1
|
Radukic MT, Le DT, Krassuski T, Borchert P, Leach DRF, Müller KM. Degradation and stable maintenance of adeno-associated virus inverted terminal repeats in E. coli. Nucleic Acids Res 2025; 53:gkae1170. [PMID: 39657764 PMCID: PMC11754738 DOI: 10.1093/nar/gkae1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Current plasmid propagation in E. coli compromises large inverted repeats, such as inverted terminal repeats (ITRs) of adeno-associated virus (AAV). Direct long-read sequencing analyses upon varying strains and culture conditions revealed ITR instability caused by a slipped misalignment mechanism, although other mechanism probably contribute. ITRs stabilized in absence of SbcC, which is part of the SbcCD nuclease complex, a human Mre11-Rad50 homolog, or at elevated growth temperatures (e.g. 42°C), with a combination being optimal. Resulting full ITR transgene plasmids improved rAAV yield and purity in HEK-293 productions. The findings advance plasmid biology, cloneable sequences and therapeutic AAV manufacturing.
Collapse
Affiliation(s)
- Marco T Radukic
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Dinh To Le
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Timo Krassuski
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Philipp Borchert
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| |
Collapse
|
2
|
Xiong X, Lu Z, Ma L, Zhai C. Applications of Programmable Endonucleases in Sequence- and Ligation-Independent Seamless DNA Assembly. Biomolecules 2023; 13:1022. [PMID: 37509059 PMCID: PMC10377497 DOI: 10.3390/biom13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Programmable endonucleases, such as Cas (Clustered Regularly-Interspaced Short Repeats-associated proteins) and prokaryotic Argonaute (pAgo), depend on base pairing of the target DNA with the guide RNA or DNA to cleave DNA strands. Therefore, they are capable of recognizing and cleaving DNA sequences at virtually any arbitrary site. The present review focuses on the commonly used in vivo and in vitro recombination-based gene cloning methods and the application of programmable endonucleases in these sequence- and ligation-independent DNA assembly methods. The advantages and shortcomings of the programmable endonucleases utilized as tools for gene cloning are also discussed in this review.
Collapse
Affiliation(s)
- Xingchen Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiwen Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
3
|
Pang Q, Ma S, Han H, Jin X, Liu X, Su T, Qi Q. Phage Enzyme-Assisted Direct In Vivo DNA Assembly in Multiple Microorganisms. ACS Synth Biol 2022; 11:1477-1487. [PMID: 35298132 DOI: 10.1021/acssynbio.1c00529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The assembly of DNA fragments is extremely important for molecular biology. Increasing numbers of studies have focused on streamlining the laborious and costly protocols via in vivo DNA assembly. However, the existing methods were mainly developed for Escherichia coli or Saccharomyces cerevisiae, whereas there are few direct in vivo DNA assembly methods for other microorganisms. The use of shuttle vectors and tedious plasmid extraction and transformation procedures make DNA cloning in other microorganisms laborious and inefficient, especially for DNA library construction. In this study, we developed a "phage enzyme-assisted in vivo DNA assembly" (PEDA) method via combinatorial expression of T5 exonuclease and T4 DNA ligase. PEDA facilitated the in vivo assembly of DNA fragments with homologous sequences as short as 5 bp, and it is applicable to multiple microorganisms, such as Ralstonia eutropha, Pseudomonas putida, Lactobacillus plantarum, and Yarrowia lipolytica. The cloning efficiency of optimized PEDA is much higher than that of the existing in vivo DNA assembly methods and comparable to that of in vitro DNA assembly, making it extremely suitable for DNA library cloning. Collectively, PEDA will boost the application of in vivo DNA assembly in various microorganisms.
Collapse
Affiliation(s)
- Qingxiao Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Hao Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Xiaoqin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| |
Collapse
|
4
|
Single 3′-exonuclease-based multifragment DNA assembly method (SENAX). Sci Rep 2022; 12:4004. [PMID: 35256704 PMCID: PMC8901738 DOI: 10.1038/s41598-022-07878-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractDNA assembly is a vital process in biotechnology and synthetic biology research, during which DNA plasmids are designed and constructed using bioparts to engineer microorganisms for a wide range of applications. Here, we present an enzymatic homology-based DNA assembly method, SENAX (Stellar ExoNuclease Assembly miX), that can efficiently assemble multiple DNA fragments at ambient temperature from 30 to 37 °C and requires homology overlap as short as 12–18 base pairs. SENAX relies only on a 3′–5′ exonuclease, XthA (ExoIII), followed by Escherichia coli transformation, enabling easy scaling up and optimization. Importantly, SENAX can efficiently assemble short fragments down to 70 bp into a vector, overcoming a key shortcoming of existing commonly used homology-based technologies. To the best of our knowledge, this has not been reported elsewhere using homology-based methods. This advantage leads us to develop a framework to perform DNA assembly in a more modular manner using reusable promoter-RBS short fragments, simplifying the construction process and reducing the cost of DNA synthesis. This approach enables commonly used short bioparts (e.g., promoter, RBS, insulator, terminator) to be reused by the direct assembly of these parts into intermediate constructs. SENAX represents a novel accurate, highly efficient, and automation-friendly DNA assembly method.
Collapse
|
5
|
Chen F, Li YY, Yu YL, Dai J, Huang JL, Lin J. Simplified plasmid cloning with a universal MCS design and bacterial in vivo assembly. BMC Biotechnol 2021; 21:24. [PMID: 33722223 PMCID: PMC7962268 DOI: 10.1186/s12896-021-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to clone DNA sequences quickly and precisely into plasmids is essential for molecular biology studies. The recent development of seamless cloning technologies has made significant improvements in plasmid construction, but simple and reliable tools are always desirable for time- and labor-saving purposes. RESULTS We developed and standardized a plasmid cloning protocol based on a universal MCS (Multiple Cloning Site) design and bacterial in vivo assembly. With this method, the vector is linearized first by PCR (Polymerase Chain Reaction) or restriction digestion. Then a small amount (10 ~ 20 ng) of this linear vector can be mixed with a PCR-amplified insert (5× molar ratio against vector) and transformed directly into competent E. coli cells to obtain the desired clones through in vivo assembly. Since we used a 36-bp universal MCS as the homologous linker, any PCR-amplified insert with ~ 15 bp compatible termini can be cloned into the vector with high fidelity and efficiency. Thus, the need for redesigning insert-amplifying primers according to various vector sequences and the following PCR procedures was eliminated. CONCLUSIONS Our protocol significantly reduced hands-on time for preparing transformation reactions, had excellent reliability, and was confirmed to be a rapid and versatile plasmid cloning technique. The protocol contains mostly mixing steps, making it an extremely automation-friendly and promising tool in modern biology studies.
Collapse
Affiliation(s)
- Fan Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Yi-Ya Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Yan-Li Yu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jie Dai
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jin-Ling Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jie Lin
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| |
Collapse
|
6
|
Lyozin GT, Brunelli L. DNA gap repair in Escherichia coli for multiplex site-directed mutagenesis. FASEB J 2020; 34:6351-6368. [PMID: 32167210 DOI: 10.1096/fj.201902260r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/22/2020] [Accepted: 03/01/2020] [Indexed: 11/11/2022]
Abstract
Site-directed mutagenesis allows the generation of novel DNA sequences that can be used for a variety of important applications such as the functional analysis of genetic variants. To overcome the limitations of existing site-directed mutagenesis approaches, we explored in vivo DNA gap repair. We found that site-specific mutations in plasmid DNA can be generated in Escherichia coli using mutant single-stranded oligonucleotides to target PCR-derived linear double-stranded plasmid DNA. We called this method DeGeRing, and we characterized its advantages, including non-biased multiplex mutagenesis, over existing site-directed mutagenesis methods such as recombineering (recombination-mediated genetic engineering), single DNA break repair (SDBR, introduced by W. Mandecki), and QuikChange (Agilent Technologies, La Jolla, CA). We determined the efficiency of DeGeRing to induce site-directed mutations with and without a phenotype in three K-12 E coli strains using multiple single-stranded oligonucleotides containing homological and heterological parts of various sizes. Virtual lack of background made the isolation of mutants with frequencies up to 10-6 unnecessary. Our data show that endogenous DNA gap repair in E coli supports efficient multiplex site-directed mutagenesis. DeGeRing might facilitate the generation of mutant DNA sequences for protein engineering and the functional analysis of genetic variants in reverse genetics.
Collapse
Affiliation(s)
- George T Lyozin
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luca Brunelli
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
7
|
Watson JF, García-Nafría J. In vivo DNA assembly using common laboratory bacteria: A re-emerging tool to simplify molecular cloning. J Biol Chem 2019; 294:15271-15281. [PMID: 31522138 DOI: 10.1074/jbc.rev119.009109] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular cloning is a cornerstone of biomedical, biotechnological, and synthetic biology research. As such, improved cloning methodologies can significantly advance the speed and cost of research projects. Whereas current popular cloning approaches use in vitro assembly of DNA fragments, in vivo cloning offers potential for greater simplification. It is generally assumed that bacterial in vivo cloning requires Escherichia coli strains with enhanced recombination ability; however, this is incorrect. A widely present, bacterial RecA-independent recombination pathway is re-emerging as a powerful tool for molecular cloning and DNA assembly. This poorly understood pathway offers optimal cloning properties (i.e. seamless, directional, and sequence-independent) without requiring in vitro DNA assembly or specialized bacteria, therefore vastly simplifying cloning procedures. Although the use of this pathway to perform DNA assembly was first reported over 25 years ago, it failed to gain popularity, possibly due to both technical and circumstantial reasons. Technical limitations have now been overcome, and recent reports have demonstrated its versatility for DNA manipulation. Here, we summarize the historical trajectory of this approach and collate recent reports to provide a roadmap for its optimal use. Given the simplified protocols and minimal requirements, cloning using in vivo DNA assembly in E. coli has the potential to become widely employed across the molecular biology community.
Collapse
Affiliation(s)
- Jake F Watson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| |
Collapse
|
8
|
Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks. DNA Repair (Amst) 2016; 42:107-18. [PMID: 27155933 DOI: 10.1016/j.dnarep.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022]
Abstract
Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechanisms MutSβ-deficient mice incur contractions instead of expansions. Replication using CTG or CAG as the lagging strand template is known to cause contractions or expansions respectively; however, the interplay between replication and repair leading to this instability remains unclear. Towards understanding how repeat contractions may arise, we performed in vitro SV40-mediated replication of repeat-containing plasmids in the presence or absence of mismatch repair. Specifically, we separated repair from replication: Replication mediated by MutSβ- and MutSα-deficient human cells or cell extracts produced slipped-DNA heteroduplexes in the contraction- but not expansion-biased replication direction. Replication in the presence of MutSβ disfavoured the retention of replication products harbouring slipped-DNA heteroduplexes. Post-replication repair of slipped-DNAs by MutSβ-proficient extracts eliminated slipped-DNAs. Thus, a MutSβ-deficiency likely enhances repeat contractions because MutSβ protects against contractions by repairing template strand slip-outs. Replication deficient in LigaseI or PCNA-interaction mutant LigaseI revealed slipped-DNA formation at lagging strands. Our results reveal that distinct mechanisms lead to expansions or contractions and support inhibition of MutSβ as a therapeutic strategy to enhance the contraction of expanded repeats.
Collapse
|
9
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
10
|
Chan CY, Kiechle M, Manivasakam P, Schiestl RH. Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae. Nucleic Acids Res 2007; 35:5051-9. [PMID: 17652322 PMCID: PMC1976441 DOI: 10.1093/nar/gkm442] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA double-strand breaks can be repaired by illegitimate recombination without extended sequence homology. A distinct mechanism namely microhomology-mediated recombination occurs between a few basepairs of homology that is associated with deletions. Ionizing radiation and restriction enzymes have been shown to increase the frequency of nonhomologous integration in yeast. However, the mechanism of such enhanced recombination events is not known. Here, we report that both ionizing radiation and restriction enzymes increase the frequency of microhomology-mediated integration. Irradiated yeast cells displayed 77% microhomology-mediated integration, compared to 27% in unirradiated cells. Radiation-induced integration exhibited lack of deletions at genomic insertion sites, implying that such events are likely to occur at undamaged sites. Restriction enzymes also enhanced integration events at random non-restriction sites via microhomology-mediated recombination. Furthermore, generation of a site-specific I-SceI-mediated double-strand break induces microhomology-mediated integration randomly throughout the genome. Taken together, these results suggest that double-strand breaks induce a genome-wide microhomology-mediated illegitimate recombination pathway that facilitates integration probably in trans at non-targeted sites and might be involved in generation of large deletions and other genomic rearrangements.
Collapse
Affiliation(s)
| | | | | | - Robert H. Schiestl
- *To whom correspondence should be addressed.+1 310 267 2087+1 310 267 2578
| |
Collapse
|
11
|
Hebert ML, Wells RD. Roles of double-strand breaks, nicks, and gaps in stimulating deletions of CTG.CAG repeats by intramolecular DNA repair. J Mol Biol 2005; 353:961-79. [PMID: 16213518 DOI: 10.1016/j.jmb.2005.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/30/2005] [Accepted: 09/09/2005] [Indexed: 11/19/2022]
Abstract
A series of plasmids harboring CTG.CAG repeats with double-strand breaks (DSB), single-strand nicks, or single-strand gaps (15 or 30 nucleotides) within the repeat regions were used to determine their capacity to induce genetic instabilities. These plasmids were introduced into Escherichia coli in the presence of a second plasmid containing a sequence that could support homologous recombination repair between the two plasmids. The transfer of a point mutation from the second to the first plasmid was used to monitor homologous recombination (gene conversion). Only DSBs increased the overall genetic instability. This instability took place by intramolecular repair, which was not dependent on RuvA. Double-strand break-induced instabilities were partially stabilized by a mutation in recF. Gaps of 30 nt formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nt did not induce expansions or deletions. Formation of this deletion product required the CTG.CAG repeats to be present in the single-stranded region and was stimulated by E.coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the intramolecular repair-induced instabilities and the formation of the 30 nt deletion product.
Collapse
Affiliation(s)
- Micheal L Hebert
- Center for Genome Research, Institute of Biosciences and Technology, Texas A and M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
12
|
Martinez ED, Pattabiraman N, Danielsen M. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination. Exp Cell Res 2005; 308:320-33. [PMID: 15936754 DOI: 10.1016/j.yexcr.2005.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/15/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites/genetics
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- COS Cells
- Chlorocebus aethiops
- Glucocorticoids/metabolism
- Ligands
- Mineralocorticoids/metabolism
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/chemistry
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Recombinant Fusion Proteins/genetics
- Signal Transduction/physiology
- Steroids/metabolism
- Transcriptional Activation/physiology
Collapse
Affiliation(s)
- Elisabeth D Martinez
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | |
Collapse
|
13
|
Hebert ML, Spitz LA, Wells RD. DNA Double-strand Breaks Induce Deletion of CTG·CAG Repeats in an Orientation-dependent Manner in Escherichia coli. J Mol Biol 2004; 336:655-72. [PMID: 15095979 DOI: 10.1016/j.jmb.2003.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 12/11/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
The influences of double-strand breaks (DSBs) within a triplet repeat sequence on its genetic instabilities (expansions and deletions) related to hereditary neurological diseases was investigated. Plasmids containing 43 or 70 CTG.CAG repeats or 43 CGG.CCG repeats were linearized in vitro near the center of the repeats and were transformed into parental, RecA-dependent homologous recombination-deficient, or RecBC exonuclease-deficient Escherichia coli. The resulting repair process considerably increased deletion of the repeating sequence compared to the circular DNA controls. Unexpectedly, the orientation of the insert relative to the unidirectional ColE1 origin of replication affected the amount of instability generated during the repair of the DSB. When the CTG strand was the template for lagging-strand synthesis, instability was increased, most markedly in the recA- strain. Results indicated that RecA and/or RecBC might play a role in DSB repair within the triplet repeat. Altering the length, orientation, and sequence composition of the triplet repeat suggested an important role of DNA secondary structures during repair intermediates. Hence, we hypothesize that ColE1 origin-dependent replication was involved during the repair of the DSB. A model is presented to explain the mechanisms of the observed genetic instabilities.
Collapse
Affiliation(s)
- Micheal L Hebert
- Institute of Biosciences and Technology, Center for Genome Research, Texas A and M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blavd., Houston, TX 77030-3303, USA
| | | | | |
Collapse
|
14
|
Marcadier JL, Pearson CE. Fidelity of primate cell repair of a double-strand break within a (CTG).(CAG) tract. Effect of slipped DNA structures. J Biol Chem 2003; 278:33848-56. [PMID: 12807901 DOI: 10.1074/jbc.m304284200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At least 15 human diseases are caused by the instability of gene-specific (CTG).(CAG) repeats. The precise mechanism of instability remains unknown, though bacterial and yeast models have suggested a role for aberrant repair of double-strand breaks (DSBs). Using an established primate DSB repair system, we have investigated the fidelity of repair of a DSB within a (CTG).(CAG) repeat tract. DSB repair substrates were generated from plasmids that are stably replicated in their circular form, permitting us to highlight the effects of DSB repair on repeat stability and minimize the contribution of replication. DSBs were introduced into repeat-containing plasmids using a unique BsmI site, such that the entire repeat tract comprised one free end of the linearized plasmid. Substrates containing 17, 47, and 79 repeats, in either their linear duplex form or containing slipped structures (out-of-register interstrand mispairings at repeat sequences), were transiently transfected into primate cells. Linearized plasmids with repeats were repaired with mildly reduced efficiency, while the presence of slipped structures considerably reduced repair efficiency. The repaired products were characterized for alterations within the repeat tract and flanking sequence. DSB repair induced predominantly repeat deletions. Notably, a polarized/directional deletion effect was observed, in that the repetitive end of the DSB was preferentially removed. This phenomenon was dramatically enhanced when slipped structures were present within the repeat tract, providing the first evidence for error-prone processing of slipped-strand structures. These results suggest the existence of primate nuclease activities that are specific for (CTG).(CAG) repeats and the structures they form.
Collapse
Affiliation(s)
- Julien L Marcadier
- Department of Molecular & Medical Genetics, University of Toronto, Ontario M5A 1X8, Canada
| | | |
Collapse
|
15
|
Wronka G, Fechteler K, Schmitz B, Doerfler W. Integrative recombination between adenovirus type 12 DNA and mammalian DNA in a cell-free system: joining by short sequence homologies. Virus Res 2002; 90:225-42. [PMID: 12457977 DOI: 10.1016/s0168-1702(02)00201-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cell-free system was developed to investigate the mechanism of how junctions are formed between viral and cellular DNAs during adenoviral DNA integration into the hamster cell genome. Recombination between the segment of adenovirus type 12 (Ad12) DNA, that comprises sequence coordinates 20885-24053, subsequently termed PstI-D fragment and the hamster preinsertion DNA sequence p7 was studied in a cell-free system. The p7 DNA segment had served as viral DNA integration site in the Ad12-induced tumor CLAC1. Nuclear extracts initially from uninfected BHK21 hamster cells were fractionated by a series of chromatographic steps. DNAs of the in vitro generated recombinants were analyzed in detail. In the course of the recombination reaction, the two linear molecules were joined. The reaction took place between two short homologous sequences one of which was always at or very close to a DNA terminus, the second one could be several kilobase pairs remote from a DNA terminus. Apparently, the nucleotide sequence at the terminus of one recombining molecule determined the point of junction by searching for short homologies in the partner molecule. The recombination reaction was not conservative, the sequences in-between the short sequence homologies and one of the short sequence homologies were deleted in the in vitro recombinants. Two main criteria influenced the choice of interacting short sequence homologies: perfect homologies of 8-9 bp were most frequently found, they were preferred over more extended, but less perfect homologies. Comparing different short sequence homologies with similar stabilities, those combinations seemed to be chosen in the reaction which led to a minimal loss of nucleotides in the recombinants. The in vitro activity was found in nuclear extracts from both hamster and human cells. The activity was, hence, available for Ad12 DNA in productively infected human and abortively infected hamster cells. The specific recombination activity was increased in nuclear extracts of hamster cells abortively infected with Ad12. The junction sites in the recombinants, which were generated by the cell-free system, were very similar to junctions between adenoviral and cellular DNAs cloned from Ad12-induced tumor cells and Ad12-transformed cell lines.
Collapse
Affiliation(s)
- Gerd Wronka
- Institut für Genetik, Universität zu Köln, Weyertal 121, D-50931, Köln, Germany
| | | | | | | |
Collapse
|
16
|
Nakamura S, Ikehata H, Ono T. Characteristics of mutations generated through digestion with restriction enzyme and ligation in plasmid DNA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:46-54. [PMID: 11473387 DOI: 10.1002/em.1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recently, the use of restriction enzymes has been extended to studies in which rare events such as mutation and mistakes in DNA repair are examined. In these studies, the specificity of restriction enzymes becomes critical. To clarify the nature of the rare unexpected events occurring in the process of cutting of DNA with restriction enzymes then ligating it, we studied the molecular characteristics of unexpected plasmid DNAs that were retrieved as mutants of the plasmid after transfection to E. coli. The plasmid used was pUR288, containing lacZ as a marker of mutation. It was digested with restriction enzymes under the conditions recommended by the supplier of the enzymes and under the presence of DMSO, which is known to induce star activity of the enzymes. Comparisons of mutant frequencies and of nucleotide sequences of the mutants found in the different conditions indicated that nonspecific endonucleolytic activity similar to that found under star activity was present under the recommended conditions and, further, was responsible for the creation of deletion-type mutations. The frequency of these events ranged from 10(-5) to 10(-3), depending on the kind of restriction enzymes analyzed. Although the levels of the nonspecificity were not high, they should be considered in assays such as mutation and mistakes in DNA repair, where rare events are examined.
Collapse
Affiliation(s)
- S Nakamura
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
17
|
|
18
|
Meima R, Haan GJ, Venema G, Bron S, de Jong S. Sequence specificity of illegitimate plasmid recombination in Bacillus subtilis: possible recognition sites for DNA topoisomerase I. Nucleic Acids Res 1998; 26:2366-73. [PMID: 9580687 PMCID: PMC147579 DOI: 10.1093/nar/26.10.2366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous work in our group indicated that structural plasmid instability in Bacillus subtilis is often caused by illegitimate recombination between non-repeated sequences, characterized by a relatively high AT content. Recently we developed a positive selection vector for analysis of plasmid recombination events in B. subtilis which enables measurement of recombination frequencies without interference of selective growth differences of cells carrying wild-type or deleted plasmids. Here we have used this system to further analyse the sequence specificity of illegitimate plasmid recombination events and to assess the role of the host-encoded DNA topoisomerase I enzyme in this process. Several lines of evidence suggest that single-strand DNA nicks introduced by DNA topoisomerase I are a major source of plasmid deletions in pGP100. First, strains overproducing DNA topoisomerase I showed increased levels of plasmid deletion. Second, these deletions occurred predominantly (>90% of the recombinants) between non-repeated DNA sequences, the majority of which resemble potential DNA topoisomerase I target sites. Sequence alignment of 66 deletion end-points confirmed the previously reported high AT content and, most importantly, revealed a highly conserved C residue at position -4 relative to the site of cleavage at both deletion termini. Based on these genetic data we propose the following putative consensus cleavage site for DNA topoisomerase I of B.subtilis: 5'-A/TCATA/TTAA/TA/TA-3'.
Collapse
Affiliation(s)
- R Meima
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Bill CA, Yu Y, Miselis NR, Little JB, Nickoloff JA. A role for p53 in DNA end rejoining by human cell extracts. Mutat Res 1997; 385:21-9. [PMID: 9372845 DOI: 10.1016/s0921-8777(97)00040-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tumor suppressor p53 is a major regulator in the response of human cells to DNA damage. In this study we assessed the role of p53 in the repair of DNA double-strand breaks in plasmid DNA using cell extracts from three human lymphoblastoid cell lines derived from the same donor. TK6, WI-L2-NS and TK6-E6-5e cells express wild-type, mutated and essentially no p53 protein, respectively. Total cellular extracts from TK6, WI-L2-NS and TK6-E6-5e cells were incubated with EcoRI linearized pUC19 DNA. Southern blot analysis of end-rejoined DNA indicated that the major products formed were linear multimers. There was approximately 2-fold greater end rejoining in WI-L2-NS and TK6-E6-5e extracts compared with TK6 extracts. Total DNA from end-rejoining reactions was purified and used to transform bacteria. Using the lacZ reporter gene as a measure of repair fidelity we found that misrepair, as indicated by white colonies, occurred at 4.1% to 6.5% of transformants, with no significant difference between the three cell lines. Gel analysis revealed that misrepair involved only deletions. Sequence analysis of 11 misrepaired products from each cell line showed 12 different deletions from 4 to 48 bp in length, but each cell line yielded similar product types. These results indicate that total cellular extracts from human lymphoblastoid cells lacking p53 or expressing mutated p53 have increased end-rejoining activity as compared with extracts from cells expressing wild-type p53. However, the p53 status does not influence the ratio of misrepair:correct repair, or the type of misrepair events.
Collapse
Affiliation(s)
- C A Bill
- Department of Cancer Biology, Harvard University School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
20
|
Bierne H, Ehrlich SD, Michel B. Deletions at stalled replication forks occur by two different pathways. EMBO J 1997; 16:3332-40. [PMID: 9214648 PMCID: PMC1169949 DOI: 10.1093/emboj/16.11.3332] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Replication blockage induces non-homologous deletions in Escherichia coli. The mechanism of the formation of these deletions was investigated. A pBR322-mini-oriC hybrid plasmid carrying two E. coli replication terminators (Ter sites) in opposite orientations was used. Deletions which remove at least the pBR322 blocking site (named Ter1) occurred at a frequency of 2 x 10(-6) per generation. They fall into two equally large classes: deletions that join sequences with no homology, and others that join sequences of 3-10 bp of homology. Some 95% of the deletions in the former class resulted from the fusion of sequences immediately preceding the two Ter sites, indicating a direct role for blocked replication forks in their formation. These deletions were not found in a topA10 mutant, suggesting a topoisomerase I-mediated process. In contrast, deletions joining short homologous sequences were not affected by the topA10 mutation. However, the incidence of this second class of deletions increased 10-fold in a recD mutant, devoid of exonuclease V activity. This indicates that linear molecules are intermediates in their formation. In addition, approximately 50% of these deletions were clustered in the region flanking the Ter1 site. We propose that they are produced by repair of molecules broken at the blocked replication forks.
Collapse
Affiliation(s)
- H Bierne
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas France
| | | | | |
Collapse
|
21
|
Meima R, Haijema BJ, Dijkstra H, Haan GJ, Venema G, Bron S. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis. J Bacteriol 1997; 179:1219-29. [PMID: 9023205 PMCID: PMC178819 DOI: 10.1128/jb.179.4.1219-1229.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the major recombination enzyme, RecA. Strains carrying a mutation in the ATP-binding site of the AddB subunit exhibited high levels of plasmid instability, whereas a comparable mutation in the A subunit did not affect plasmid stability. Using an alternative plasmid system, pGP100, we were able to demonstrate that the differences in stability reflected differences in initial recombination frequencies. Based on a comparison of endpoint sequences observed in the various hosts, we speculate that at least two different mechanisms underlie the deletion events involved, the first (type I) occurring between nonrepeated sequences, and the second (type II) occurring between short direct repeats (DRs). The latter event was independent of single-strand replication intermediates and the mode of replication and possibly requires the introduction of double-strand breaks (DSBs) between the repeats. In the absence of functional AddAB complex, or the AddB subunit, DSBs are likely to be processed via a recA-independent mechanism, resulting in intramolecular recombination between the DRs. In wild-type cells, such DSBs are supposed to be either repaired by a mechanism involving AddAB-dependent recombination or degraded by the AddAB-associated exonuclease activity. Plasmid stability assays in a recA mutant showed that (i) the level of deletion formation was considerably higher in this host and (ii) that deletions between short DRs occurred at higher frequencies than those described previously for the parental strain. We propose that in wild-type cells, the recA gene product is involved in recombinational repair of DSBs.
Collapse
Affiliation(s)
- R Meima
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
McFarlane RJ, Saunders JR. Molecular mechanisms of intramolecular recombination-dependent recircularization of linearized plasmid DNA in Escherichia coli: requirements for the ruvA, ruvB, recG, recF and recR gene products. Gene X 1996; 177:209-16. [PMID: 8921869 DOI: 10.1016/0378-1119(96)00303-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intramolecular recombinogenic recircularization (IRR) of linearized plasmid DNA was used to study mechanistic relationships between recombination functions in Escherichia coli in vivo. Homology requirement for IRR ranges from 1 to 11 bp, and does not exhibit any notable strain to strain variability, with recombination occurring at a large number of possible sites within the plasmid molecule. We show that recF- and recR-deficient strains exhibit greatly reduced IRR efficiency, although neither gene product is totally essential. Mutation of recF and recR does not alter the distribution of recombination sites nor the range of molecules produced during IRR. A recO-deficient strain did not exhibit dramatic reduction in efficiency of IRR, implying that RecF and RecR proteins maintain function during this mechanism in the absence of functional RecO. The main IRR mechanism is ruvA-, ruvB- and recG-dependent and there is a lower efficiency second IRR mechanism operating in ruvA, ruvB and recG mutants. Some evidence suggests that this second mechanism involves functions associated with the replisome.
Collapse
Affiliation(s)
- R J McFarlane
- Department of Genetics and Microbiology, University of Liverpool, UK
| | | |
Collapse
|
23
|
Canceill D, Ehrlich SD. Copy-choice recombination mediated by DNA polymerase III holoenzyme from Escherichia coli. Proc Natl Acad Sci U S A 1996; 93:6647-52. [PMID: 8692872 PMCID: PMC39080 DOI: 10.1073/pnas.93.13.6647] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Formation of deletions by recombination between short direct repeats is thought to involve either a break-join or a copy-choice process. The key step of the latter is slippage of the replication machinery between the repeats. We report that the main replicase of Escherichia coli, DNA polymerase III holoenzyme, slips between two direct repeats of 27 bp that flank an inverted repeat of approximately equal 300bp. Slippage was detected in vitro, on a single-stranded DNA template, in a primer extension assay. It requires the presence of a short (8 bp) G+C-rich sequence at the base of a hairpin that can form by annealing of the inverted repeats. It is stimulated by (i) high salt concentration, which might stabilize the hairpin, and (ii) two proteins that ensure the processivity of the DNA polymerase III holoenzyme: the single-stranded DNA binding protein and the beta subunit of the polymerase. Slippage is rather efficient under optimal reaction conditions because it can take place on >50% of template molecules. This observation supports the copy-choice model for recombination between short direct repeats.
Collapse
Affiliation(s)
- D Canceill
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Joyy-en-Josas, France
| | | |
Collapse
|
24
|
Meima R, Haijema BJ, Venema G, Bron S. Overproduction of the ATP-dependent nuclease AddAB improves the structural stability of a model plasmid system in Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:391-8. [PMID: 7565602 DOI: 10.1007/bf02191638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of the ATP-dependent exonuclease AddAB complex on the structural stability of plasmid pGP1 in Bacillus subtilis was studied. Using deletion mutagenesis and gene amplification techniques, B. subtilis strains were constructed either lacking or overproducing the AddAB complex, a key enzyme in homologous recombination. The deletion mutant possessed no residual ATP-dependent nuclease activity; in contrast, the nuclease activity was up to 30 times higher in lysates of strains carrying multiple copies of the addAB genes in the chromosome. Southern blot analyses of these strains indicated that a linear relationship exists between the number of chromosomal gene copies and the level of AddAB activity. The structural stability of pGP1 was analyzed in the AddAB-deficient and over-producing backgrounds. Frequencies of deletion formation in the plasmid, as monitored by the expression of the pGP1-encoded penP-lacZ fusion on media containing X-gal, were shown to be increased at least 25-fold in the addAB knock-out mutant, whereas the stability of pGP1 was improved up to 15-fold in strains overproducing the AddAB enzyme. A possible explanation for these findings is that interactions between AddAB and plasmid molecules prevent the formation of secondary structures that constitute potential deletion target sites, and thereby enhance the structural stability of plasmids.
Collapse
Affiliation(s)
- R Meima
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
25
|
Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8289807 DOI: 10.1128/mcb.14.2.1278] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions (the rare transformants which are obtained contain plasmids resulting from deletion-forming intramolecular events involving little or no sequence homology); (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product.
Collapse
|
26
|
Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol 1994. [PMID: 8289808 DOI: 10.1128/mcb.14.2.1293] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In haploid rad52 Saccharomyces cerevisiae strains unable to undergo homologous recombination, a chromosomal double-strand break (DSB) can be repaired by imprecise rejoining of the broken chromosome ends. We have used two different strategies to generate broken chromosomes: (i) a site-specific DSB generated at the MAT locus by HO endonuclease cutting or (ii) a random DSB generated by mechanical rupture during mitotic segregation of a conditionally dicentric chromosome. Broken chromosomes were repaired by deletions that were highly variable in size, all of which removed more sequences than was required either to prevent subsequent HO cleavage or to eliminate a functional centromere, respectively. The junction of the deletions frequently occurred where complementary strands from the flanking DNA could anneal to form 1 to 5 bp, although 12% (4 of 34) of the events appear to have occurred by blunt-end ligation. These types of deletions are very similar to the junctions observed in the repair of DSBs by mammalian cells (D. B. Roth and J. H. Wilson, Mol. Cell. Biol. 6:4295-4304, 1986). When a high level of HO endonuclease, expressed in all phases of the cell cycle, was used to create DSBs, we also recovered a large class of very small (2- or 3-bp) insertions in the HO cleavage site. These insertions appear to represent still another mechanism of DSB repair, apparently by annealing and filling in the overhanging 3' ends of the cleavage site. These types of events have also been well documented for vertebrate cells.
Collapse
|
27
|
Kramer KM, Brock JA, Bloom K, Moore JK, Haber JE. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol 1994; 14:1293-301. [PMID: 8289808 PMCID: PMC358484 DOI: 10.1128/mcb.14.2.1293-1301.1994] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In haploid rad52 Saccharomyces cerevisiae strains unable to undergo homologous recombination, a chromosomal double-strand break (DSB) can be repaired by imprecise rejoining of the broken chromosome ends. We have used two different strategies to generate broken chromosomes: (i) a site-specific DSB generated at the MAT locus by HO endonuclease cutting or (ii) a random DSB generated by mechanical rupture during mitotic segregation of a conditionally dicentric chromosome. Broken chromosomes were repaired by deletions that were highly variable in size, all of which removed more sequences than was required either to prevent subsequent HO cleavage or to eliminate a functional centromere, respectively. The junction of the deletions frequently occurred where complementary strands from the flanking DNA could anneal to form 1 to 5 bp, although 12% (4 of 34) of the events appear to have occurred by blunt-end ligation. These types of deletions are very similar to the junctions observed in the repair of DSBs by mammalian cells (D. B. Roth and J. H. Wilson, Mol. Cell. Biol. 6:4295-4304, 1986). When a high level of HO endonuclease, expressed in all phases of the cell cycle, was used to create DSBs, we also recovered a large class of very small (2- or 3-bp) insertions in the HO cleavage site. These insertions appear to represent still another mechanism of DSB repair, apparently by annealing and filling in the overhanging 3' ends of the cleavage site. These types of events have also been well documented for vertebrate cells.
Collapse
Affiliation(s)
- K M Kramer
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | | | | | |
Collapse
|
28
|
Mezard C, Nicolas A. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:1278-92. [PMID: 8289807 PMCID: PMC358483 DOI: 10.1128/mcb.14.2.1278-1292.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions (the rare transformants which are obtained contain plasmids resulting from deletion-forming intramolecular events involving little or no sequence homology); (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product.
Collapse
Affiliation(s)
- C Mezard
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
29
|
Stojiljkovic I, Bozja J, Salaj-Smic E. Molecular cloning of bacterial DNA in vivo using a transposable R6K ori and a P1vir phage. J Bacteriol 1994; 176:1188-91. [PMID: 8106331 PMCID: PMC205173 DOI: 10.1128/jb.176.4.1188-1191.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A new method of cloning in vivo using the P1vir phage and transposon Tn5-rpsL oriR6K was developed. The method relies upon recircularization of transducing DNA containing a transposon insertion in a recombination-deficient strain of Escherichia coli K-12 and subsequent stable replication of the recircularized DNA. Using this method, we were able to clone in vivo the chromosomal region located between approximately 7.1 and 9.2 min on the E. coli K-12 map in a 95-kb plasmid.
Collapse
|
30
|
Ehrlich SD, Bierne H, d'Alençon E, Vilette D, Petranovic M, Noirot P, Michel B. Mechanisms of illegitimate recombination. Gene 1993; 135:161-6. [PMID: 8276254 DOI: 10.1016/0378-1119(93)90061-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Illegitimate recombination, which is one of the major causes of genome rearrangements, can occur in a number of ways. These might involve enzymes which cut and join DNA or enzymes which replicate DNA, as illustrated by two examples: (i) formation of deletions at the replication origin (ori) of an Escherichia coli bacteriophage, M13; and (ii) excision of E. coli transposon Tn10. It is proposed that a common theme to various ways by which illegitimate recombination can occur might be the capacity to create ends in the DNA molecule and to make the ends meet.
Collapse
Affiliation(s)
- S D Ehrlich
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Hagège J, Pernodet JL, Friedmann A, Guérineau M. Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens. Mol Microbiol 1993; 10:799-812. [PMID: 7934842 DOI: 10.1111/j.1365-2958.1993.tb00950.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
pSAM2 is an 11 kb integrating element from Streptomyces ambofaciens that is capable of replication. It generates single-stranded DNA during replication, and is therefore the first Streptomyces integrating element to be described that may belong to the family of elements, called the ssDNA elements, that replicate by a rolling-circle mechanism. The direction of replication has been identified. The plus origin (ori) of replication and minus origin (M-O) have been located. Streptomyces lividans harbouring replicating pSAM2 also contain numerous small covalently closed circular DNA molecules (scm) derived from pSAM2. These scm contain ori and extend on both sides of the putative nick site. Sequences at the junction points of these scm are heterogeneous but short direct repeats were always found in the vicinity of these junctions.
Collapse
Affiliation(s)
- J Hagège
- Institut de Génétique et Microbiologie, URA CNRS 1354, Bâtiment 400, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
32
|
Abstract
Microorganisms have numerous strategies for coping with environmental changes. In many systems, a single cell has the capacity to generate a seemingly infinite array of phenotypic variants in just a few generations of growth. The resulting heterogeneous population is well equipped for sudden environmental change; even if only a few cells in the population possess a phenotype needed for survival, these cells have the capacity to regenerate a similarly diverse population. Phenotypic switching in these systems usually results from high-frequency DNA rearrangements which are the subject of this review.
Collapse
Affiliation(s)
- K Dybvig
- Department of Comparative Medicine, University of Alabama at Birmingham 35294
| |
Collapse
|
33
|
Schulte-Frohlinde D, Worm KH, Merz M. Double-strand breaks in plasmid DNA and the induction of deletions. Mutat Res 1993; 299:233-50. [PMID: 7683091 DOI: 10.1016/0165-1218(93)90100-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Double-strand breaks (dsbs) have been produced in plasmid DNA by various restriction endonucleases and the survival and the deletion mutation incidence have been measured in E. coli. The deletion formation is known to depend upon the occurrence of short direct repeats within the DNA molecule. In order to study the role of these repeats we constructed plasmid molecules with repeats of various lengths or with a 10-base pair repeat at different distances from each other. Furthermore the influence of the location and the structure of the dsb was studied. Repair and deletion frequencies of the linearized plasmids were measured after transformation of E. coli. The yield of the specific deletion mutation (the one which occurs between the introduced repeats) increases nearly linearly with the square of the length of the repeat, while the yield of the correctly repaired DNA and the yield of all other deletion mutants remained constant. The slope of the linear increase of the yield of the specific deletion depends on the location and the structure of the dsb. The yield of the specific deletion mutation decreases with increasing distance between the repeats. A proposal for the rate-determining step of the deletion formation is made.
Collapse
|
34
|
Ganesh A, North P, Thacker J. Repair and misrepair of site-specific DNA double-strand breaks by human cell extracts. Mutat Res 1993; 299:251-9. [PMID: 7683092 DOI: 10.1016/0165-1218(93)90101-i] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The rejoining by human cell extracts of a double-strand break induced by endonuclease treatment at one of several sites within a small DNA molecule was studied. Rejoining was found at each of 8 sites tested, but the rejoin efficiency varied with the nature of the break (e.g., breaks with cohesive ends were rejoined more efficiently than blunt-ended breaks). Extracts from primary and immortalized cell lines, as well as those from individuals with ataxia telangiectasia (A-T), showed the same pattern of relative rejoin efficiencies. However, mis-rejoining varied with the cell extract used, and was particularly elevated with two immortalized A-T cell lines. Mixing experiments showed that the mis-rejoining property of extracts could act in a semi-dominant fashion, depending on the individual efficiencies of the component extracts. The mis-rejoin mechanism involved deletion at sites of short direct repeats at various distances from the initial break site. A model of deletion formation (the strand-exposure and repair model) is restated to explain the sequence repeat dependence found, and is compared to models of homologous DNA recombination.
Collapse
Affiliation(s)
- A Ganesh
- Cell and Molecular Biology Division, MRC Radiobiology Unit, Didcot, Oxon, UK
| | | | | |
Collapse
|
35
|
Abstract
We are investigating the mechanisms for deletion formation through the use of mutants which alter deletion frequency together with well characterized systems for deletion detection. We report here on three mutations which were isolated for their ability to stimulate deletions in plasmid pMC874 (dli mutations). The mutation rec-2251 (formerly known as dli1) is a new allele of recBCD, a group of genes coding for the polypeptide components of the major recombination enzyme complex in E. coli; the second one, dli2 may be a new allele of uvrD, which codes for DNA helicase II; and the third one, dli3, has the phenotype of a mismatch repair mutation. Here we compare the effects of mutations in SOS-repair genes to those of the dli mutations on three different deletion events: (a) the deletion of short (60-100-bp) palindromic and non-palindromic inserts in derivatives of plasmid pBR325; (b) larger (600-800-bp) deletions in plasmid pMC874; and (c) the excision of the Tn10 transposon from chromosomal sites. Our results indicate that some form of SOS processing stimulates the loss of palindromes but not non-palindromes in plasmid pBR325 derivatives, and that RecA is necessary for UV-induced excision of Tn10 but this event is inhibited by UmuCD or its homolog MucAB. Each of the dli mutations showed unique effects on different classes of deletions. Mutation rec-2251 stimulated specifically deletions in pMC874 but had no effect on the deletion of non-palindromes in pBR325, and reduced the incidence of the other deletion events tested including loss of palindromic inserts in pBR325 as well as Tn10 excision. Mutation dli2, on the other hand, stimulated all deletions tested to varying extents, while dli3 did not affect markedly deletion formation in pBR325 plasmids but had a large stimulatory effect on both deletions in plasmid pMC874 and Tn10 excision. These results reveal that (a) some SOS-repair functions participate in deletion formation, (b) mutations selected for altering the incidence of one class of deletions may have totally different effects on other deletion events, and (c) the differences in mutant behavior may result in part from the ability of some pathways to discriminate among different deletion intermediates such as hairpins or cruciforms formed by palindromic sequences vs. transient secondary structures stabilized by direct repeats flanking non-palindromic sequences.
Collapse
Affiliation(s)
- E Balbinder
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| |
Collapse
|
36
|
King JS, Valcarcel ER, Rufer JT, Phillips JW, Morgan WF. Noncomplementary DNA double-strand-break rejoining in bacterial and human cells. Nucleic Acids Res 1993; 21:1055-9. [PMID: 8464692 PMCID: PMC309262 DOI: 10.1093/nar/21.5.1055] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We examined the rejoining of noncomplementary restriction enzyme-produced DNA double-strand breaks in Escherichia coli and in cultured human cells. The enzymes used in this study, ClaI, BamHI and SalI, produce double-strand breaks with 5 protruding single strands. The joining of a ClaI-produced DNA end to a BamHI-produced end or to a SalI-produced end was examined at the DNA sequence level. End rejoining in E.coli was studied by transforming cultures with linear plasmid DNA that was gel purified from restriction digests, and end rejoining in cultured human cells was studied by introducing enzymes into the cells by electroporation. The human cells used contain an Epstein-Barr virus (EBV)-based shuttle vector, pHAZE, that was recovered and introduced into E.coli for further analysis. The major products of DNA end-joining processes observed in linear plasmid-transformed E.coli and in the human cells exposed to restriction enzymes were identical. Furthermore, the deletions observed in both systems and in the spontaneous mutant plasmids in untreated human cells had a common underlying feature: short stretches of directly repeated DNA at the junction sites.
Collapse
Affiliation(s)
- J S King
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750
| | | | | | | | | |
Collapse
|
37
|
Morris T, Thacker J. Formation of large deletions by illegitimate recombination in the HPRT gene of primary human fibroblasts. Proc Natl Acad Sci U S A 1993; 90:1392-6. [PMID: 8433997 PMCID: PMC45879 DOI: 10.1073/pnas.90.4.1392] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
HPRT gene mutants were isolated from untreated and x-irradiated cultures of primary human fibroblasts, and mutants carrying large deletions were identified. The breakpoints of the deletions were mapped by methods based on the polymerase chain reaction, and the deletion junctions of four different mutants were sequenced. Alu repeats were associated with one end of three of these junctions, but in each case repeat sequences were not found at the other end. Sequence features found at the deletion breakpoints included in particular short direct and inverted repeats, which may mispair to promote illegitimate recombination. One mutant had additional bases inserted at the deletion junction; these bases formed a direct repeat with a sequence immediately adjacent to the junction, suggesting a mechanism of templated repair of broken DNA in deletion formation.
Collapse
Affiliation(s)
- T Morris
- Medical Research Council Radiobiology Unit, Didcot, Oxon, England
| | | |
Collapse
|
38
|
Heitman J. On the origins, structures and functions of restriction-modification enzymes. GENETIC ENGINEERING 1993; 15:57-108. [PMID: 7764063 DOI: 10.1007/978-1-4899-1666-2_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Heitman
- Section of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
39
|
Thacker J, Chalk J, Ganesh A, North P. A mechanism for deletion formation in DNA by human cell extracts: the involvement of short sequence repeats. Nucleic Acids Res 1992; 20:6183-8. [PMID: 1475181 PMCID: PMC334502 DOI: 10.1093/nar/20.23.6183] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA molecules carrying a site-specific double-strand break were exposed to nuclear extracts from human cell lines. It was shown previously that breaks could be rejoined correctly by human extracts, but that a proportion of the rejoined molecules had suffered deletions and insertions. The 'mis-rejoined' proportion was higher with cell extracts from an individual with the disorder ataxia-telangiectasia than with normal cell extracts. We now show by sequence analysis that deletions in extract-treated molecules occur exclusively between short direct repeats (2-6 base pairs). A mis-rejoined molecule containing an insertion of 300 bp also had a repeat-based deletion at the same site. A number of different direct repeats are involved; however, some clustering of these occurs especially on the upstream side of the initial breakpoint. These data are most simply interpreted in terms of a model of deletion formation involving single-strand exposure and repair, perhaps with the action of other DNA-metabolising enzymes influencing the frequency with which some repeats are involved.
Collapse
Affiliation(s)
- J Thacker
- MRC Radiobiology Unit, Didcot, Oxon, UK
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- E C Conley
- Department of Biochemistry, University of Leicester, UK
| |
Collapse
|
41
|
Salganik RI, Dianov GL. Molecular mechanisms of the formation of DNA double-strand breaks and induction of genomic rearrangements. Mutat Res 1992; 266:163-70. [PMID: 1373825 DOI: 10.1016/0027-5107(92)90183-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The probability that damage occurs in closely opposed sites on complementary DNA strands increases when DNA is heavily modified with mutagenic agents. Enzymatic excision of the opposite lesions produces DNA double-strand breaks which give rise to genomic rearrangements (deletions, insertions, etc.). Plasmid systems were developed for studying chemical lesions leading to double-strand breaks and the fate of broken plasmid molecules within bacterial cells. Deletions result from the base-pairing of fortuitously located direct repeats flanking the DNA broken ends; as a consequence, the latter are joined, while the DNA fragment between the direct repeats is deleted. Genomic rearrangements arise during the repair of the DNA double-strand breaks, and both events are due to similar repair enzymes which maintain the integrity of the DNA primary structure when conditions are not stressful. A number of genomic rearrangements and point mutations seem to be predetermined by the DNA primary structure.
Collapse
Affiliation(s)
- R I Salganik
- Institute of Cytology and Genetics, U.S.S.R. Academy of Sciences, Siberian Branch, Novosibirsk
| | | |
Collapse
|
42
|
Nussbaum A, Shalit M, Cohen A. Restriction-stimulated homologous recombination of plasmids by the RecE pathway of Escherichia coli. Genetics 1992; 130:37-49. [PMID: 1732167 PMCID: PMC1204803 DOI: 10.1093/genetics/130.1.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To test the double-strand break (DSB) repair model in recombination by the RecE pathway of Escherichia coli, we constructed chimeric phages that allow restriction-mediated release of linear plasmid substrates of the bioluminescence recombination assay in infected EcoRI+ cells. Kinetics of DSB repair and expression of recombination products were followed by Southern hybridization and by the bioluminescence recombination assay, respectively. Plasmid recombinants were analyzed with restriction endonucleases. Our results indicate that a DSB can induce more than one type of RecE-mediated recombination. A DSB within the homology induced intermolecular recombination that followed the rules of the DSB repair model: (1) Recombination was enhanced by in vivo restriction. (2) Repair of the break depended on homologous sequences on the resident plasmid. (3) Break-repair was frequently associated with conversion of alleles that were cis to the break. (4) Conversion frequency decreased as the distance from the break increased. (5) Some clones contained a mixture of plasmid recombinants as expected by replication of a heteroduplex in the primary recombinant. The rules of the DSB repair model were not followed when recombination was induced by a DSB outside the homology. Both the cut and the uncut substrates were recipients in conversion events. Recombination events were associated with deletions that spanned the break site, but these deletions did not reach the homology. We propose that a break outside the homology may stimulate a RecE-mediated recombination pathway that does not involve direct participation of DNA ends in the homologous pairing reaction.
Collapse
Affiliation(s)
- A Nussbaum
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
43
|
Mazin AV, Kuzminov AV, Dianov GL, Salganik RI. Mechanisms of deletion formation in Escherichia coli plasmids. II. Deletions mediated by short direct repeats. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:209-14. [PMID: 1679526 DOI: 10.1007/bf00282467] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A set of plasmids containing 42, 21 and 31 bp direct repeats was used to analyze the effect of repeat length on the frequencies of deletion formation and the structure of the deleted derivatives of different recombination-deficient Escherichia coli strains. Agarose gel electrophoresis of plasmid DNA demonstrated that the formation of deletions in these plasmids was associated with dimerization of plasmid DNA. Restriction analysis of the dimers showed that deletions at short direct repeats arose non-conservatively, that is, the formation of a deletion in one monomeric plasmid unit was not associated with a duplication in the other. Mutations in the recA, recF, recJ and recO genes had no marked effect on either the frequencies of deletion formation or the structure of dimers. In contrast, recB recC mutations greatly increased the frequencies of deletion formation, 6-fold for 42 bp, and 115-fold for 21 bp direct repeats. Conversion of DNA replication to the rolling circle mode in a recB recC strain, resulting in the formation of double-stranded ends, is suggested as the stimulatory effector.
Collapse
Affiliation(s)
- A V Mazin
- Siberian Branch of the USSR Academy of Science, Lavrentjeva, Novosibirsk
| | | | | | | |
Collapse
|
44
|
Dianov GL, Timchenko TV, Sinitsina OI, Kuzminov AV, Medvedev OA, Salganik RI. Repair of uracil residues closely spaced on the opposite strands of plasmid DNA results in double-strand break and deletion formation. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:448-52. [PMID: 2017139 DOI: 10.1007/bf00261686] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of closely spaced lesions on both DNA strands in the induction of double-strand breaks and formation of deletions was studied. For this purpose a polylinker sequence flanked by 165 bp direct repeats was inserted within the tet gene of pBR327. This plasmid was used to construct DNA containing one or two uracil residues which replaced cytosine residues in the KpnI restriction site of the polylinker. Incubation of the plasmid DNA construct with Escherichia coli cell-free extracts showed that double-strand breaks occurred as a result of excision repair of the opposing uracil residues by uracil-DNA glycosylase (in extracts from ung+ but not in extracts from ung- E. coli strains). Recombination of direct repeats, induced by double-strand breakage of plasmid DNA, can lead to the deletion of the polylinker and of one of the direct repeats, thus restoring the tet+ gene function which can be detected by the appearance of tetracycline-resistant colonies of transformants. Transformation of E. coli cells with single or double uracil-containing DNAs demonstrated that DNA containing two closely spaced uracil residues was tenfold more effective in the induction of deletions than DNA containing only a single uracil residue. The frequency of deletions is increased tenfold in an ung+ E. coli strain in comparison with an ung- strain, suggesting that deletions are induced by double-strand breakage of plasmid DNA which occurs in vivo as a result of the excision of opposing uracil residues.
Collapse
Affiliation(s)
- G L Dianov
- Institute of Cytology and Genetics, Siberian Department of the USSR Academy of Sciences, Novosibirsk
| | | | | | | | | | | |
Collapse
|
45
|
Oden KL, DeVeaux LC, Vibat CR, Cronan JE, Gennis RB. Genomic replacement in Escherichia coli K-12 using covalently closed circular plasmid DNA. Gene 1990; 96:29-36. [PMID: 2265756 DOI: 10.1016/0378-1119(90)90337-q] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of gene replacements at different loci were constructed using covalently closed circular (ccc) plasmid DNA in the recB21 recC22 sbcB15 sbcC201 mutant of Escherichia coli (JC7623). Selected constructs representing deletions and insertion mutations formed from double-crossover events involving the ccc plasmid molecules and the genome were confirmed by Southern blots, and the frequency of double-crossover events was evaluated. It is reported that such mutants may be constructed without linearizing plasmid DNA, as described previously.
Collapse
Affiliation(s)
- K L Oden
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | | | | | |
Collapse
|
46
|
North P, Ganesh A, Thacker J. The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res 1990; 18:6205-10. [PMID: 2243768 PMCID: PMC332482 DOI: 10.1093/nar/18.21.6205] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A double-strand DNA break was introduced at a specific site within the lacZ gene of plasmid pUC18 using one of several restriction enzymes, and the plasmid exposed to nuclear extracts from human cell lines. Physical rejoining of DNA was monitored by Southern analysis after gel separation, and the fidelity of rejoining by expression of the lacZ gene after bacterial transformation with the treated plasmid. Breaks at the SalI and EcoRI sites were rejoined by extracts to form circular monomers, but the efficiency of rejoining was much higher at the SalI site. Measurement of rejoining at several adjacent sites having different types of termini, consistently showed a range of efficiencies with 5' 4-base greater than 3' 4-base overhangs and 4-base greater than 2-base greater than no overhang. Similar efficiencies were found for nuclear extracts from transformed cell lines, both from a 'normal' individual and an ataxia-telangiectasia (A-T) patient, and from a non-transformed normal cell culture. In contrast at some sites, especially those with a low rejoin efficiency, the fidelity of rejoining was very much lower for the A-T extracts than for normal cell extracts. Mis-rejoining was, however, unrelated to rejoin efficiency at other sites, suggesting that factors such as the exact sequence at the break site on the molecule may also influence the fidelity of rejoining.
Collapse
Affiliation(s)
- P North
- MRC Radiobiology Unit, Chilton, Didcot, Oxon, UK
| | | | | |
Collapse
|
47
|
Hill SA, Morrison SG, Swanson J. The role of direct oligonucleotide repeats in gonococcal pilin gene variation. Mol Microbiol 1990; 4:1341-52. [PMID: 1980712 DOI: 10.1111/j.1365-2958.1990.tb00713.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies indicate that gonococcal pilin phase and antigenic variation occur by intragenomic pilin gene recombination, the outcome of which resembles that of gene conversion. During such transitions, the expressed complete pilin gene (pilE) acquires a novel sequence corresponding to that of a silent pilin gene (pilS). In the present study, we find that internal deletions of pilE can produce pilus-/pilus+ phase transitions: direct oligonucleotide repeats in the pilin-encoding portion of pilE bracket the deleted segments. A novel, orthodox pilE is formed upon repair of the internal deletions, with pilS sequence probably acting as a template for repair. Such deletion/repair of pilE is suggested as a principal mechanism underlying gonococcal pilus variation.
Collapse
Affiliation(s)
- S A Hill
- Department of Health and Human Services, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840
| | | | | |
Collapse
|
48
|
Cluster of point mutations predetermined by a quasipalindromic nucleotide sequence in plasmid pBR322 DNA. FEBS Lett 1990; 261:28-30. [PMID: 2407555 DOI: 10.1016/0014-5793(90)80628-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of a cluster of point mutations due to the correction of an imperfect hairpin in plasmid DNA was investigated. Plasmid pBR322 DNA containing opposite double-strand DNA lesions in the region of a quasipalindrome was constructed. For this aim plasmid DNA was cleaved at the BamHI site, and cytosine residues of the sticky ends were modified by O-methylhydroxylamine. Modified linearized plasmid DNA was ligated and used for transformation of E.coli cells. Tetracycline-sensitive transformants were selected, and the mutants were characterized by restriction and sequencing analysis. One mutant contained a cluster of point mutations. The distribution of mutations was consistent with the cluster having arisen through correction of the imperfect hairpin formed by the quasipalindrome.
Collapse
|
49
|
Abstract
This report describes a new transposon designed to facilitate the combined use of beta-galactosidase and alkaline phosphatase gene fusions in the analysis of protein localization. The transposon, called TnlacZ, is a Tn5 derivative that permits the generation of gene fusions encoding hybrid proteins carrying beta-galactosidase at their C termini. In tests with plasmids, TnlacZ insertions that led to high cellular beta-galactosidase activity were restricted to sequences encoding either cytoplasmic proteins or cytoplasmic segments of a membrane protein. The fusion characteristics of TnlacZ are thus complementary to those of TnphoA, a transposon able to generate alkaline phosphatase fusions whose high-activity insertion sites generally correspond to periplasmic sequences. The structure of TnlacZ allows the conversion of a TnlacZ fusion into the corresponding TnphoA fusion (and vice versa) through recombination or in vitro manipulation in a process called fusion switching. Fusion switching was used to generate the following two types of fusions with unusual properties: a low-specific-activity beta-galactosidase-alkaline phosphatase gene fusion and two toxic periplasmic-domain serine chemoreceptor-beta-galactosidase gene fusions. The generation of both beta-galactosidase and alkaline phosphatase fusions at exactly the same site in a protein permits a comparison of the two enzyme activities in evaluating the subcellular location of the site, such as in studies of membrane protein topology. In addition, fusion switching makes it possible to generate gene fusions whose properties should facilitate the isolation of mutants defective in the export or membrane anchoring of different cell envelope proteins.
Collapse
Affiliation(s)
- C Manoil
- Department of Genetics, University of Washington, Seattle 98195
| |
Collapse
|
50
|
Bien M, Steffen H, Schulte-Frohlinde D. Repair of the plasmid pBR322 damaged by gamma-irradiation or by restriction endonucleases using different recombination-proficient E. coli strains. Mutat Res 1988; 194:193-205. [PMID: 2847036 DOI: 10.1016/0167-8817(88)90021-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The plasmid pBR322 was treated with BamHI, PvuII and gamma-irradiation to generate double-strand breaks (dsb) containing differently structured ends. Transformation efficiencies, mutation frequencies and clone analyses of enzymatically damaged DNA are compared with the corresponding results from radiolytically damaged DNA. In E. coli K-12 SFX, the yield of transformants produced by the action of BamHI, PvuII and gamma-irradiation (30 Gy) is 4.3%, 0.14%, and 0.10%, respectively. The survival of open circular DNA (ocDNA) produced by 30 Gy is 1.3%. The transformation efficiencies show only a slight dependence on SOS induction and on the RecA protein. Mutation frequencies to tetracycline sensitivity (tets) per surviving plasmid are 2.6% (BamHI), 11.8% (PvuII) and 0.2% (gamma-irradiated DNA with 30 Gy containing approximately 50% ocDNA and 50% linearized (lin) DNA). The mutation frequency is low at all radiation doses studied (1-50 Gy). Only 15% of the DNA of the tets mutants from gamma-irradiated plasmids contained deletions whereas with enzymatically damaged DNA, 30-50% (BamHI) or 90% (PvuII) contained deletions. In all cases, the deletions comprised 500-1700 base pairs (bp). After SOS induction of the host cells, the mutation frequency of gamma-irradiated plasmids increased by a factor of 4, whereas that of the enzymatically damaged plasmids did not change. For the repair of the enzymatically linearized DNA 2 recombinational pathways are discussed which lead to deletant (pathway I) and non-deletant transformants (pathway II). In addition, BamHI-linearized plasmids may be repaired by enzyme-induced or spontaneous circular alignment followed by ligation. The high percentage of deletions of the tets mutations for PvuII-linearized DNA with blunt ends is explained by the illegitimate or site-specific recombination pathway I (see text). The lower percentage of deletions of the tets mutations with BamHI-linearized DNA with short cohesive ends (4 bp) is proposed to be due to a greater contribution of pathway II and/or by circular alignment followed by ligation. The very small yield and the low percentage of deletant mutations of tets mutants from radiolytically damaged DNA is proposed to be due to the large overlapping ends (16-100 bp) of the linDNA which easily leads to circular alignment followed by excision repair. The repair of radiolytically produced ocDNA is predominantly due to excision repair. In agreement with this interpretation is the observation that SOS induction of the host increases the mutation incidence of radiolytically damaged DNA but not of enzymatically damaged DNA.
Collapse
Affiliation(s)
- M Bien
- Max-Planck-Institut für Strahlenchemie, Mülheim a.d. Ruhr, F.R.G
| | | | | |
Collapse
|