyl DNA phosphate adducts characterized in this study further enriched the diversity of DNA adducts formed by NNK and NNAL. These results provide important new data regarding NNK- and NNAL-derived DNA damage and new insights pertinent to future mechanistic and biomonitoring studies of NNK, NNAL, and other chemical methylating agents.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Erik S. Carlson
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Jones GDD, Le Pla RC, Farmer PB. Phosphotriester adducts (PTEs): DNA's overlooked lesion. Mutagenesis 2009; 25:3-16. [DOI: 10.1093/mutage/gep038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Tsujikawa L, Weinfield M, Reha-Krantz LJ. Differences in replication of a DNA template containing an ethyl phosphotriester by T4 DNA polymerase and Escherichia coli DNA polymerase I. Nucleic Acids Res 2003; 31:4965-72. [PMID: 12930945 PMCID: PMC212818 DOI: 10.1093/nar/gkg722] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A DNA template containing a single ethyl phosphotriester was replicated in vitro by the bacteriophage T4 DNA polymerase and by Escherichia coli DNA polymerase I (DNA pol I). Escherichia coli DNA pol I bypassed the lesion efficiently, but partial inhibition was observed for T4 DNA polymerase. The replication block produced by the ethyl phosphotriester was increased at low dNTP concentrations and for a mutant T4 DNA polymerase with an antimutator phenotype, increased proofreading activity, and reduced ability to bind DNA in the polymerase active center. These observations support a model in which an ethyl phosphotriester impedes primer elongation by T4 DNA polymerase by decreasing formation of the ternary DNA polymerase-DNA-dNTP complex. When primer elongation is not possible, proofreading becomes the favored reaction. Apparent futile cycles of nucleotide incorporation and proofreading, the idling reaction, were observed at the site of the lesion. The replication block was overcome by higher dNTP concentrations. Thus, ethyl phosphotriesters may be tolerated in vivo by the up-regulation of dNTP biosynthesis that occurs during the cellular checkpoint response to blocked DNA replication forks.
Collapse
Affiliation(s)
- Laura Tsujikawa
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
9
|
Chamberlin SI, Merino EJ, Weeks KM. Catalysis of amide synthesis by RNA phosphodiester and hydroxyl groups. Proc Natl Acad Sci U S A 2002; 99:14688-93. [PMID: 12403820 PMCID: PMC137480 DOI: 10.1073/pnas.212527799] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Accepted: 08/30/2002] [Indexed: 11/18/2022] Open
Abstract
The functional groups found among the RNA bases and in the phosphoribose backbone represent a limited repertoire from which to construct a ribozyme active site. This work investigates the possibility that simple RNA phosphodiester and hydroxyl functional groups could catalyze amide bond synthesis. Reaction of amine groups with activated esters would be catalyzed by a group that stabilizes the partial positive charge on the amine nucleophile in the transition state. 2'-Amine substitutions adjacent to 3'-phosphodiester or 3'-hydroxyl groups react efficiently with activated esters to form 2'-amide and peptide products. In contrast, analogs in which the 3'-phosphodiester is replaced by an uncharged phosphotriester or is constrained in a distal conformation react at least 100-fold more slowly. Similarly, a nucleoside in which the 3'-hydroxyl group is constrained trans to the 2'-amine is also unreactive. Catalysis of synthetic reactions by RNA phosphodiester and ribose hydroxyl groups is likely to be even greater in the context of a preorganized and solvent-excluding catalytic center. One such group is the 2'-hydroxyl of the ribosome-bound P-site adenosine substrate, which is close to the amine nucleophile in the peptidyl synthesis reaction. Given ubiquitous 2'-OH groups in RNA, there exists a decisive advantage for RNA over DNA in catalyzing reactions of biological significance.
Collapse
Affiliation(s)
- Stacy I Chamberlin
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA
| | | | | |
Collapse
|
10
|
Landini P, Volkert MR. Regulatory responses of the adaptive response to alkylation damage: a simple regulon with complex regulatory features. J Bacteriol 2000; 182:6543-9. [PMID: 11073893 PMCID: PMC111391 DOI: 10.1128/jb.182.23.6543-6549.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P Landini
- Department of Environmental Microbiology and Molecular Ecotoxicology, Swiss Institute for Environmental Technology, 8600 Duebendorf, Switzerland
| | | |
Collapse
|
11
|
Kuraoka I, Bender C, Romieu A, Cadet J, Wood RD, Lindahl T. Removal of oxygen free-radical-induced 5',8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Natl Acad Sci U S A 2000; 97:3832-7. [PMID: 10759556 PMCID: PMC18102 DOI: 10.1073/pnas.070471597] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Indexed: 11/18/2022] Open
Abstract
Exposure of cellular DNA to reactive oxygen species generates several classes of base lesions, many of which are removed by the base excision-repair pathway. However, the lesions include purine cyclodeoxynucleoside formation by intramolecular crosslinking between the C-8 position of adenine or guanine and the 5' position of 2-deoxyribose. This distorting form of DNA damage, in which the purine is attached by two covalent bonds to the sugar-phosphate backbone, occurs as distinct diastereoisomers. It was observed here that both diastereoisomers block primer extension by mammalian and microbial replicative DNA polymerases, using DNA with a site-specific purine cyclodeoxynucleoside residue as template, and consequently appear to be cytotoxic lesions. Plasmid DNA containing either the 5'R or 5'S form of 5',8-cyclo-2-deoxyadenosine was a substrate for the human nucleotide excision-repair enzyme complex. The R diastereoisomer was more efficiently repaired than the S isomer. No correction of the lesion by direct damage reversal or base excision repair was detected. Dual incision around the lesion depended on the core nucleotide excision-repair protein XPA. In contrast to several other types of oxidative DNA damage, purine cyclodeoxynucleosides are chemically stable and would be expected to accumulate at a slow rate over many years in the DNA of nonregenerating cells from xeroderma pigmentosum patients. High levels of this form of DNA damage might explain the progressive neurodegeneration seen in XPA individuals.
Collapse
Affiliation(s)
- I Kuraoka
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Verdemato PE, Moody PCE. Repair of Alkylated DNA by the E. coli Ada Protein. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Haglund J, Ehrenberg L, Törnqvist M. Studies of transalkylation of phosphotriesters in DNA: reaction conditions and requirements on nucleophiles for determination of DNA adducts. Chem Biol Interact 1997; 108:119-33. [PMID: 9463525 DOI: 10.1016/s0009-2797(97)00102-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive compounds form adducts at several sites in DNA. One of these sites, the phosphate groups, forms phosphotriesters (PTE) which are both chemically stable and little repaired. A measurement of PTE in DNA could therefore be advantageous for the determination of doses in vivo of mutagens/cancer initiators. In this paper, the possibilities of utilizing the weakly alkylating properties of PTE for the transfer of adducts to strong nucleophiles have been investigated. Model compounds, thymidine 3'-[thymidine 5'-(methyl phosphate)], TpMeT, and thymidine 3'-[thymidine 5'-(2-hydroxyethyl phosphate)], TpHOEtT, were incubated with thiosulfate, a relatively strong nucleophile and the formation of dealkylated model PTE, thymidine 3'-(thymidine 5'-phosphate), TpT, was followed by HPLC. Transalkylation to thiosulfate or aniline of methyl PTE in DNA alkylated by [3H]N-methyl-N-nitrosourea was demonstrated. The methyl groups transferred, forming methyl thiosulfate and N-methylaniline, respectively, were determined by HPLC. These experiments demonstrate that it is possible to transfer alkyls from DNA phosphate to nucleophiles. Kinetic aspects of the transalkylation and requirement on nucleophiles for a practically useful method for determination of DNA adducts are discussed. Constants of reaction rates are presented.
Collapse
Affiliation(s)
- J Haglund
- Department of Genetic and Cellular Toxicology, Stockholm University, Sweden
| | | | | |
Collapse
|
14
|
Taketomi A, Nakabeppu Y, Ihara K, Hart DJ, Furuichi M, Sekiguchi M. Requirement for two conserved cysteine residues in the Ada protein of Escherichia coli for transactivation of the ada promoter. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:523-32. [PMID: 8676855 DOI: 10.1007/bf02174440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cysteine residue 69 of the Escherichia coli Ada transcription factor, which accepts a methyl group from methylphosphotriester in methylated DNA, was substituted by each of 19 other amino acids. Only the mutant Ada (C69H), carrying a histidine substitution of Cys69, exhibited a limited degree of transactivating potential for the ada promoter in E. coli cells although the mutant protein was completely devoid of methylphosphotriester-DNA methyltransferase activity. Using a multicopy plasmid system for the expression of Ada protein, we have shown that Ada C69H has a transactivating capacity equivalent to that of wild-type Ada protein in the absence of an alkylating agent. This indicates that the zinc-binding capacity of histidine at residue 69 is likely to be sufficient for Ada to recognize and bind to the ada promoter. Furthermore, transactivation of the ada promoter by Ada C69H was enhanced up to 6-fold by treatment with methylating agents. An additional substitution was made with alanine in Ada C69H, replacing Cys321, the site for acceptance of a methyl group from O6-methylguanine and O4-methylthymine residues in DNA, with alanine. This renders the protein completely inactive as a methyltransferase but this derivative is constitutively active as a transactivator for the ada promoter. Therefore, acquisition of a methyl group at Cys321 apparently enhances the transactivating capacity of Ada protein on the ada promoter. We propose that the transcription-regulating function of Ada protein is under dual control by methylation of cysteine residues at positions 69 and 321; the former enhances DNA binding, while the latter enhances the transactivating capacity of the protein.
Collapse
Affiliation(s)
- A Taketomi
- Department of Biochemistry, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Saget BM, Shevell DE, Walker GC. Alteration of lysine 178 in the hinge region of the Escherichia coli ada protein interferes with activation of ada, but not alkA, transcription. J Bacteriol 1995; 177:1268-74. [PMID: 7868601 PMCID: PMC176733 DOI: 10.1128/jb.177.5.1268-1274.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosphotriester lesion converts Ada into a transcriptional activator of the ada and alkA genes. Activation of ada, but not alkA, requires elements contained within the carboxyl-terminal domain of Ada. In addition, physiologically relevant concentrations of the unmethylated form of Ada specifically inhibit methylated Ada-promoted ada transcription both in vitro and in vivo and it has been suggested that this phenomenon plays a pivotal role in the down-regulation of the adaptive response. A set of site-directed mutations were generated within the hinge region, changing the lysine residue at position 178 to leucine, valine, glycine, tyrosine, arginine, cysteine, proline, and serine. All eight mutant proteins have deficiencies in their ability to activate ada transcription in the presence or absence of a methylating agent but are proficient in alkA activation. AdaK178P (lysine 178 changed to proline) is completely defective for the transcriptional activation function of ada while it is completely proficient for transcriptional activation of alkA. In addition, AdaK178P possesses both classes of DNA repair activities both in vitro and in vivo. Transcriptional activation of ada does not occur if both the amino- and carboxyl-terminal domains are produced separately within the same cell. The mutation at position 178 might interfere with activation of ada transcription by changing a critical contact with RNA polymerase, by causing a conformational change of Ada, or by interfering with the communication of conformational information between the amino- and the carboxyl-terminal domains. These results indicate that the hinge region of Ada is important for ada but not alkA transcription and further support the notion that the mechanism(s) by which Ada activates ada transcription differs from that by which it activates transcription at alkA.
Collapse
Affiliation(s)
- B M Saget
- Biology Department,Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
16
|
Saget BM, Walker GC. The Ada protein acts as both a positive and a negative modulator of Escherichia coli's response to methylating agents. Proc Natl Acad Sci U S A 1994; 91:9730-4. [PMID: 7937881 PMCID: PMC44890 DOI: 10.1073/pnas.91.21.9730] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The adaptive response of Escherichia coli protects the cells against the toxic and mutagenic effects of certain alkylating agents. The major effector molecule regulating this response is the 39-kDa Ada protein, which functions as both a DNA repair protein and a transcriptional activator. Ada removes methyl groups from phosphotriester and O6-methylguanine lesions in DNA, irreversibly transferring them to cysteine residues at positions 69 and 321, respectively. When methylated at Cys-69, Ada is converted into a potent activator of ada and alkA transcription and binds to a sequence (Ada box) present in both promoters. We have found that physiologically relevant higher concentrations of unmethylated Ada are able to inhibit the activation of ada transcription by methylated Ada, both in vitro and in vivo. In contrast, the same concentrations of unmethylated Ada do not inhibit the activation of alkA transcription by methylated Ada, either in vitro or in vivo. Deletion of the carboxyl-terminal 67 amino acids of Ada abolished the ability of the unmethylated form of the protein to inhibit activation of ada transcription but not the ability of the methylated form to activate ada or alkA transcription. Our results suggest that the Ada protein plays a pivotal role in the negative modulation of its own synthesis and therefore in the down-regulation of the adaptive response. Elements present in the carboxyl terminus of Ada appear to be necessary for this negative regulatory function.
Collapse
Affiliation(s)
- B M Saget
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
17
|
Blot M, Hauer B, Monnet G. The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:595-601. [PMID: 7510018 DOI: 10.1007/bf00285283] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS 50 R. We were not able to reproduce this result with IS 50 R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS 50 R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.
Collapse
Affiliation(s)
- M Blot
- Department of Microbiology, University of Basel, Switzerland
| | | | | |
Collapse
|
18
|
Zak P, Kleibl K, Laval F. Repair of O6-methylguanine and O4-methylthymine by the human and rat O6-methylguanine-DNA methyltransferases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42410-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Blot M, Heitman J, Arber W. Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes. Mol Microbiol 1993; 8:1017-24. [PMID: 7689686 DOI: 10.1111/j.1365-2958.1993.tb01646.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The transposon Tn5 expresses a gene, ble, whose product increases the viability of Escherichia coli and also confers resistance to the DNA-cleaving antibiotic bleomycin and the DNA-alkylating agent ethylmethanesulphonate. We find that the Ble protein induces expression of an alkylation inducible gene, aidC, and that both the AidC gene product and DNA polymerase I are required for Ble to confer bleomycin resistance. These findings support models in which Ble enhances DNA repair and suggest that Tn5 confers a fitness advantage to the host bacterium by increasing the repair of spontaneous DNA lesions. Such co-operation between a transposon and its host suggests that Tn5 is a symbiotic rather than a selfish DNA element.
Collapse
Affiliation(s)
- M Blot
- Abteilung Mikrobiologie, Universität Basel, Switzerland
| | | | | |
Collapse
|
20
|
Fernandez de Henestrosa AR, Barbé J. Induction of the alkA gene of Escherichia coli in gram-negative bacteria. J Bacteriol 1991; 173:7736-40. [PMID: 1938974 PMCID: PMC212550 DOI: 10.1128/jb.173.23.7736-7740.1991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A broad-host-range plasmid containing a fusion of the alkA and lacZ genes of Escherichia coli was introduced into various aerobic and facultative gram-negative bacteria--33 species belonging to 19 genera--to study the induction of expression of the alkA gene by alkylating agents. The bacteria included species of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Vibrionaceae, Neisseriaceae, Rhodospirillaceae, and Azotobacteraceae. Results obtained show that all bacteria tested, except Aeromonas hydrophila, Agrobacterium tumefaciens, Hafnia alvei, Rhizobium meliloti, Salmonella enteritidis, Xanthomonas campestris, and those of the genus Rhodobacter, are able to induce the alkA gene of E. coli in the presence of N-methyl-N'-nitro-N-nitrosoguanidine. All these data indicate that the adaptive response to alkylating agents is present in bacterial species of several families and that the Ada box sequence must be widely conserved.
Collapse
|
21
|
Volkert MR, Hajec LI. Molecular analysis of the aidD6::Mu d1 (bla lac) fusion mutation of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1991; 229:319-23. [PMID: 1921981 DOI: 10.1007/bf00272173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this report we present genetic and biochemical evidence indicating that the aidD6::Mu d1 (bla lac) fusion is an insertion of Mu d1 (bla lac) into the alkB coding sequence. We describe the phenotypic effects resulting from this mutation and compare them with the effects of alkB22, alkA and ada mutations. We also constructed an alkA alkB double mutant and compared its phenotype with that of the single mutant strains. The observation that the methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resistance of the double mutant is approximately at the level predicted from the additive sensitivity of each of the single mutants suggests that these two gene products act in different pathways of DNA repair.
Collapse
Affiliation(s)
- M R Volkert
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
22
|
Guzder SN, Kelley MR, Deutsch WA. Drosophila methyltransferase activity and the repair of alkylated DNA. Mutat Res 1991; 255:143-53. [PMID: 1717843 DOI: 10.1016/0921-8777(91)90048-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biochemical mechanism and developmental expression for the repair of alkylated DNA has been characterized from Drosophila. As in other organisms, the correction of O6-methylguanine in Drosophila was found to involve the transfer of a methyl group from DNA to a protein cysteine residue. Two methylated proteins with subunit molecular weights of 30 kDa and 19 kDa were identified following incubation with [3H]-methylated substrate DNA and denaturing polyacrylamide gel electrophoresis. Identical molecular weights were found for the unmethylated forms of protein through their reaction to an antibody prepared against the 19 kDa Escherichia coli methyltransferase. Both Drosophila proteins are serologically reactive in adult males and females and most of the other developmental stages tested, with embryos representing the possible exception. The Drosophila proteins do not appear to be induced by sublethal exposures to alkylating agent.
Collapse
Affiliation(s)
- S N Guzder
- Department of Biochemistry, Louisiana State University, Baton Rouge 70803
| | | | | |
Collapse
|
23
|
Hakura A, Morimoto K, Sofuni T, Nohmi T. Cloning and characterization of the Salmonella typhimurium ada gene, which encodes O6-methylguanine-DNA methyltransferase. J Bacteriol 1991; 173:3663-72. [PMID: 1904855 PMCID: PMC207993 DOI: 10.1128/jb.173.12.3663-3672.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.
Collapse
Affiliation(s)
- A Hakura
- Division of Genetics and Mutagenesis, National Institute of Hygienic Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Sassanfar M, Dosanjh MK, Essigmann JM, Samson L. Relative efficiencies of the bacterial, yeast, and human DNA methyltransferases for the repair of O6-methylguanine and O4-methylthymine. Suggestive evidence for O4-methylthymine repair by eukaryotic methyltransferases. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49912-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Taylor JS, Nadji S. Unraveling the origin of the major mutation induced by ultraviolet light, the C→T transition at dTpdC sites. A DNA synthesis building block for the cis-syn cyclobutane dimer of dTpdU. Tetrahedron 1991. [DOI: 10.1016/s0040-4020(01)81791-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Shevell DE, Friedman BM, Walker GC. Resistance to alkylation damage in Escherichia coli: role of the Ada protein in induction of the adaptive response. Mutat Res 1990; 233:53-72. [PMID: 2233813 DOI: 10.1016/0027-5107(90)90151-s] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D E Shevell
- Massachusetts Institute of Technology, Department of Biology, Cambridge 02139
| | | | | |
Collapse
|
27
|
Mironov NM, Wild CP, Martel-Planche G, Swann PF, Montesano R. Measurement of the removal of O6-methylguanine and O4-methylthymine from oligodeoxynucleotides using an immunoprecipitation technique. Anal Biochem 1989; 183:74-9. [PMID: 2619048 DOI: 10.1016/0003-2697(89)90173-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A sensitive and rapid procedure for measurement of alkyltransferase repair activity involving oligodeoxynucleotides followed by immunoprecipitation is described. Dodecadeoxynucleotides containing O6-methylguanine or O4-methylthymine were used as substrates for alkyltransferases and the reaction products of methylated or demethylated substrates were separated by precipitation with highly specific antibodies. This approach for O6-alkylguanine-DNA alkyltransferase measurement is far more rapid than when the reaction products are separated by chromatography. This technique makes the assay applicable to large-scale epidemiological or clinical studies and suggests a similar methodology could be applied for other DNA repair enzymes.
Collapse
Affiliation(s)
- N M Mironov
- Unit of Mechanisms of Carcinogenesis, International Agency for Research on Cancer, Lyon, France
| | | | | | | | | |
Collapse
|
28
|
Wilkinson MC, Potter PM, Cawkwell L, Georgiadis P, Patel D, Swann PF, Margison GP. Purification of the E. coli ogt gene product to homogeneity and its rate of action on O6-methylguanine, O6-ethylguanine and O4-methylthymine in dodecadeoxyribonucleotides. Nucleic Acids Res 1989; 17:8475-84. [PMID: 2685744 PMCID: PMC335020 DOI: 10.1093/nar/17.21.8475] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The E. coli gene ogt encodes the DNA repair protein O6-alkylguanine-DNA-alkyltransferase (O6-AlkG ATase). The protein coding region of the gene was cloned into a multicopy expression vector to obtain high yields of the enzyme (approximately 0.2% of total protein) which was purified to apparent homogeneity by affinity, molecular exclusion and reverse-phase chromatography. Good correlation was found between the determined and predicted amino acid compositions. The ability of the purified protein to act on O6-methylguanine (O6-MeG), O6-ethylguanine (O6-EtG) and O4-methylthymine (O4-MeT) in self-complementary dodecadeoxyribonucleotides was compared to that of 19 kDa fragment of the related ada-protein. With both proteins the rate order was O6-MeG greater than O6-EtG greater than O4-MeT, however, the ogt protein was found to repair O6-MeG, O6-EtG and O4-Met, 1.1, 173 and 84 times, respectively, faster than the ada protein.
Collapse
Affiliation(s)
- M C Wilkinson
- Department of Carcinogenesis, Christie Hospital and Holt Radium Institute, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Weinfeld M, Drake AF, Kuroda R, Livingston DC. Isolation and characterization of the diastereoisomers of a series of phosphate-ethylated dinucleoside monophosphates. Anal Biochem 1989; 178:93-101. [PMID: 2729585 DOI: 10.1016/0003-2697(89)90362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Internucleotide phosphate esterification is a common reaction of many potent carcinogenic alkylating agents. It can give rise to two stereochemically distinct molecules about a triesterified phosphorus atom. The eight individual diastereoisomers derived from phosphate ethylation of d-ApT, d-CpT, d-GpT, and d-TpT were prepared from o-chlorophenyl phosphotriester intermediates and isolated by reverse-phase HPLC. Each pair of isomers, together with its parent analog, was examined by variable temperature circular dichroism. The results are interpreted in terms of secondary structure changes from which the absolute configurations of the ethylated phosphate groups can be inferred. These configurational assignments were confirmed by 31P NMR.
Collapse
Affiliation(s)
- M Weinfeld
- Chemistry Department, Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | |
Collapse
|
30
|
Shevell DE, LeMotte PK, Walker GC. Alteration of the carboxyl-terminal domain of Ada protein influences its inducibility, specificity, and strength as a transcriptional activator. J Bacteriol 1988; 170:5263-71. [PMID: 3141384 PMCID: PMC211600 DOI: 10.1128/jb.170.11.5263-5271.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ada gene of Escherichia coli K-12 encodes the regulatory protein for the adaptive response to alkylating agents. A set of plasmids carrying ordered deletions from the 3' end of the ada gene were isolated and characterized. These ada deletions encode fusion proteins that derive their amino termini from ada and their carboxyl termini from the downstream vector sequence that occurs before an in-frame stop codon. Several of these ada deletions encode Ada derivatives that constitutively activate ada transcription to very high levels. A second class of ada deletions encode Ada derivatives that are dominant inhibitors of the inducible transcription of ada but are inducible activators of alkA transcription. In addition, we found that two Ada derivatives containing the same ada sequences but fused to different vector-derived tails have strikingly different properties. One Ada derivative constitutively activates both ada and alkA expression to very high levels. In contrast, the other Ada derivative is an inducible activator of ada expression, like the wild-type Ada protein, but is not an inducible activator of alkA transcription. Our data suggest that the carboxyl terminus of the Ada protein plays a key role in modulating the ability of the Ada protein to function as a transcriptional activator.
Collapse
Affiliation(s)
- D E Shevell
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
31
|
Shevell DE, Abou-Zamzam AM, Demple B, Walker GC. Construction of an Escherichia coli K-12 ada deletion by gene replacement in a recD strain reveals a second methyltransferase that repairs alkylated DNA. J Bacteriol 1988; 170:3294-6. [PMID: 3290202 PMCID: PMC211286 DOI: 10.1128/jb.170.7.3294-3296.1988] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We constructed an ada deletion by gene replacement in a recD1014 strain of Escherichia coli. Characterization of a delta ada-25 recD+ strain revealed the presence of a second DNA methyltransferase activity in E. coli K-12 which transfers a methyl group from methylated DNA to a protein with a molecular weight of 18,000 to 20,000.
Collapse
Affiliation(s)
- D E Shevell
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
32
|
Carter CA, Kirk MC, Ludlum DB. Phosphotriester formation by the haloethylnitrosoureas and repair of these lesions by E. coli BS21 extracts. Nucleic Acids Res 1988; 16:5661-72. [PMID: 3290854 PMCID: PMC336791 DOI: 10.1093/nar/16.12.5661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The alkylation of phosphates in DNA by therapeutically active haloethylnitrosoureas was studied by reacting N-chloroethyl-N-nitrosourea (CNU) with dTpdT, separating the products by HPLC, and identifying them by co-chromatography with authentic markers. Both hydroxyethyl and chloroethyl phosphotriesters of dTpdT were identified; a similar reaction between CNU and dTR yielded 3-hydroxyethyl and 3-chloroethyl dTR as the major products of ring alkylation. A DNA-like substrate for repair studies was synthesized by reacting 14C-labelled N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea (14C-CCNU) with poly dT and annealing the product to poly dA. An extract of E. coli strain BS21 selectively transferred a chloroethyl group from one of the chloroethyl phosphotriester isomers in this substrate to the bacterial protein; chemical instability of the hydroxyethyl phosphotriesters precluded definite conclusions about the repair of this product.
Collapse
Affiliation(s)
- C A Carter
- Department of Pharmacology, UMass Medical School, Worcester 01655
| | | | | |
Collapse
|
33
|
Brent TP, Dolan ME, Fraenkel-Conrat H, Hall J, Karran P, Laval L, Margison GP, Montesano R, Pegg AE, Potter PM. Repair of O-alkylpyrimidines in mammalian cells: a present consensus. Proc Natl Acad Sci U S A 1988; 85:1759-62. [PMID: 3162305 PMCID: PMC279858 DOI: 10.1073/pnas.85.6.1759] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enzymatic repair of the O-alkylpyrimidines (O2- and O4-alkylthymine, O2-alkylcytosine) and alkyl phosphotriesters has been studied in Escherichia coli, and the two proteins involved, a glycosylase (DNA-3-methyladenine glycosylase) and a methyltransferase (DNA-O6-methylguanine:protein-L-cysteine S-methyltransferase, EC 2.1.1.63), have been well characterized. In mammals or mammalian cells treated with carcinogenic alkylating agents, loss of these derivatives has been demonstrated repeatedly. Nevertheless, mammalian repair proteins that are analogous to those from E. coli do not detectably act on these alkyl derivatives. A variety of techniques has been used by many investigators in the United States and Europe, who conclude here that the mode of O-alkylpyrimidine and alkyl phosphotriester repair in mammalian cells differs from that in E. coli. New approaches and methods are needed to characterize these processes at the biochemical and molecular level.
Collapse
Affiliation(s)
- T P Brent
- St. Jude Children's Research Hospital, Memphis, TN 38101
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Potter PM, Wilkinson MC, Fitton J, Carr FJ, Brennand J, Cooper DP, Margison GP. Characterisation and nucleotide sequence of ogt, the O6-alkylguanine-DNA-alkyltransferase gene of E. coli. Nucleic Acids Res 1987; 15:9177-93. [PMID: 2825131 PMCID: PMC306461 DOI: 10.1093/nar/15.22.9177] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The plasmid pO61 that was isolated from an E. coli genomic DNA library and codes for O6-alkylguanine (O6AG) DNA alkyltransferase (ATase) activity (1) has been further characterised. Subclones of the 9 Kb insert of pO61 showed that the ATase activity was encoded in a 2Kb Pst1 fragment but a partial restriction endonuclease map of this was different to that of the E. coli ada gene that codes for O6-AG and alkylphosphotriester dual ATase protein. Fluorographic analyses confirmed that the molecular weight of the pO61-encoded ATase was 19KDa i.e. similar to that of the O6AG ATase function that is cleaved from the 39KDa ada protein but rabbit polyclonal antibodies to the latter reacted only very weakly with the pO61-encoded protein. A different set of hybridisation signals was produced when E. coli DNA, which had been digested with a variety of restriction endonucleases was probed with 2Kb Pst 1 fragment or the ada gene. These results provided evidence for the existence of a second ATase gene in E. coli. The 2Kb Pst-1 fragment of pO61 was therefore sequenced and an open reading frame (ORF) that would give rise to a 19KDa protein was identified. The derived amino acid sequence of this showed a 93 residue region with 49% homology with the O6AG ATase region of the ada protein and had a pentamer and a heptamer of identical sequence separated by 34 amino acids in both proteins. The pentamer included the alkyl accepting cysteine residue of the ada O6AG ATase. The hydrophobic domains were similarly distributed in both proteins. Shine-Dalgarno, -10 and -35 sequences were identified and the origin of transcription was located by primer extension and S1 nuclease mapping. The amino-terminal amino acid sequence of the protein was as predicted from the ORF.
Collapse
Affiliation(s)
- P M Potter
- Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital and Holt Radium Institute, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Riazuddin S, Athar A, Sohail A. Methyl transferases induced during chemical adaptation of M. luteus. Nucleic Acids Res 1987; 15:9471-86. [PMID: 3684600 PMCID: PMC306481 DOI: 10.1093/nar/15.22.9471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Three peaks of methyltransferase activity specific for MNNG alkylated DNA have been identified from extracts of chemically adapted M. luteus. They are designated as TI to TIII in order to their elution from a Sephadex G-75 column. The first one of these peaks has been purified to homogeneity. TI, is an inducible, unusually salt resistant, heat labile protein which corrects O6-methylguanine in alkylated DNA by the transfer of the O6-alkyl group to a cysteine amino acid in the TI protein. There is a stoichiometric relationship between the loss of O6-methylguanine from the DNA and the production of S-methylcysteine. Partially purified TII & TIII proteins show specificity for O4-alkylthymine and methyl phosphotriesters respectively. The mode of repair by the isolated methyltransferases is similar yet there is no competition for substrate specificity. The apparent molecular weights of TI, TII & TIII proteins are 31Kd, 22Kd, and 13Kd respectively.
Collapse
Affiliation(s)
- S Riazuddin
- Centre for Advanced Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
37
|
Ishizaki K, Tsujimura T, Fujio C, Zhang YP, Yawata H, Nakabeppu Y, Sekiguchi M, Ikenaga M. Expression of the truncated E. coli O6-methylguanine methyltransferase gene in repair-deficient human cells and restoration of cellular resistance to alkylating agents. Mutat Res 1987; 184:121-8. [PMID: 3627141 DOI: 10.1016/0167-8817(87)90068-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have constructed a truncated E. coli O6-methylguanine methyltransferase (MT) gene (ada gene) to express the MT activity for O6-methylguanine and O4-methylthymine but not for methylphosphotriester in human cells and transferred it into Mer- HeLa MR cells. The transfectant cells expressed the truncated E. coli MT were resistant to alkylating agents as same as the transfectant cells with the intact ada gene in cell killing, sister-chromatid exchange induction and host-cell reactivation of adenovirus 5. These results strongly suggest that methylphosphotriester may not contribute to the biological effect of alkylating agents in human cells.
Collapse
|
38
|
Van Houten B, Sancar A. Repair of N-methyl-N'-nitro-N-nitrosoguanidine-induced DNA damage by ABC excinuclease. J Bacteriol 1987; 169:540-5. [PMID: 3542961 PMCID: PMC211811 DOI: 10.1128/jb.169.2.540-545.1987] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli has several overlapping DNA repair pathways which act in concert to eliminate the DNA damage caused by a diverse array of physical and chemical agents. The ABC excinuclease which is encoded by the uvrA, uvrB, and uvrC genes mediates both the incision and excision steps of nucleotide excision repair. Traditionally, this repair pathway has been assumed to be active against DNA adducts that cause major helical distortions. To determine the level of helical deformity required for recognition and repair by ABC excinuclease, we have evaluated the substrate specificity of this enzyme by using DNA damaged by N-methyl-N'-nitro-N-nitrosoguanidine. ABC excinuclease incised methylated DNA in vitro in a dose-dependent manner in a reaction that was ATP dependent and specific for the fully reconstituted enzyme. In vivo studies with various alkylation repair-deficient mutants indicated that the excinuclease participated in the repair of DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine.
Collapse
|
39
|
Morohoshi F, Munakata N. Multiple species of Bacillus subtilis DNA alkyltransferase involved in the adaptive response to simple alkylating agents. J Bacteriol 1987; 169:587-92. [PMID: 3100503 PMCID: PMC211818 DOI: 10.1128/jb.169.2.587-592.1987] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Three molecular species of methyl-accepting proteins exist in Bacillus subtilis cells, which collect methyl groups from methylated DNA. A 20-kilodalton (kDa) protein was constitutively present in the cells of the ada+ (proficient in adaptive response) strain as well as in those of six ada (deficient in adaptive response) mutant strains and was assigned to the O6-methylguanine:DNA methyltransferase. Another species of O6-methylguanine:DNA methyltransferase, which had a molecular size of 22 kDa, emerged after adaptive treatment of the ada+ but not any of the ada mutant cells. A 27-kDa methyl-accepting protein, which preferred methylated poly(dT) to methylated calf thymus DNA as a substrate, was assigned to the methylphosphotriester:DNA methyltransferase. It was produced, after adaptive treatment, in the cells of ada+, ada-3, ada-4, and ada-6 strains but not in the cells of ada-1, ada-2, or ada-5 strains. These results support and extend our proposition that ada mutants can be classified into two groups; one (the ada-4 group) is defective only in the inducible synthesis of O6-methylguanine:DNA methyltransferase (22-kDa protein), and the other (the ada-1 group) is deficient in the adaptive response in toto. The finding that inducible and constitutive methyltransferases reside in different molecular species of methyl-accepting proteins is intriguing compared with the regulatory mechanisms of the adaptive response to simple alkylating agents in other organisms.
Collapse
|
40
|
Affiliation(s)
- A E Pegg
- Department of Physiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | |
Collapse
|
41
|
Summers MF, Powell C, Egan W, Byrd RA, Wilson WD, Zon G. Alkyl phosphotriester modified oligodeoxyribonucleotides. VI. NMR and UV spectroscopic studies of ethyl phosphotriester (Et) modified Rp-Rp and Sp-Sp duplexes, (d[GGAA(Et)TTCC])2. Nucleic Acids Res 1986; 14:7421-36. [PMID: 3763408 PMCID: PMC311760 DOI: 10.1093/nar/14.18.7421] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
1H NMR chemical shift assignments for the title compounds were made for all but a few H5' and H5" signals using two-dimensional nuclear Overhauser effect (2D-NOE) data, which was also used for the first time to assign absolute configuration at phosphorus. The chemical shifts were, in general, similar to those reported [Broido, M.S., et al. (1985) Eur. J. Biochem. 150, 117-128] for the B-like conformation of the unmodified, parent duplex, [d(GGAATTCC)]2. Differences in chemical shifts for corresponding protons were mostly localized to the AA(Et)TT region, and showed some stereochemical dependence. Unambiguous assignment of the phosphotriester 31P signals was achieved in a novel way using selective insensitive nucleus enhancement by polarization transfer (selective INEPT) NMR. The Rp-Rp duplex melted ca. 11 degrees C lower than either the Sp-Sp or parent duplexes, as evidenced by Tm and variable temperature 1H/31P NMR measurements. The 2D-NOE data for the Rp-Rp duplex suggested possible steric interactions between the ethyl group and the H3' of the flanking A residue. At low ionic strength, the Sp-Sp and parent duplexes had similar stability but at high ionic strength the Sp-Sp duplex was less stable.
Collapse
|
42
|
Gallo KA, Shao KL, Phillips LR, Regan JB, Koziolkiewicz M, Uznanski B, Stec WJ, Zon G. Alkyl phosphotriester modified oligodeoxyribonucleotides. V. Synthesis and absolute configuration of Rp and Sp diastereomers of an ethyl phosphotriester (Et) modified EcoRI recognition sequence, d[GGAA(Et)TTCC]. A synthetic approach to regio- and stereospecific ethylation-interference studies. Nucleic Acids Res 1986; 14:7405-20. [PMID: 3020514 PMCID: PMC311759 DOI: 10.1093/nar/14.18.7405] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protected deoxynucleoside 3'-O-ethyl-N,N-diisopropylphosphoramidite reagents were prepared for use in the automated synthesis of ethyl phosphotriester (Et) modified oligonucleotides. The title diastereomers were separated by reversed-phase HPLC, and chirality at phosphorus was assigned by an improved configurational correlation scheme that was verified by NMR spectroscopic studies (accompanying paper, Part VI). This generally applicable correlation scheme involved enzymatic digestions of each diastereomer to give the corresponding diastereomer of d[A(Et)T]; phosphite triester sulfurization to obtain diastereomeric O-ethyl phosphorothioates, d[AS(Et)T], which were separated by HPLC for stereoretentive oxidation with H2O2 to give d[A(Et)T], and stereoretentive de-ethylation with PhSH-Et3N to give diastereomeric phosphorothioates, d[AST], whose configurations at phosphorus had been assigned previously. Neither the Rp-Rp nor Sp-Sp duplex, (d[GGAA(Et)TTCC])2, was cleaved by EcoRI endonuclease under conditions that led to cleavage of both the unmodified duplex, [d(GGAATTCC)]2, and the mixture of diastereomeric phosphorothioate-modified duplexes, [d(GGAASTTCC)]2. Cleavage of the latter substrates was Sp-selective.
Collapse
|
43
|
Weinfeld M, Livingston DC. Synthesis and properties of oligodeoxyribonucleotides containing an ethylated internucleotide phosphate. Biochemistry 1986; 25:5083-91. [PMID: 3768334 DOI: 10.1021/bi00366a016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Internucleotide phosphotriesters comprise an important class of DNA lesions produced by carcinogenic alkylating agents. To avoid confusion resulting from the presence of other DNA lesions, synthetically prepared oligonucleotides containing ethylated internucleotide phosphates as the sole form of damage were employed to investigate several chemical and biochemical properties of DNA alkyl phosphotriesters. A total of four oligonucleotides were synthesised for this study, the dimers Tp(Et)T and pTp(Et)T and the decamer d-TpTpTp(Et)TpCpTpApTpTpT together with its unmodified analogue. The dimers were characterized by UV and phosphorus NMR spectroscopy and the decamers by two-dimensional homochromatography, alkali hydrolysis, and variable-temperature circular dichroism (CD). Alkali hydrolysis of the ethylated decamer produced strand breaks in approximately 75% of the molecules. This is in close agreement with data previously obtained for dinucleoside ethyl phosphotriesters and triesters in alkylated cellular DNA. Results from the CD study suggest that the ethyl substituent does not disrupt base stacking within the oligomer. The interactions of two enzymes with the alkylated oligonucleotides were examined. First, it was found that ethylation of the internucleotide phosphate renders TpT inactive as a substrate for T4 polynucleotide kinase, implying that a negative charge is required on the 3'-phosphate group of the nucleotide to be phosphorylated. Hence, postlabeling assays of DNA damage that depend upon enzymatic phosphorylation of modified 3'-nucleotides cannot be applied to dinucleoside alkyl phosphotriesters. Second, both decamers, when annealed to a single-stranded plasmid template, were able to prime DNA synthesis, catalyzed by Escherichia coli DNA polymerase I, with equal effectiveness. The use of this reaction as a means of site-specifically incorporating phosphotriesters into viral vectors is recognized.
Collapse
|
44
|
Teo I, Sedgwick B, Kilpatrick MW, McCarthy TV, Lindahl T. The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell 1986; 45:315-24. [PMID: 3009022 DOI: 10.1016/0092-8674(86)90396-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The E. coli ada gene positively controls its own expression and that of other genes (alkA, alkB, aidB) involved in repair of DNA alkylation damage. The cloned ada and alkA genes and purified Ada protein have been used in cell-free systems to identify the inducing signal. Self-methylation of the Ada protein by transfer of a methyl group from a phosphotriester in alkylated DNA to a cysteine residue in the protein converts it to an activator of transcription. The covalently modified Ada protein binds specifically to promoter regions containing the sequence d(AAANNAAAGCGCA) immediately upstream of the RNA polymerase binding sites. This is apparently the first example of conversion of a regulatory gene product to a transcriptional activator by a posttranslational modification event.
Collapse
|
45
|
Yarosh DB. Quantitation of DNA repair capacities of human tumor cells by estimation of transfer of DNA adducts to repair proteins. Pharmacol Ther 1985; 31:141-51. [PMID: 3916339 DOI: 10.1016/0163-7258(85)90041-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The repair of O6-methylguanine produced in DNA by alkylating agents is accomplished by a unique lesion reversal mechanism which recognizes the methyl group and transfers it to itself in a suicide reaction. Much of what we know about the importance of O6-methylguanine-DNA methyltransferase repair in human cells comes from the study of Mer- tumor cell strains which are deficient in transferase activity. The human transferase has a preference for repair of methyl groups, but will also act on other substrates. Assays for transferase activity detect either the loss of O6-methylguanine from DNA or the appearance of methylated protein. A new assay detects the recovery of a restriction site in a synthetic polymer following demethylation. Inhibition of transferase activity can be produced in cells by several methods.
Collapse
|