1
|
Wu Y, Deng J, Zheng Z, Chen N, Luo X, Tang H. Engineering an Efficient Expression Using Heterologous GAL Promoters and Transcriptional Activators in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:1859-1867. [PMID: 37224271 DOI: 10.1021/acssynbio.3c00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Galactose-inducible (GAL) promoters have been widely used in metabolic engineering in Saccharomyces cerevisiae for production of valuable products. Endogenous GAL promoters and GAL transcription factors have often been engineered to improve GAL promoter activities. Heterologous GAL promoters and GAL activator (Gal4p-like transcriptional activators), although existing in other yeasts or fungi, have not been well explored. In this study, we comprehensively characterized the activation effects of Gal4p activators from different yeasts or fungi on a variant of GAL promoters. Overexpressing endogenous Gal4p driven by PHHF1 increased the activities of native PGAL1 and heterologous PSkGAL2 by 131.20% and 72.45%, respectively. Furthermore, eight transcriptional activators from different organisms were characterized and most of them exhibited functions that were consistent with ScGal4p. Expression of KlLac9p from Kluyveromyces lactis further increased the activity of PScGAL1 and PSkGAL2 by 41.56% and 100.63%, respectively, compared to ScGal4p expression, and was able to evade Gal80p inhibition. This optimized GAL expression system can be used to increase the production of β-carotene by 9.02-fold in S. cerevisiae. Our study demonstrated that a combination of heterologous transcriptional activators and GAL promoters provided novel insights into the optimization of the GAL expression system.
Collapse
Affiliation(s)
- Yanling Wu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiliang Deng
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhaohui Zheng
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nanzhu Chen
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongting Tang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Blüher D, Reinhardt-Tews A, Hey M, Lilie H, Golbik R, Breunig KD, Anders A. An ancient oxidoreductase making differential use of its cofactors. Biol Chem 2015; 395:855-69. [PMID: 25003388 DOI: 10.1515/hsz-2014-0152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/01/2014] [Indexed: 11/15/2022]
Abstract
Abstract Many transcription factors contribute to cellular homeostasis by integrating multiple signals. Signaling via the yeast Gal80 protein, a negative regulator of the prototypic transcription activator Gal4, is primarily regulated by galactose. ScGal80 from Saccharomyces cerevisiae has been reported to bind NAD(P). Here, we show that the ability to bind these ligands is conserved in KlGal80, a Gal80 homolog from the distantly related yeast Kluyveromyces lactis. However, the homologs apparently have diverged with respect to response to the dinucleotide. Strikingly, ScGal80 binds NAD(P) and NAD(P)H with more than 50-fold higher affinity than KlGal80. In contrast to ScGal80, where NAD is neutral, NAD and NADP have a negative effect in KlGal80 on its interaction with a KlGal4-peptide in vitro. Swapping a loop in the NAD(P) binding Rossmann-fold of ScGal80 into KlGal80 increases the affinity for NAD(P) and has a significant impact on KlGal4 regulation in vivo. Apparently, dinucleotide binding allows coupling of the metabolic state of the cell to regulation of the GAL/LAC genes. The particular sequences involved in binding determine how exactly the metabolic state is sensed and integrated by Gal80 to regulate Gal4.
Collapse
|
3
|
Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promoters in yeasts. Microb Cell Fact 2014; 13:5. [PMID: 24401081 PMCID: PMC3897899 DOI: 10.1186/1475-2859-13-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/16/2013] [Indexed: 11/22/2022] Open
Abstract
Budding yeasts are important expression hosts for the production of recombinant proteins. The choice of the right promoter is a crucial point for efficient gene expression, as most regulations take place at the transcriptional level. A wide and constantly increasing range of inducible, derepressed and constitutive promoters have been applied for gene expression in yeasts in the past; their different behaviours were a reflection of the different needs of individual processes. Within this review we summarize the majority of the large available set of carbon source dependent promoters for protein expression in yeasts, either induced or derepressed by the particular carbon source provided. We examined the most common derepressed promoters for Saccharomyces cerevisiae and other yeasts, and described carbon source inducible promoters and promoters induced by non-sugar carbon sources. A special focus is given to promoters that are activated as soon as glucose is depleted, since such promoters can be very effective and offer an uncomplicated and scalable cultivation procedure.
Collapse
Affiliation(s)
| | | | | | - Andrea Camattari
- Institute of Molecular Biotechnology, Technical University Graz, Graz, Austria.
| |
Collapse
|
4
|
Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch. Mol Cell Biol 2013; 33:3667-74. [PMID: 23858060 DOI: 10.1128/mcb.00646-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA-binding transcriptional activator Gal4 and its regulators Gal80 and Gal3 constitute a galactose-responsive switch for the GAL genes of Saccharomyces cerevisiae. Gal4 binds to GAL gene UASGAL (upstream activation sequence in GAL gene promoter) sites as a dimer via its N-terminal domain and activates transcription via a C-terminal transcription activation domain (AD). In the absence of galactose, a Gal80 dimer binds to a dimer of Gal4, masking the Gal4AD. Galactose triggers Gal3-Gal80 interaction to rapidly initiate Gal4-mediated transcription activation. Just how Gal3 alters Gal80 to relieve Gal80 inhibition of Gal4 has been unknown, but previous analyses of Gal80 mutants suggested a possible competition between Gal3-Gal80 and Gal80 self-association interactions. Here we assayed Gal80-Gal80 interactions and tested for effects of Gal3. Immunoprecipitation, cross-linking, and denaturing and native PAGE analyses of Gal80 in vitro and fluorescence imaging of Gal80 in live cells show that Gal3-Gal80 interaction occurs concomitantly with a decrease in Gal80 multimers. Consistent with this, we find that newly discovered nuclear clusters of Gal80 dissipate in response to galactose-triggered Gal3-Gal80 interaction. We discuss the effect of Gal3 on the quaternary structure of Gal80 in light of the evidence pointing to multimeric Gal80 as the form required to inhibit Gal4.
Collapse
|
5
|
Krijger JJ, Baumann J, Wagner M, Schulze K, Reinsch C, Klose T, Onuma OF, Simon C, Behrens SE, Breunig KD. A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microb Cell Fact 2012; 11:112. [PMID: 22905717 PMCID: PMC3520740 DOI: 10.1186/1475-2859-11-112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Crabtree-negative yeast species Kluyveromyces lactis has been established as an attractive microbial expression system for recombinant proteins at industrial scale. Its LAC genes allow for utilization of the inexpensive sugar lactose as a sole source of carbon and energy. Lactose efficiently induces the LAC4 promoter, which can be used to drive regulated expression of heterologous genes. So far, strain manipulation of K. lactis by homologous recombination was hampered by the high rate of non-homologous end-joining. RESULTS Selection for growth on lactose was applied to target the insertion of heterologous genes downstream of the LAC4 promoter into the K. lactis genome and found to yield high numbers of positive transformants. Concurrent reconstitution of the β-galactosidase gene indicated the desired integration event of the expression cassette, and β-galactosidase activity measurements were used to monitor gene expression for strain improvement and fermentation optimization. The system was particularly improved by usage of a cell lysis resistant strain, VAK367-D4, which allowed for protein accumulation in long-term fermentation. Further optimization was achieved by increased gene dosage of KlGAL4 encoding the activator of lactose and galactose metabolic genes that led to elevated transcription rates. Pilot experiments were performed with strains expressing a single-chain antibody fragment (scFvox) and a viral envelope protein (BVDV-E2), respectively. scFvox was shown to be secreted into the culture medium in an active, epitope-binding form indicating correct processing and protein folding; the E2 protein could be expressed intracellularly. Further data on the influence of protein toxicity on batch fermentation and potential post-transcriptional bottlenecks in protein accumulation were obtained. CONCLUSIONS A novel Kluyveromyces lactis host-vector system was developed that places heterologous genes under the control of the chromosomal LAC4 promoter and that allows monitoring of its transcription rates by β-galactosidase measurement. The procedure is rapid and efficient, and the resulting recombinant strains contain no foreign genes other than the gene of interest. The recombinant strains can be grown non-selectively in rich medium and stably maintained even when the gene product exerts protein toxicity.
Collapse
Affiliation(s)
- Jorrit-Jan Krijger
- Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans. Fungal Genet Biol 2012; 49:415-25. [PMID: 22445777 DOI: 10.1016/j.fgb.2012.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 11/21/2022]
Abstract
Lactose is intracellularly hydrolysed by Aspergillus nidulans. Classical mutation mapping data and the physical characteristics of the previously purified glycosyl hydrolase facilitated identification of the clustered, divergently transcribed intracellular β-galactosidase (bgaD) and lactose permease (lacpA) genes. At the transcript level, bgaD and lacpA were coordinately expressed in response to d-galactose, lactose or l-arabinose, while no transcription was detectable in the additional presence of glucose. In contrast, creA loss-of-function mutants derepressed for both genes to a considerable extent (even) under non-inducing or repressing growth conditions. Lactose- and d-galactose induction nevertheless occurred only in the absence of glucose, indicating a regulatory role for CreA-independent repression. Remarkably, bgaD deletion mutants grew normal on lactose. In contrast, lacpA deletants grew at a much slower rate in lactose liquid medium than wild-type while strains that carried more than one copy of lacpA grew faster, showing that transport is the limiting step in lactose catabolism. The effect of lacpA gene deletion on lactose uptake was exacerbated at lower substrate concentrations, evidence for the existence of a second transport system with a lower affinity for this disaccharide in A. nidulans.
Collapse
|
7
|
Pannala VR, Bhartiya S, Venkatesh KV. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis. FEBS J 2010; 277:2987-3002. [PMID: 20528923 DOI: 10.1111/j.1742-4658.2010.07708.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The galactose uptake mechanism in yeast is a well-studied regulatory network. The regulatory players in the galactose regulatory mechanism (GAL system) are conserved in Saccharomyces cerevisiae and Kluyveromyces lactis, but the molecular mechanisms that occur as a result of the molecular interactions between them are different. The key differences in the GAL system of K. lactis relative to that of S. cerevisiae are: (a) the autoregulation of KlGAL4; (b) the dual role of KlGal1p as a metabolizing enzyme as well as a galactose-sensing protein; (c) the shuttling of KlGal1p between nucleus and cytoplasm; and (d) the nuclear confinement of KlGal80p. A steady-state model was used to elucidate the roles of these molecular mechanisms in the transcriptional response of the GAL system. The steady-state results were validated experimentally using measurements of beta-galactosidase to represent the expression for genes having two binding sites. The results showed that the autoregulation of the synthesis of activator KlGal4p is responsible for the leaky expression of GAL genes, even at high glucose concentrations. Furthermore, GAL gene expression in K. lactis shows low expression levels because of the limiting function of the bifunctional protein KlGal1p towards the induction process in order to cope with the need for the metabolism of lactose/galactose. The steady-state model of the GAL system of K. lactis provides an opportunity to compare with the design prevailing in S. cerevisiae. The comparison indicates that the existence of a protein, Gal3p, dedicated to the sensing of galactose in S. cerevisiae as a result of genome duplication has resulted in a system which metabolizes galactose efficiently.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, India
| | | | | |
Collapse
|
8
|
Sellick CA, Jowitt TA, Reece RJ. The effect of ligand binding on the galactokinase activity of yeast Gal1p and its ability to activate transcription. J Biol Chem 2008; 284:229-236. [PMID: 18957435 DOI: 10.1074/jbc.m807878200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The galactokinase from Saccharomyces cerevisiae (ScGal1p) is a bifunctional protein. It is an enzyme responsible for the conversion of alpha-D-galactose into galactose 1-phosphate at the expense of ATP but can also function as a transcriptional inducer of the yeast GAL genes. For both of these activities, the protein requires two ligands; a sugar (galactose) and a nucleotide (ATP). Here we investigate the effect of these ligands on the stability and conformation of ScGal1p to determine how the ligands alter protein function. We show that nucleotide binding increases the thermal stability of ScGal1p, whereas binding of galactose alone had no effect on the stability of the protein. This nucleotide stabilization effect is also observed for the related proteins S. cerevisiae Gal3p and Kluyveromyces lactis Gal1p and suggests that nucleotide binding results in the formation of, or the unmasking of, the galactose-binding site. We also show that the increase in stability of ScGal1p does not result from a large conformational change but is instead the result of a smaller more energetically favorable stabilization event. Finally, we have used mutant versions of ScGal1p to show that the galactokinase and transcriptional induction functions of the protein are distinct and separable. Mutations resulting in constitutive induction do not function by mimicking the more stable active conformation but have highlighted a possible site of interaction between ScGal1p and ScGal80p. These data give significant insights into the mechanism of action of both a galactokinase and a transcriptional inducer.
Collapse
Affiliation(s)
- Christopher A Sellick
- Faculty of Life Sciences, The University of Manchester, Michael Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Faculty of Life Sciences, The University of Manchester, Michael Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Richard J Reece
- Faculty of Life Sciences, The University of Manchester, Michael Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom.
| |
Collapse
|
9
|
Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae. Biochem J 2008; 414:177-87. [PMID: 18687061 DOI: 10.1042/bj20080923] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The comparatively simple eukaryote Saccharomyces cerevisiae is composed of some 6000 individual genes. Specific sets of these genes can be transcribed co-ordinately in response to particular metabolic signals. The resultant integrated response to nutrient challenge allows the organism to survive and flourish in a variety of environmental conditions while minimal energy is expended upon the production of unnecessary proteins. The Zn(II)2Cys6 family of transcriptional regulators is composed of some 46 members in S. cerevisiae and many of these have been implicated in mediating transcriptional responses to specific nutrients. Gal4p, the archetypical member of this family, is responsible for the expression of the GAL genes when galactose is utilized as a carbon source. The regulation of Gal4p activity has been studied for many years, but we are still uncovering both nuances and fundamental control mechanisms that impinge on its function. In the present review, we describe the latest developments in the regulation of GAL gene expression and compare the mechanisms employed here with the molecular control of other Zn(II)2Cys6 transcriptional regulators. This reveals a wide array of protein-protein, protein-DNA and protein-nutrient interactions that are employed by this family of regulators.
Collapse
|
10
|
Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl Environ Microbiol 2008; 74:1748-56. [PMID: 18245248 DOI: 10.1128/aem.00186-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (beta-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media.
Collapse
|
11
|
Sellick CA, Campbell RN, Reece RJ. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:111-50. [PMID: 18779058 DOI: 10.1016/s1937-6448(08)01003-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzymes of the Leloir pathway catalyze the conversion of galactose to a more metabolically useful version, glucose-6-phosphate. This pathway is required as galactose itself cannot be used for glycolysis directly. In most organisms, including the yeast Saccharomyces cerevisiae, five enzymes are required to catalyze this conversion: a galactose mutarotase, a galactokinase, a galactose-1-phosphate uridyltransferase, a UDP-galactose-4-epimerase, and a phosphoglucomutase. In yeast, the genes encoding these enzymes are tightly controlled at the level of transcription and are only transcribed under specific sets of conditions. In the presence of glucose, the genes encoding the Leloir pathway enzymes (often called the GAL genes) are repressed through the action of a transcriptional repressor Mig1p. In the presence of galactose, but in the absence of glucose, the concerted actions of three other proteins Gal4p, Gal80p, and Gal3p, and two small molecules (galactose and ATP) enable the rapid and high-level activation of the GAL genes. The precise molecular mechanism of the GAL genetic switch is controversial. Recent work on solving the three-dimensional structures of the various GAL enzymes proteins and the GAL transcriptional switch proteins affords a unique opportunity to delve into the precise, and potentially unambiguous, molecular mechanism of a highly exploited transcriptional circuit. Understanding the details of the transcriptional and metabolic events that occur in this pathway can be used as a paradigm for understanding the integration of metabolism and transcriptional control more generally, and will assist our understanding of fundamental biochemical processes and how these might be exploited.
Collapse
|
12
|
Berg JM. Metal-Binding Domains in Nucleic Acid-Binding and Gene-Regulatory Proteins. PROGRESS IN INORGANIC CHEMISTRY 2007. [DOI: 10.1002/9780470166383.ch3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Thoden JB, Sellick CA, Reece RJ, Holden HM. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J Biol Chem 2006; 282:1534-8. [PMID: 17121853 DOI: 10.1074/jbc.c600285200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In yeast, the GAL genes encode the enzymes required for normal galactose metabolism. Regulation of these genes in response to the organism being challenged with galactose has served as a paradigm for eukaryotic transcriptional control over the last 50 years. Three proteins, the activator Gal4p, the repressor Gal80p, and the ligand sensor Gal3p, control the switch between inert and active gene expression. Gal80p, the focus of this investigation, plays a pivotal role both in terms of repressing the activity of Gal4p and allowing the GAL switch to respond to galactose. Here we present the three-dimensional structure of Gal80p from Kluyveromyces lactis and show that it is structurally homologous to glucose-fructose oxidoreductase, an enzyme in the sorbitol-gluconate pathway. Our results clearly define the overall tertiary and quaternary structure of Gal80p and suggest that Gal4p and Gal3p bind to Gal80p at distinct but overlapping sites. In addition to providing a molecular basis for previous biochemical and genetic studies, our structure demonstrates that much of the enzymatic scaffold of the oxidoreductase has been maintained in Gal80p, but it is utilized in a very different manner to facilitate transcriptional regulation.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
14
|
Anders A, Lilie H, Franke K, Kapp L, Stelling J, Gilles ED, Breunig KD. The Galactose Switch in Kluyveromyces lactis Depends on Nuclear Competition between Gal4 and Gal1 for Gal80 Binding. J Biol Chem 2006; 281:29337-48. [PMID: 16867978 DOI: 10.1074/jbc.m604271200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gal4 protein represents a universally functional transcription activator, which in yeast is regulated by protein-protein interaction of its transcription activation domain with the inhibitor Gal80. Gal80 inhibition is relieved via galactose-mediated Gal80-Gal1-Gal3 interaction. The Gal4-Gal80-Gal1/3 regulatory module is conserved between Saccharomyces cerevisiae and Kluyveromyces lactis. Here we demonstrate that K. lactis Gal80 (KlGal80) is a nuclear protein independent of the Gal4 activity status, whereas KlGal1 is detected throughout the entire cell, which implies that KlGal80 and KlGal1 interact in the nucleus. Consistently KlGal1 accumulates in the nucleus upon KlGAL80 overexpression. Furthermore, we show that the KlGal80-KlGal1 interaction blocks the galactokinase activity of KlGal1 and is incompatible with KlGal80-KlGal4-AD interaction. Thus, we propose that dissociation of KlGal80 from the AD forms the basis of KlGal4 activation in K. lactis. Quantitation of the dissociation constants for the KlGal80 complexes gives a much lower affinity for KlGal1 as compared with Gal4. Mathematical modeling shows that with these affinities a switch based on competition between Gal1 and Gal4 for Gal80 binding is nevertheless efficient provided two monomeric Gal1 molecules interact with dimeric Gal80. Consistent with such a mechanism, analysis of the sedimentation behavior by analytical ultracentrifugation demonstrates the formation of a heterotetrameric KlGal80-KlGal1 complex of 2:2 stoichiometry.
Collapse
Affiliation(s)
- Alexander Anders
- Institut für Genetik and Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Lodi T, Donnini C. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis. FEMS Yeast Res 2005; 5:727-34. [PMID: 15851101 DOI: 10.1016/j.femsyr.2005.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/12/2005] [Accepted: 01/25/2005] [Indexed: 11/30/2022] Open
Abstract
The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.
Collapse
Affiliation(s)
- Tiziana Lodi
- Dipartimento di Genetica Antropologia Evoluzione, University of Parma, 43100 Parma, Italy.
| | | |
Collapse
|
16
|
Rubio-Texeira M. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast Res 2005; 5:1115-28. [PMID: 16014343 DOI: 10.1016/j.femsyr.2005.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/12/2005] [Accepted: 05/18/2005] [Indexed: 11/21/2022] Open
Abstract
Despite their close phylogenetic relationship, Kluyveromyces lactis and Saccharomyces cerevisiae have adapted their carbon utilization systems to different environments. Although they share identities in the arrangement, sequence and functionality of their GAL gene set, both yeasts have evolved important differences in the GAL genetic switch in accordance to their relative preference for the utilization of galactose as a carbon source. This review provides a comparative overview of the GAL-specific regulatory network in S. cerevisiae and K. lactis, discusses the latest models proposed to explain the transduction of the galactose signal, and describes some of the particularities that both microorganisms display in their regulatory response to different carbon sources. Emphasis is placed on the potential for improved strategies in biotechnological applications using yeasts.
Collapse
Affiliation(s)
- Marta Rubio-Texeira
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Menezes RA, Amuel C, Engels R, Gengenbacher U, Labahn J, Hollenberg CP. Sites for interaction between Gal80p and Gal1p in Kluyveromyces lactis: structural model of galactokinase based on homology to the GHMP protein family. J Mol Biol 2003; 333:479-92. [PMID: 14556739 DOI: 10.1016/j.jmb.2003.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The induction of transcription of the galactose genes in yeast involves the galactose-dependent binding of ScGal3p (in Saccharomyces cerevisiae) or KlGal1p (in Kluyveromyces lactis) to Gal80p. This binding abrogates Gal80's inhibitory effect on the activation domain of Gal4p, which can then activate transcription. Here, we describe the isolation and characterization of new interaction mutants of K.lactis GAL1 and GAL80 using a two-hybrid screen. We present the first structural model for Gal1p to be based on the published crystal structures of other proteins belonging to the GHMP (galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase) kinase family and our own X-ray diffraction data of Gal1p crystals at 3A resolution. The locations of the various mutations in the modelled Gal1p structure identify domains involved in the interaction with Gal80p and provide a structural explanation for the phenotype of constitutive GAL1 mutations.
Collapse
Affiliation(s)
- R A Menezes
- Institut für Mikrobiologie and Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Bhat PJ, Murthy TV. Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol Microbiol 2001; 40:1059-66. [PMID: 11401712 DOI: 10.1046/j.1365-2958.2001.02421.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the interplay between Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes needed for galactose utilization. The interaction between Gal80p and Gal4p has been studied in great detail; however, our understanding of the mechanism of Gal3p in transducing the signal from galactose to Gal4p has only begun to emerge recently. Historically, Gal3p was believed to be an enzyme (catalytic model) that converts galactose to an inducer or co-inducer, which was thought to interact with GAL80p, the repressor of the system. However, recent genetic analyses indicate an alternative 'protein-protein interaction model'. According to this model, Gal3p is activated by galactose, which leads to its interaction with Gal80p. Biochemical and genetic experiments that support this model provided new insights into how Gal3p interacts with the Gal80p-Gal4p complex, alleviates the repression of Gal80p and thus allows Gal4p to activate transcription. Recently, a galactose-independent signal was suggested to co-ordinate the induction of GAL genes with the energy status of the cell.
Collapse
Affiliation(s)
- P J Bhat
- Molecular Genetics Laboratory, Biotechnology Centre, Indian Institute of Technology, Powai, Mumbai 400 076, India.
| | | |
Collapse
|
19
|
Betina S, Goffrini P, Ferrero I, Wésolowski-Louvel M. RAG4 gene encodes a glucose sensor in Kluyveromyces lactis. Genetics 2001; 158:541-8. [PMID: 11404320 PMCID: PMC1461679 DOI: 10.1093/genetics/158.2.541] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rag4 mutant of Kluyveromyces lactis was previously isolated as a fermentation-deficient mutant, in which transcription of the major glucose transporter gene RAG1 was affected. The wild-type RAG4 was cloned by complementation of the rag4 mutation and found to encode a protein homologous to Snf3 and Rgt2 of Saccharomyces cerevisiae. These two proteins are thought to be sensors of low and high concentrations of glucose, respectively. Rag4, like Snf3 and Rgt2, is predicted to have the transmembrane structure of sugar transporter family proteins as well as a long C-terminal cytoplasmic tail possessing a characteristic 25-amino-acid sequence. Rag4 may therefore be expected to have a glucose-sensing function. However, the rag4 mutation was fully complemented by one copy of either SNF3 or RGT2. Since K. lactis appears to have no other genes of the SNF3/RGT2 type, we suggest that Rag4 of K. lactis may have a dual function of signaling high and low concentrations of glucose. In rag4 mutants, glucose repression of several inducible enzymes is abolished.
Collapse
Affiliation(s)
- S Betina
- Unité Microbiologie et Génétique, Université Claude Bernard, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cédex, France
| | | | | | | |
Collapse
|
20
|
Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 2001; 15:1007-20. [PMID: 11316794 PMCID: PMC312679 DOI: 10.1101/gad.873901] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The GAL4 dimerization domain (GAL4-dd) is a powerful transcriptional activator when tethered to DNA in a cell bearing a mutant of the GAL11 protein, named GAL11P. GAL11P (like GAL11) is a component of the RNA-polymerase II holoenzyme. Nuclear magnetic resonance (NMR) studies of GAL4-dd revealed an elongated dimer structure with C(2) symmetry containing three helices that mediate dimerization via coiled-coil contacts. The two loops between the three coiled coils form mobile bulges causing a variation of twist angles between the helix pairs. Chemical shift perturbation analysis mapped the GAL11P-binding site to the C-terminal helix alpha3 and the loop between alpha1 and alpha2. One GAL11P monomer binds to one GAL4-dd dimer rendering the dimer asymmetric and implying an extreme negative cooperativity mechanism. Alanine-scanning mutagenesis of GAL4-dd showed that the NMR-derived GAL11P-binding face is crucial for the novel transcriptional activating function of the GAL4-dd on GAL11P interaction. The binding of GAL4 to GAL11P, although an artificial interaction, represents a unique structural motif for an activating region capable of binding to a single target to effect gene expression.
Collapse
Affiliation(s)
- P Hidalgo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Q, Johnston SA. Are all DNA binding and transcription regulation by an activator physiologically relevant? Mol Cell Biol 2001; 21:2467-74. [PMID: 11259595 PMCID: PMC86879 DOI: 10.1128/mcb.21.7.2467-2474.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding how a regulatory protein occupies its sites in vivo is central to understanding gene regulation. Using the yeast Gal4 protein as a model for such studies, we have found 239 potential Gal4 binding sites in the yeast genome, 186 of which are in open reading frames (ORFs). This raises the questions of whether these sites are occupied by Gal4 and, if so, to what effect. We have analyzed the Saccharomyces cerevisiae ACC1 gene (encoding acetyl-coenzyme A carboxylase), which has three Gal4 binding sites in its ORF. The plasmid titration assay has demonstrated that Gal4 occupies these sites in the context of an active ACC1 gene. We also find that the expression of the ACC1 is reduced fourfold in galactose medium and that this reduction is dependent on the Gal4 binding sites, suggesting that Gal4 bound to the ORF sites affects transcription of ACC1. Interestingly, removal of the Gal4 binding sites has no obvious effect on the growth in galactose under laboratory conditions. In addition, though the sequence of the ACC1 gene is highly conserved among yeast species, these Gal4 binding sites are not present in the Kluyveromyces lactis ACC1 gene. We suggest that the occurrence of these sites may not be related to galactose regulation and a manifestation of the "noise" in the occurrence of Gal4 binding sites.
Collapse
Affiliation(s)
- Q Li
- Department of Internal Medicine and Biochemistry, University of Texas-Southwestern Medical Center, Dallas, Texas 75390-8573, USA
| | | |
Collapse
|
22
|
Schaffrath R, Breunig KD. Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 2000; 30:173-90. [PMID: 11035939 DOI: 10.1006/fgbi.2000.1221] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the recent development of powerful molecular genetic tools, Kluyveromyces lactis has become an excellent alternative yeast model organism for studying the relationships between genetics and physiology. In particular, comparative yeast research has been providing insights into the strikingly different physiological strategies that are reflected by dominance of respiration over fermentation in K. lactis versus Saccharomyces cerevisiae. Other than S. cerevisiae, whose physiology is exceptionally affected by the so-called glucose effect, K. lactis is adapted to aerobiosis and its respiratory system does not underlie glucose repression. As a consequence, K. lactis has been successfully established in biomass-directed industrial applications and large-scale expression of biotechnically relevant gene products. In addition, K. lactis maintains species-specific phenomena such as the "DNA-killer system, " analyses of which are promising to extend our knowledge about microbial competition and the fundamentals of plasmid biology.
Collapse
Affiliation(s)
- R Schaffrath
- Institut für Genetik, Martin-Luther-Universität-Wittenberg, D-06099 Halle(Saale), Germany.
| | | |
Collapse
|
23
|
Abstract
In the recent past, through advances in development of genetic tools, the budding yeast Kluyveromyces lactis has become a model system for studies on molecular physiology of so-called "Nonconventional Yeasts." The regulation of primary carbon metabolism in K. lactis differs markedly from Saccharomyces cerevisiae and reflects the dominance of respiration over fermentation typical for the majority of yeasts. The absence of aerobic ethanol formation in this class of yeasts represents a major advantage for the "cell factory" concept and large-scale production of heterologous proteins in K. lactis cells is being applied successfully. First insight into the molecular basis for the different regulatory strategies is beginning to emerge from comparative studies on S. cerevisiae and K. lactis. The absence of glucose repression of respiration, a high capacity of respiratory enzymes and a tight regulation of glucose uptake in K. lactis are key factors determining physiological differences to S. cerevisiae. A striking discrepancy exists between the conservation of regulatory factors and the lack of evidence for their functional significance in K. lactis. On the other hand, structurally conserved factors were identified in K. lactis in a new regulatory context. It seems that different physiological responses result from modified interactions of similar molecular modules.
Collapse
|
24
|
van Dinten LC, van Tol H, Gorbalenya AE, Snijder EJ. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J Virol 2000; 74:5213-23. [PMID: 10799597 PMCID: PMC110875 DOI: 10.1128/jvi.74.11.5213-5223.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2000] [Accepted: 03/09/2000] [Indexed: 12/22/2022] Open
Abstract
Equine arteritis virus (EAV), the prototype Arterivirus, is a positive-stranded RNA virus that expresses its replicase in the form of two large polyproteins of 1,727 and 3,175 amino acids. The functional replicase subunits (nonstructural proteins), which drive EAV genome replication and subgenomic mRNA transcription, are generated by extensive proteolytic processing. Subgenomic mRNA transcription involves an unusual discontinuous step and generates the mRNAs for structural protein expression. Previously, the phenotype of mutant EAV030F, which carries a single replicase point mutation (Ser-2429-->Pro), had implicated the nsp10 replicase subunit (51 kDa) in viral RNA synthesis, and in particular in subgenomic mRNA transcription. nsp10 contains an N-terminal (putative) metal-binding domain (MBD), located just upstream of the Ser-2429-->Pro mutation, and a helicase activity in its C-terminal part. We have now analyzed the N-terminal domain of nsp10 in considerable detail. A total of 38 mutants, most of them carrying specific single point mutations, were tested in the context of an EAV infectious cDNA clone. Variable effects on viral genome replication and subgenomic mRNA transcription were observed. In general, our results indicated that the MBD region, and in particular a set of 13 conserved Cys and His residues that are assumed to be involved in zinc binding, is essential for viral RNA synthesis. On the basis of these data and comparative sequence analyses, we postulate that the MBD may employ a rather unusual mode of zinc binding that could result in the association of up to four zinc cations with this domain. The region containing residue Ser-2429 may play the role of "hinge spacer," which connects the MBD to the rest of nsp10. Several mutations in this region specifically affected subgenomic mRNA synthesis. Furthermore, one of the MBD mutants was replication and transcription competent but did not produce infectious progeny virus. This suggests that nsp10 is involved in an as yet unidentified step of virion biogenesis.
Collapse
Affiliation(s)
- L C van Dinten
- Department of Virology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
25
|
Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol Cell Biol 1999; 19:7828-40. [PMID: 10523671 PMCID: PMC84853 DOI: 10.1128/mcb.19.11.7828] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gal3, Gal80, and Gal4 proteins of Saccharomyces cerevisiae comprise a signal transducer that governs the galactose-inducible Gal4p-mediated transcription activation of GAL regulon genes. In the absence of galactose, Gal80p binds to Gal4p and prohibits Gal4p from activating transcription, whereas in the presence of galactose, Gal3p binds to Gal80p and relieves its inhibition of Gal4p. We have found that immunoprecipitation of full-length Gal4p from yeast extracts coprecipitates less Gal80p in the presence than in the absence of Gal3p, galactose, and ATP. We have also found that retention of Gal80p by GSTG4AD (amino acids [aa] 768 to 881) is markedly reduced in the presence compared to the absence of Gal3p, galactose, and ATP. Consistent with these in vitro results, an in vivo two-hybrid genetic interaction between Gal80p and Gal4p (aa 768 to 881) was shown to be weaker in the presence than in the absence of Gal3p and galactose. These compiled results indicate that the binding of Gal3p to Gal80p results in destabilization of a Gal80p-Gal4p complex. The destabilization was markedly higher for complexes consisting of G4AD (aa 768 to 881) than for full-length Gal4p, suggesting that Gal80p relocated to a second site on full-length Gal4p. Congruent with the idea of a second site, we discovered a two-hybrid genetic interaction involving Gal80p and the region of Gal4p encompassing aa 225 to 797, a region of Gal4p linearly remote from the previously recognized Gal80p binding peptide within Gal4p aa 768 to 881.
Collapse
Affiliation(s)
- A K Sil
- Department of Biochemistry, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zenke FT, Kapp L, Breunig KD. Regulated phosphorylation of the Gal4p inhibitor Gal80p of Kluyveromyces lactis revealed by mutational analysis. Biol Chem 1999; 380:419-30. [PMID: 10355628 DOI: 10.1515/bc.1999.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The yeast Gal80 protein inhibits the transcription activation function of Gal4p by physically interacting with the activation domain (Gal4-AD). Gal80p interaction with Gal1p or Gal3p is required to relieve Gal4p inhibition in response to galactose. Gal80p orthologs of Saccharomyces cerevisiae and Kluyveromyces lactis, ScGal80p and KIGal80p, can also inhibit the heterologous Gal4p variants; however, heterologous Gal3p/Gal1p only regulate ScGal80p but not KIGal80p. To compare KIGal80p and ScGal80p, point mutations known to affect ScGal80p function were introduced at corresponding positions in KIGal80p, and Gal4p regulation in vivo and KIGal80p-binding to Gst-Gal1p and Gst-Gal4-AD in vitro were analysed. The in vitro binding properties of the KIGal80p mutants were similar to those of ScGal80p, but two out of four mutants differed in Gal4p regulation. E. g. KIGAL80s-0(G302R) but not ScGAL80s-0 (G301R) alleviates Gal4p inhibition. Possibly, this difference is related to a role of phosphorylation in the regulation of Gal80p function in K. lactis. Wild-type and mutant forms of KIGal80p are shown to be subject to carbon source regulated phosphorylation whereas no evidence for ScGal80p phosphorylation exists. (Hyper-)phosphorylation of KIGal80p is strongly reduced in galactose-containing medium. This reduction requires KIGal1p but no interaction with KIGal4p. The inhibition deficient KIGal80s-0p (G302R) variant is under-phosphorylated. We thus propose that phosphorylation of Gal80p in Kluyveromyces lactis contributes to the regulation of Gal4p mediated transcription.
Collapse
Affiliation(s)
- F T Zenke
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
27
|
Abstract
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.
Collapse
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas, Unidad de Bioquímica y Genética de Levaduras, CSIC, 28029 Madrid, Spain.
| |
Collapse
|
28
|
Corton JC, Moreno E, Johnston SA. Alterations in the GAL4 DNA-binding domain can affect transcriptional activation independent of DNA binding. J Biol Chem 1998; 273:13776-80. [PMID: 9593720 DOI: 10.1074/jbc.273.22.13776] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GAL4 protein belongs to a large class of fungal transcriptional activator proteins encoding within their DNA-binding domains (DBD) six cysteines that coordinate two atoms of zinc (the Zn2Cys6 domain). In an effort to characterize the interactions between the Zn2Cys6 class transcriptional activator proteins and their DNA-binding sites, we have replaced in the full-length GAL4 protein small regions of the Zn2Cys6 domain with the analogous regions of another Zn2Cys6 protein called PPR1 an activator of pyrimidine biosynthetic genes. Alterations between the first and third cysteines abolished binding to GAL4 (upstream activation sequence of GAL (UASG)) or PPR1 (upstream acitvation sequence of UAS) DNA-binding sites and severely reduced transcriptional activation in yeast. In contrast, alterations between the third and fourth cysteines had only minor effects on binding to UASG but led to substantial decreases in activation in both yeast and a mammalian cell line. In the crystal structure of the GAL4 DBD-UASG complex (Marmorstein, R., Carey, M., Ptashne, M., and Harrison, S. C. (1992) Nature 356, 408-414), this region is facing away from the DNA, making it likely that there exists within the GAL4 DBD an accessible domain important in activation.
Collapse
Affiliation(s)
- J C Corton
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709-2137, USA.
| | | | | |
Collapse
|
29
|
Abstract
The extent to which the order of genes along chromosomes is conserved between Saccharomyces cerevisiae and related species was studied by analysing data from DNA sequence database. As expected, the extent of gene order conservation decreases with increasing evolutionary distance. About 59% of adjacent gene pairs in Kluyveromyces lactis or K. marxianus are also adjacent in S. cerevisiae, and a further 16% of Kluyveromyces neighbours can be explained in terms of the inferred ancestral gene order in Saccharomyces prior to the occurrence of an ancient whole-genome duplication. Only 13% of Candida albicans linkages, and no Schizosaccharomyces pombe linkages, are conserved. Analysis of gene order arrangements, chromosome numbers, and ribosomal RNA sequences suggests that genome duplication occurred before the divergence of the four species in Saccharomyces sensu stricto (all of which have 16 chromosomes), but after this lineage had diverged from Saccharomyces kluyveri and the Kluyveromyces lactislmarxianus species assemblage.
Collapse
Affiliation(s)
- R S Keogh
- Department of Genetics, University of Dublin, Trinity College, Ireland
| | | | | |
Collapse
|
30
|
Dong J, Dickson RC. Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1- dependent pathway that modulates galactokinase (GAL1) gene expression. Nucleic Acids Res 1997; 25:3657-64. [PMID: 9278487 PMCID: PMC146954 DOI: 10.1093/nar/25.18.3657] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of the lactose-galactose regulon in Kluyveromyces lactis is induced by lactose or galactose and repressed by glucose. Some components of the induction and glucose repression pathways have been identified but many remain unknown. We examined the role of the SNF1 (KlSNF1) and MIG1 (KlMIG1) genes in the induction and repression pathways. Our data show that full induction of the regulon requires SNF1; partial induction occurs in a Klsnf1 -deleted strain, indicating that a KlSNF1 -independent pathway(s) also regulates induction. MIG1 is required for full glucose repression of the regulon, but there must be a KlMIG1 -independent repression pathway also. The KlMig1 protein appears to act downstream of the KlSnf1 protein in the glucose repression pathway. Most importantly, the KlSnf1-KIMig repression pathway operates by modulating KlGAL1 expression. Regulating KlGAL1 expression in this manner enables the cell to switch the regulon off in the presence of glucose. Overall, our data show that, while the Snf1 and Mig1 proteins play similar roles in regulating the galactose regulon in Saccharomyces cerevisiae and K.lactis , the way in which these proteins are integrated into the regulatory circuits are unique to each regulon, as is the degree to which each regulon is controlled by the two proteins.
Collapse
Affiliation(s)
- J Dong
- Department of Biochemistry and the L. P. Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536-0084, USA
| | | |
Collapse
|
31
|
Todd RB, Andrianopoulos A. Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 1997; 21:388-405. [PMID: 9290251 DOI: 10.1006/fgbi.1997.0993] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coevolution of DNA binding proteins and their cognate binding sites is essential for the maintenance of function. As a result, comparison of DNA binding proteins of unknown function in one species with characterized DNA binding proteins in another can identify potential targets and functions. The Zn(II)2Cys6 (or C6 zinc) binuclear cluster DNA binding domain has thus far been identified exclusively in fungal proteins, generally transcriptional regulators, and there are more than 80 known or predicted proteins which contain this motif, the best characterized of which are GAL4, PPR1, LEU3, HAP1, LAC9, and PUT3. Here we review all known proteins containing the Zn(II)2Cys6 motif, along with their function, DNA binding, dimerization, and zinc(II) coordination properties and DNA binding sites. In addition, we have identified all of the Zn(II)2Cys6 motif-containing proteins in the sequence databases, including a large number with unknown function from the completed Saccharomyces cerevisiae and ongoing Schizosaccharomyces pombe genome projects, and examined the phylogenetic relationships of all the Zn(II)2Cys6 motifs from these proteins. Based on these relationships, we have assigned potential functions to a number of these unknown proteins.
Collapse
Affiliation(s)
- R B Todd
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
32
|
Ding WV, Johnston SA. The DNA binding and activation domains of Gal4p are sufficient for conveying its regulatory signals. Mol Cell Biol 1997; 17:2538-49. [PMID: 9111323 PMCID: PMC232103 DOI: 10.1128/mcb.17.5.2538] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcriptional activation function of the Saccharomyces cerevisiae activator Gal4p is known to rely on a DNA binding activity at its amino terminus and an activation domain at its carboxy terminus. Although both domains are required for activation, truncated forms of Gal4p containing only these domains activate poorly in vivo. Also, mutations in an internal conserved region of Gal4p inactivate the protein, suggesting that this internal region has some function critical to the activity of Gal4p. We have addressed the question of what is the minimal form of Gal4 protein that can perform all of its known functions. A form with an internal deletion of the internal conserved domain of Gal4p is transcriptionally inactive, allowing selection for suppressors. All suppressors isolated were intragenic alterations that had further amino acid deletions (miniGAL4s). Characterization of the most active miniGal4 proteins demonstrated that they possess all of the known functions of full-length Gal4p, including glucose repression, galactose induction, response to deletions of gal11 or gal6, and interactions with other proteins such as Ga180p, Sug1p, and TATA binding protein. Analysis of the transcriptional activities, protein levels, and DNA binding abilities of these miniGal4ps and a series of defined internal mutants compared to those of the full-length Gal4p indicates that the DNA binding and activation domains are necessary and sufficient qualitatively for all of these known functions of Gal4p. Our observations imply that the internal region of Gal4 protein may serve as a spacer to augment transcription and/or may be involved in intramolecular or Gal4p-Gal4p interactions.
Collapse
Affiliation(s)
- W V Ding
- Department of Internal Medicine, University of Texas-Southwestern Medical Center, Dallas 75235-8573, USA
| | | |
Collapse
|
33
|
Cardinali G, Vollenbroich V, Jeon MS, de Graaf AA, Hollenberg CP. Constitutive expression in gal7 mutants of Kluyveromyces lactis is due to internal production of galactose as an inducer of the Gal/Lac regulon. Mol Cell Biol 1997; 17:1722-30. [PMID: 9032299 PMCID: PMC231897 DOI: 10.1128/mcb.17.3.1722] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway.
Collapse
Affiliation(s)
- G Cardinali
- Institut für Mikrobiologie, Heinrich Heine Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
The GAL4 family members are fungal transcriptional activators composed of several functional domains: a characteristic cysteine-rich DNA-binding domain common to all members, a dimerization domain, various transactivation domains generally exhibiting a high acidic content and a highly variable central region supposed to be involved in regulation and in effector recognition. We report here that the central region of the GAL4 family members share eight conserved motifs embedded in a large functional domain of 225 up to 405 residues. This domain may also be present in four proteins belonging to another family of transcriptional activators sharing a C2H2-type zinc finger. Analysis of the biochemical data available on the well-studied GAL4 protein suggests that this domain may be involved in the regulation of the activity of the protein, particularly in an inhibitory function. This hypothesis is further supported by deletion and site-directed mutagenesis experiments on other GAL4 family members. The mean secondary structure prediction performed on the eight motifs strongly suggests that the inhibitory activity may be mediated by hydrophobic interactions linked to the presence of amphipathic alpha-helices.
Collapse
Affiliation(s)
- O Poch
- U.P.R. Mécanismes Moléculaire, Division Cellulaire et du Développement, Strasbourg, France
| |
Collapse
|
35
|
Zenke FT, Engles R, Vollenbroich V, Meyer J, Hollenberg CP, Breunig KD. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 1996; 272:1662-5. [PMID: 8658143 DOI: 10.1126/science.272.5268.1662] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Yeast galactokinase (Gal1p) is an enzyme and a regulator of transcription. In addition to phosphorylating galactose, Gal1p activates Gal4p, the activator of GAL genes, but the mechanism of this regulation has been unclear. Here, biochemical and genetic evidence is presented to show that Gal1p activates Gal4p by direct interaction with the Gal4p inhibitor Gal80p. Interaction requires galactose, adenosine triphosphate, and the regulatory function of Gal1p. These data indicate that Gal1p-Gal80p complex formation results in the inactivation of Gal80p, thereby transmitting the galactose signal to Gal4p.
Collapse
Affiliation(s)
- F T Zenke
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Davis MA, Small AJ, Kourambas S, Hynes MJ. The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. J Bacteriol 1996; 178:3406-9. [PMID: 8655534 PMCID: PMC178106 DOI: 10.1128/jb.178.11.3406-3409.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of many nitrogen catabolic enzymes is controlled by nitrogen metabolite repression in Aspergillus nidulans. Although the phenotypes of tamA mutants have implicated this gene in nitrogen regulation, its function is unknown. We have cloned the tamA gene by complementation of a new tamA allele. The tamA sequence shares significant homology with the UGA35/DAL81/DURL gene of Saccharomyces cerevisiae. In vitro mutagenesis of sequences encoding a putative zinc cluster DNA binding domain indicated that this motif is not required for in vivo TamA function.
Collapse
Affiliation(s)
- M A Davis
- Department of Genetics, The University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
37
|
Prior C, Tizzani L, Fukuhara H, Wésolowski-Louvel M. RAG3 gene and transcriptional regulation of the pyruvate decarboxylase gene in Kluyveromyces lactis. Mol Microbiol 1996; 20:765-72. [PMID: 8793873 DOI: 10.1111/j.1365-2958.1996.tb02515.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The RAG3 gene has been cloned from a Kluyveromyces lactis genomic library by complementation of the rag3 mutation, which shows impaired fermentative growth on glucose in the presence of respiratory inhibitors. From the nucleotide sequence of the cloned DNA, which contained an open reading frame of 765 codons, the predicted protein is 49.5% identical to the Pdc2 protein of Saccharomyces cerevisiae, a regulator of pyruvate decarboxylase in this yeast. Measurement of the pyruvate decarboxylase activity in the original rag3-1 mutant and in the null mutant confirmed that the RAG3 gene is involved in pyruvate decarboxylase synthesis in K. lactis. The effect is exerted at the mRNA level of the pyruvate decarboxylase structural gene KIPDCA. Despite analogies between the RAG3 gene of K. lactis and the PDC2 gene of S. cerevisiae, these genes were unable to reciprocally complement.
Collapse
Affiliation(s)
- C Prior
- Institut Curie, Section de Biologie, Centre Universitaire Orsay, France
| | | | | | | |
Collapse
|
38
|
Lesage P, Yang X, Carlson M. Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol Cell Biol 1996; 16:1921-8. [PMID: 8628258 PMCID: PMC231179 DOI: 10.1128/mcb.16.5.1921] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The SNF1 protein kinase has been widely conserved in plants and mammals. In Saccharomyces cerevisiae, SNF1 is essential for expression of glucose-repressed genes in response to glucose deprivation. Previous studies supported a role for SNF1 in relieving transcriptional repression. Here, we report evidence that SNF1 modulates function of a transcriptional activator, SIP4, which was identified in a two-hybrid screen for interaction with SNF1. The N terminus of the predicted 96-kDa SIP4 protein is homologous to the DNA-binding domain of the GAL4 family of transcriptional activators, with a C6 zinc cluster adjacent to a coiled-coil motif The C terminus contains a leucine zipper motif and an acidic region. When bound to DNA, a LexA-SIP4 fusion activates transcription of a reporter gene. Transcriptional activation by SIP4 is regulated by glucose and depends on the SNF1 protein kinase. Moreover, SIP4 is differentially phosphorylated in response to glucose availability, and phosphorylation requires SNF1. These findings suggest that the SNF1 kinase interacts with a transcriptional activator to modulate its activity and provide the first direct evidence for a role of SNF1 in activating transcription in response to glucose limitation.
Collapse
Affiliation(s)
- P Lesage
- Department of Genetics and Development, Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
39
|
des Etages SA, Falvey DA, Reece RJ, Brandriss MC. Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 1996; 142:1069-82. [PMID: 8846888 PMCID: PMC1207108 DOI: 10.1093/genetics/142.4.1069] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proline can serve as a nitrogen source for the yeast Saccharomyces cerevisiae when preferred sources of nitrogen are absent from the growth medium. PUT3, the activator of the proline utilization pathway, is required for the transcription of the genes encoding the enzymes that convert proline to glutamate. PUT3 is a 979 amino acid protein that constitutively binds a short DNA sequence to the promoters of its target genes, but does not activate their expression in the absence of induction by proline and in the presence of preferred sources of nitrogen. To understand how PUT3 is converted from an inactive to an active state, a dissection of its functional domains has been undertaken. Biochemical and molecular tests, domain swapping experiments, and an analysis of activator-constitutive and activator-defective mutant proteins indicate that PUT3 is dimeric and activates transcription with its negatively charged carboxyterminus, which does not appear to contain a proline-responsive domain. A mutation in the conserved central domain found in many fungal activators interferes with activation without affecting DNA binding protein stability. Intragenic suppressors of the central domain mutation have been isolated and analyzed.
Collapse
Affiliation(s)
- S A des Etages
- Department of Microbiology and Molecular Genetics, UMD-New Jersey Medical School, Newark 07013, USA
| | | | | | | |
Collapse
|
40
|
Goffrini P, Ficarelli A, Donnini C, Lodi T, Puglisi PP, Ferrero I. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae. Curr Genet 1996; 29:316-26. [PMID: 8598052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The fog1 and fog2 mutants of the yeast Kluyveromyces lactis were identified by inability to grow on a number of both fermentable and non-fermentable carbon sources. Genetic and physiological evidences suggest a role for FOG1 and FOG2 in the regulation of glucose-repressible gene expression in response to a glucose limitation. The regulatory effect appears to be at the transcriptional level, at least for beta-galactosidase. Both genes have been cloned by complementation and sequenced. FOG1 is a unique gene homologous to GAL83, SIP1 and SIP2, a family of regulatory genes affecting glucose repression of the GAL system in Saccharomyces cerevisiae. However, major differences exist between fog1 and gal83 mutants. FOG2 is structurally and functionally homologous to SNF1 of S. cerevisiae and shares with SNF1 a role also in sporulation.
Collapse
Affiliation(s)
- P Goffrini
- Istituto di Genetica, Università di Parma, Viale delle Scienze, Italy
| | | | | | | | | | | |
Collapse
|
41
|
FOG1 andFOG2 genes, required for the transcriptional activation of glucose-repressible genes ofKluyveromyces lactis, are homologous toGAL83 andSNF1 ofSaccharomyces cerevisiae. Curr Genet 1996. [DOI: 10.1007/bf02208612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Gardner KH, Anderson SF, Coleman JE. Solution structure of the Kluyveromyces lactis LAC9 Cd2 Cys6 DNA-binding domain. NATURE STRUCTURAL BIOLOGY 1995; 2:898-905. [PMID: 7552715 DOI: 10.1038/nsb1095-898] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Zn2Cys6 DNA-binding domain has been identified by sequence homology in approximately forty fungal proteins, including the K. lactis LAC9 transcriptional activator. Using 1H NMR spectroscopy, we have determined the solution structure of a cadmium-substituted form of the LAC9 DNA-binding domain. We have complemented this approach by applying a series of 113Cd-1H NMR experiments, including several novel heteroTOCSY-based techniques. The DNA-binding domain forms a core of two alpha-helix/extended strand segments around the Cd2 binuclear cluster, with a network of amide proton-cysteinyl S gamma hydrogen bonds stabilizing the cluster. Comparison with other Zn2Cys6 domain structures provides insight into the common structural elements used in metal coordination and DNA binding.
Collapse
Affiliation(s)
- K H Gardner
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
43
|
|
44
|
Khoo B, Brophy B, Jackson SP. Conserved functional domains of the RNA polymerase III general transcription factor BRF. Genes Dev 1994; 8:2879-90. [PMID: 7995525 DOI: 10.1101/gad.8.23.2879] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Saccharomyces cerevisiae, two components of the RNA polymerase III (Pol III) general transcription factor TFIIIB are the TATA-binding protein (TBP) and the B-related factor (BRF), so called because its amino-terminal half is homologous to the Pol II transcription factor IIB (TFIIB). We have cloned BRF genes from the yeasts Kluyveromyces lactis and Candida albicans. Despite the large evolutionary distance between these species and S. cerevisiae, the BRF proteins are conserved highly. Although the homology is most pronounced in the amino-terminal half, conserved regions also exist in the carboxy-terminal half that is unique to BRF. By assaying for interactions between BRF and other Pol III transcription factors, we show that it is able to bind to the 135-kD subunit of TFIIIC and also to TBP. Surprisingly, in addition to binding the TFIIB-homologous amino-terminal portion of BRF, TBP also interacts strongly with the carboxy-terminal half. Deleting two conserved regions in the BRF carboxy-terminal region abrogates this interaction. Furthermore, TBP mutations that selectively inhibit Pol III transcription in vivo impair interactions between TBP and the BRF carboxy-terminal domain. Finally, we demonstrate that BRF but not TFIIB binds the Pol III subunit C34 and we define a region of C34 necessary for this interaction. These observations provide insights into the roles performed by BRF in Pol III transcription complex assembly.
Collapse
Affiliation(s)
- B Khoo
- Wellcome/CRC Institute, Cambridge University, UK
| | | | | |
Collapse
|
45
|
Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 1994; 60:2408-14. [PMID: 8074521 PMCID: PMC201664 DOI: 10.1128/aem.60.7.2408-2414.1994] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aflatoxins belong to a family of decaketides that are produced as secondary metabolites by Aspergillus flavus and A. parasiticus. The aflatoxin biosynthetic pathway involves several enzymatic steps that appear to be regulated by the afl2 gene in A. flavus and the apa2 gene in A. parasiticus. Several lines of evidence indicate that these two genes are homologous. The DNA sequences of the two genes are highly similar, they both are involved in the regulation of aflatoxin biosynthesis, and apa2 can complement the afl2 mutation in A. flavus. Because of these similarities, we propose that these two genes are homologs, and because of the ability of these genes to regulate aflatoxin biosynthesis, we suggest that they be designated aflR. We report here the further characterization of aflR from A. flavus and show that aflR codes for a 2,078-bp transcript with an open reading frame of 1,311 nucleotides that codes for 437 amino acids and a putative protein of 46,679 daltons. Analysis of the predicted amino acid sequence indicated that the polypeptide contains a zinc cluster motif between amino acid positions 29 and 56. This region contains the consensus sequence Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-Cys-Xaa2-Cys-Xaa6+ ++-Cys. This motif has been found in several fungal transcriptional regulatory proteins. DNA hybridization of the aflR gene with genomic digests of seven polyketide-producing fungi revealed similar sequences in three other species related to A. flavus: A. parasiticus, A. oryzae, and A. sojae. Finally, we present evidence for an antisense transcript (aflRas) derived from the opposite strand of aflR, suggesting that the aflR locus involves some form of antisense regulation.
Collapse
Affiliation(s)
- C P Woloshuk
- Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | |
Collapse
|
46
|
Freire-Picos MA, González-Siso MI, Rodríguez-Belmonte E, Rodríguez-Torres AM, Ramil E, Cerdán ME. Codon usage in Kluyveromyces lactis and in yeast cytochrome c-encoding genes. Gene X 1994; 139:43-9. [PMID: 8112587 DOI: 10.1016/0378-1119(94)90521-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Codon usage (CU) in Kluyveromyces lactis has been studied. Comparison of CU in highly and lowly expressed genes reveals the existence of 21 optimal codons; 18 of them are also optimal in other yeasts like Saccharomyces cerevisiae or Candida albicans. Codon bias index (CBI) values have been recalculated with reference to the assignment of optimal codons in K. lactis and compared to those previously reported in the literature taking as reference the optimal codons from S. cerevisiae. A new index, the intrinsic codon deviation index (ICDI), is proposed to estimate codon bias of genes from species in which optimal codons are not known; its correlation with other index values, like CBI or effective number of codons (Nc), is high. A comparative analysis of CU in six cytochrome-c-encoding genes (CYC) from five yeasts is also presented and the differences found in the codon bias of these genes are discussed in relation to the metabolic type to which the corresponding yeasts belong. Codon bias in the CYC from K. lactis and S. cerevisiae is correlated to mRNA levels.
Collapse
Affiliation(s)
- M A Freire-Picos
- Departamento de Biología Celular y Molecular, Universidad de La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Endo H, Kajiwara S, Tsunoka O, Shishido K. A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes. Gene X 1994; 139:117-21. [PMID: 8112580 DOI: 10.1016/0378-1119(94)90533-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A cDNA clone (designated priBc) was isolated from a primordial cDNA library of the basidiomycete, Lentinus edodes (Le). The priBc clone consisted of 2628 bp encoding 565 amino acids. As was expected, the priB transcript was abundant in primordia, while preprimordial mycelia and mature fruiting bodies contained lower levels of this Le transcript. The deduced PRIB protein (64 kDa) contained a 'Zn(II)2Cys6 zinc cluster' DNA-binding motif. PRIB was produced in Escherichia coli using the bacteriophage T7 expression system. Southwestern blot analysis revealed that PRIB binds to the DNA fragment containing the upstream region of priB.
Collapse
Affiliation(s)
- H Endo
- Department of Life Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
48
|
Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Mol Cell Biol 1994. [PMID: 8246973 DOI: 10.1128/mcb.13.12.7566] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned the GAL80 gene encoding the negative regulator of the transcriptional activator Gal4 (Lac9) from the yeast Kluyveromyces lactis. The deduced amino acid sequence of K. lactis GAL80 revealed a strong structural conservation between K. lactis Gal80 and the homologous Saccharomyces cerevisiae protein, with an overall identity of 60% and two conserved blocks with over 80% identical residues. K. lactis gal80 disruption mutants show constitutive expression of the lactose/galactose metabolic genes, confirming that K. lactis Gal80 functions in essentially in the same way as does S. cerevisiae Gal80, blocking activation by the transcriptional activator Lac9 (K. lactis Gal4) in the absence of an inducing sugar. However, in contrast to S. cerevisiae, in which Gal4-dependent activation is strongly inhibited by glucose even in a gal80 mutant, glucose repressibility is almost completely lost in gal80 mutants of K. lactis. Indirect evidence suggests that this difference in phenotype is due to a higher activator concentration in K. lactis which is able to overcome glucose repression. Expression of the K. lactis GAL80 gene is controlled by Lac9. Two high-affinity binding sites in the GAL80 promoter mediate a 70-fold induction by galactose and hence negative autoregulation by Gal80. Gal80 in turn not only controls Lac9 activity but also has a moderate influence on its rate of synthesis. Thus, a feedback control mechanism exists between the positive and negative regulators. By mutating the Lac9 binding sites of the GAL80 promoter, we could show that induction of GAL80 is required to prevent activation of the lactose/galactose regulon in glycerol or glucose plus galactose, whereas the noninduced level of Gal80 is sufficient to completely block Lac9 function in glucose.
Collapse
|
49
|
Hawkins AR, Lamb HK, Moore JD, Roberts CF. Genesis of eukaryotic transcriptional activator and repressor proteins by splitting a multidomain anabolic enzyme. Gene 1993; 136:49-54. [PMID: 8294040 DOI: 10.1016/0378-1119(93)90446-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genes necessary for the correctly regulated catabolism of quinate in Aspergillus nidulans and Neurospora crassa are controlled at the level of transcription by a DNA-binding activator protein and a repressor protein that directly interact with one another. The repressor protein is homologous throughout its length with the three C-terminal domains of a pentafunctional enzyme catalysing five consecutive steps in the related anabolic shikimate pathway. We now report that the activator protein is homologous to the two N-terminal domains of the same pentafunctional enzyme and that this proposed structural similarity suggests a molecular mechanism by which the repressor recognises the activator protein. We believe that this is the first report of the genesis of a pair of interacting eukaryotic regulatory proteins by the splitting of a multidomain anabolic enzyme. The recruitment of preformed enzymatically active domains to a regulatory role may represent a general mechanism for the evolution of pathway-specific regulator proteins in dispensable pathways.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
50
|
Dhawale SS, Lane AC. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res 1993; 21:5537-46. [PMID: 8284197 PMCID: PMC310513 DOI: 10.1093/nar/21.24.5537] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S S Dhawale
- Indiana University, Purdue University at Fort Wayne 46805
| | | |
Collapse
|