1
|
Yang DD, Rusch LM, Widney KA, Morgenthaler AB, Copley SD. Synonymous edits in the Escherichia coli genome have substantial and condition-dependent effects on fitness. Proc Natl Acad Sci U S A 2024; 121:e2316834121. [PMID: 38252823 PMCID: PMC10835057 DOI: 10.1073/pnas.2316834121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
CRISPR-Cas-based genome editing is widely used in bacteria at scales ranging from construction of individual mutants to massively parallel libraries. This procedure relies on guide RNA-directed cleavage of the genome followed by repair with a template that introduces a desired mutation along with synonymous "immunizing" mutations to prevent re-cleavage of the genome after editing. Because the immunizing mutations do not change the protein sequence, they are often assumed to be neutral. However, synonymous mutations can change mRNA structures in ways that alter levels of the encoded proteins. We have tested the assumption that immunizing mutations are neutral by constructing a library of over 50,000 edits that consist of only synonymous mutations in Escherichia coli. Thousands of edits had substantial effects on fitness during growth of E. coli on acetate, a poor carbon source that is toxic at high concentrations. The percentage of high-impact edits varied considerably between genes and at different positions within genes. We reconstructed clones with high-impact edits and found that 69% indeed had significant effects on growth in acetate. Interestingly, fewer edits affected fitness during growth in glucose, a preferred carbon source, suggesting that changes in protein expression caused by synonymous mutations may be most important when an organism encounters challenging conditions. Finally, we showed that synonymous edits can have widespread effects; a synonymous edit at the 5' end of ptsI altered expression of hundreds of genes. Our results suggest that the synonymous immunizing edits introduced during CRISPR-Cas-based genome editing should not be assumed to be innocuous.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Leo M. Rusch
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Karl A. Widney
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
- Amyris, Inc., Emeryville, CA94608
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
2
|
Wang X, Shi Q, Gong P, Zhou C, Cao Y. An Integrated Systematic Analysis and the Clinical Significance of Hepcidin in Common Malignancies of the Male Genitourinary System. Front Genet 2022; 13:771344. [PMID: 35646093 PMCID: PMC9133565 DOI: 10.3389/fgene.2022.771344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Tumors of the male genitourinary system are of great concern to the health of men worldwide. Although emerging experiment-based evidence indicates an association between hepcidin and such cancers, an integrated analysis is still lacking. For this reason, in this study, we determined the underlying oncogenic functions of hepcidin in common male genitourinary system tumors, including bladder urothelial carcinoma (BLCA), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), prostate adenocarcinoma (PRAD), and testicular germ cell tumors (TGCT) according to the data from The Cancer Genome Atlas. We found that hepcidin was highly expressed in kidney and testicular cancers. Meanwhile, the expression level of hepcidin was distinctly associated with the prognosis and immune cell infiltration in male patients with certain genitourinary system cancers, especially in KIRC. Elevated hepcidin levels also present as a risk factor in male genitourinary system tumors. Moreover, enrichment analyses revealed that some of the principal associated signaling pathways involving hepcidin and its related genes are identified as tumorigenesis-related. Immunofluorescence staining confirmed the conclusion of our immune infiltration analysis in KIRC tissue. In this study, for the first time, we provided evidence for the oncogenic function of hepcidin in different types of male genitourinary system tumors.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianqian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Pengfeng Gong
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cuixing Zhou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yunjie Cao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Cai Z, Wang Z, Yue C, Sun A, Shen Y. Efficient expression and purification of soluble Harpin Ea protein by translation initiation region codon optimization. Protein Expr Purif 2021; 188:105970. [PMID: 34500070 DOI: 10.1016/j.pep.2021.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
HarpinEa protein can stimulate plants to produce defense responses to resist the attack of pathogens, improve plant immune resistance, and promote plant growth. This has extremely high application value in agriculture. To efficiently express soluble HarpinEa protein, in this study, we expressed HarpinEa protein with a 6× His-tag in Escherichia coli BL21 (DE3). Because of the low level of expression of HarpinEa protein in E. coli, three rounds of synonymous codon optimization were performed on the +53 bp of the translation initiation region (TIR) of HarpinEa. Soluble HarpinEa protein after optimization accounted for 50.3% of the total soluble cellular protein expressed. After purification using a Ni Bestarose Fast Flow column, the purity of HarpinEa protein exceeded 95%, and the yield reached 227.5 mg/L of culture medium. The purified HarpinEa protein was sensitive to proteases and exhibited thermal stability. It triggered visible hypersensitive responses after being injected into tobacco leaves for 48 h. Plants treated with HarpinEa showed obvious growth-promoting and resistance-improving performance. Thus, the use of TIR synonymous codon optimization successfully achieved the economical, efficient, and soluble production of HarpinEa protein.
Collapse
Affiliation(s)
- Zengying Cai
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Zhong Wang
- Shandong Shennong Ecological Technology Research Institute Co., Ltd., Shanghai Branch, Shanghai, 201114, China.
| | - Cheng Yue
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Aiyou Sun
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Kristofich J, Morgenthaler AB, Kinney WR, Ebmeier CC, Snyder DJ, Old WM, Cooper VS, Copley SD. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genet 2018; 14:e1007615. [PMID: 30148850 PMCID: PMC6128649 DOI: 10.1371/journal.pgen.1007615] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/07/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023] Open
Abstract
Synonymous mutations do not alter the specified amino acid but may alter the structure or function of an mRNA in ways that impact fitness. There are few examples in the literature, however, in which the effects of synonymous mutations on microbial growth rates have been measured, and even fewer for which the underlying mechanism is understood. We evolved four populations of a strain of Salmonella enterica in which a promiscuous enzyme has been recruited to replace an essential enzyme. A previously identified point mutation increases the enzyme’s ability to catalyze the newly needed reaction (required for arginine biosynthesis) but decreases its ability to catalyze its native reaction (required for proline biosynthesis). The poor performance of this enzyme limits growth rate on glucose. After 260 generations, we identified two synonymous mutations in the first six codons of the gene encoding the weak-link enzyme that increase growth rate by 41 and 67%. We introduced all possible synonymous mutations into the first six codons and found substantial effects on growth rate; one doubles growth rate, and another completely abolishes growth. Computational analyses suggest that these mutations affect either the stability of a stem-loop structure that sequesters the start codon or the accessibility of the region between the Shine-Dalgarno sequence and the start codon. Thus, these mutations would be predicted to affect translational efficiency and thereby indirectly affect mRNA stability because translating ribosomes protect mRNA from degradation. Experimental data support these hypotheses. We conclude that the effects of the synonymous mutations are due to a combination of effects on mRNA stability and translation efficiency that alter levels of the weak-link enzyme. These findings suggest that synonymous mutations can have profound effects on fitness under strong selection and that their importance in evolution may be under-appreciated. When a new enzyme is needed, microbes often recruit a pre-existing enzyme with a promiscuous activity corresponding to the newly needed activity. Such enzymes are often the “weak-link” in metabolism because they have not evolved to efficiently catalyze the new reaction. Under these circumstances, increasing the level of the weak-link enzyme can improve fitness. We evolved a strain of S. enterica in which a weak-link enzyme–E383A ProA–serves essential functions in synthesis of proline and arginine for 260 generations and then sequenced the genomes of several evolved strains. A mutation in the promoter of the operon encoding E383A ProA increased growth rate 9-fold. More surprisingly, a mutation upstream of the start codon and two synonymous mutations within the first six codons also increased growth rate by up to 68%. Introduction of all possible synonymous mutations in the first six codons showed that some doubled growth rate, while others slowed or even prevented growth. Computational and experimental data suggest that these effects were due to enhanced translational efficiency of the weak-link enzyme. These results show that synonymous mutations, once assumed to be selectively neutral, can have strong impacts on fitness when growth rate is limited by a weak-link enzyme.
Collapse
Affiliation(s)
- JohnCarlo Kristofich
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Wallis R. Kinney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Christopher C. Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Daniel J. Snyder
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - William M. Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Vaughn S. Cooper
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
5
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
6
|
Analysis of Rare Codon and mRNA Structure About Ustilago maydis CYP51 and Molecular Docking With Fungicide Tebuconazole*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
YIN CG, DU LX, ZHAO GP, LI HB. Optimizing the expression of Mx gene in Escherichia coli based on rare codon and mRNA structure. YI CHUAN = HEREDITAS 2009; 31:75-82. [DOI: 10.3724/sp.j.1005.2009.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Dreyfus M. Killer and protective ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:423-66. [PMID: 19215779 DOI: 10.1016/s0079-6603(08)00811-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In prokaryotes, translation influences mRNA decay. The breakdown of most Escherichia coli mRNAs is initiated by RNase E, a 5'-dependent endonuclease. Some mRNAs are protected by ribosomes even if these are located far upstream of cleavage sites ("protection at a distance"), whereas others require direct shielding of these sites. I argue that these situations reflect different modes of interaction of RNase E with mRNAs. Protection at a distance is most impressive in Bacilli, where ribosomes can protect kilobases of unstable downstream sequences. I propose that this protection reflects the role in mRNA decay of RNase J1, a 5'-->3' exonuclease with no E. coli equivalent. Finally, recent years have shown that besides their protective role, ribosomes can also cleave their mRNA under circumstances that cause ribosome stalling. The endonuclease associated with this "killing" activity, which has a eukaryotic counterpart ("no-go decay"), is not characterized; it may be borne by the distressed ribosome itself.
Collapse
|
9
|
An J, Liu JZ, Wu CF, Li J, Dai L, Van Damme E, Balzarini J, De Clercq E, Chen F, Bao JK. Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cyrtonema Hua. Acta Biochim Biophys Sin (Shanghai) 2006; 38:70-8. [PMID: 16474897 DOI: 10.1111/j.1745-7270.2006.00140.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The anti-human immunodeficiency virus (HIV) I/II activity of a mannose and sialic acid binding lectin isolated from rhizomes of Polygonatum cyrtonema Hua was elucidated by comparing its HIV infection inhibitory activity in MT-4 and CEM cells with that of other mannose-binding lectins (MBLs). The anti-HIV activity of Polygonatum cyrtonema Hua lectin (PCL) was 10- to 100-fold more potent than other tested MBLs, but without significant cytotoxicity towards MT-4 or CEM cells. To amplify cDNA of PCL by 3'/5'-rapid amplification of cDNA ends (RACE), the 30 amino acids of N-terminal were determined by sequencing and the degenerate oligonucleotide primers were designed. The full-length cDNA of PCL contained 693 bp with an open reading frame encoding a precursor protein of 160 amino acid residues, consisting of a 28-residue signal peptide, a 22-residue C-terminal cleavage peptide and a 110-residue mature polypeptide which contained three tandemly arranged subdomains with an obvious sequence homology to the monocot MBL. However, only one active mannose-binding site (QDNVY) was found in subdomain I of PCL, that of subdomain II and III changed to HNNVY and PDNVY, respectively. There was no intron in PCL, which was in good agreement with other monocot MBLs. Molecular modeling of PCL indicated that its three-dimensional structure resembles that of the snowdrop agglutinin. By docking, an active sialic acid-binding site was found in PCL. The instabilization of translation initiation region (TIR) in mRNA of PCL benefits its high expression in rhizomes.
Collapse
Affiliation(s)
- Jie An
- College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ganoza MC, Kiel MC, Aoki H. Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 2002; 66:460-85, table of contents. [PMID: 12209000 PMCID: PMC120792 DOI: 10.1128/mmbr.66.3.460-485.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.
Collapse
Affiliation(s)
- M Clelia Ganoza
- C. H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
11
|
Rocha EP, Danchin A, Viari A. Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Res 1999; 27:3567-76. [PMID: 10446248 PMCID: PMC148602 DOI: 10.1093/nar/27.17.3567] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analysed the Bacillus subtilis protein coding sequences termini, and compared it to other genomes. The analysis focused on signals, com-positional biases of nucleotides, oligonucleotides, codons and amino acids and mRNA secondary structure. AUG is the preferred start codon in all genomes, independent of their G+C content, and seems to induce less stable mRNA structures. However, it is not conserved between homologous genes neither is it preferred in highly expressed genes. In B.subtilis the ribosome binding site is very strong. We found that downstream boxes do not seem to exist either in Escherichia coli or in B.subtilis. UAA stop codon usage is correlated with the G+C content and is strongly selected in highly expressed genes. We found less stable mRNA structures at both termini, which we related to mRNA-ribosome and mRNA-release-factor interactions. This pattern seems to impose a peculiar A-rich nucleotide and codon usage bias in these regions. Finally the analysis of all proteins from B.subtilis revealed a similar amino acid bias near both termini of proteins consisting of over-representation of hydrophilic residues. This bias near the stop codon is partially release-factor specific.
Collapse
Affiliation(s)
- E P Rocha
- Atelier de BioInformatique, Université Paris VI, 12 Rue Cuvier, 75005 Paris, France.
| | | | | |
Collapse
|
12
|
Nivinskas R, Malys N, Klausa V, Vaiskunaite R, Gineikiene E. Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation. J Mol Biol 1999; 288:291-304. [PMID: 10329143 DOI: 10.1006/jmbi.1999.2695] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secondary structure of the mRNA in the translational initiation region is an important determinant of translation efficiency. However, the secondary structures that enhance or facilitate translation initiation are rare. We have previously proposed that such structure may exist in the case of bacteriophage T4 gene 25 translational initiation region, which contains three potential Shine-Dalgarno sequences (SD1, SD2, and SD3) with a spacing of 8, 17, and 27 nucleotides from the initiation codon of this gene, respectively. We now present results that clearly demonstrate the existence of a hairpin structure that includes SD1 and SD2 sequences and brings the SD3, the most typical of these Shine-Dalgarno sequences, to a favourable spacing with the initiation codon of gene 25. Using a phage T7 expression system, we show that mutations that prevent the formation of hairpin structure or eliminate the SD3 sequence result in a decreased level of gp25 synthesis. Double mutation in base-pair V restores the level of gene 25 expression that was decreased by either of the two mutations (C-to-G and G-to-C) alone, as predicted by an effect attributable to mRNA secondary structure. We introduced the mutations into the bacteriophage T4 by plasmid-phage recombination. Changes in the plaque and burst sizes of T4 mutants, carrying single and double mutations in the translational initiation region of gene 25, strongly suggest that the predicted mRNA secondary structure controls (enhances) the level of gene 25 expression in vivo. Hybridization of total cellular RNA with a gene 25 specific probe indicated that secondary structure or mutations in the translational initiation region do not notably affect the 25 mRNA stability. Immunoblot analysis of gp25 in Escherichia coli cells infected by T4 mutants showed that mRNA secondary structure increases the level of gp25 synthesis by three- to fourfold. Since the secondary structure increases the level of gp25 synthesis and does not affect mRNA stability, we conclude that this structure enhances translation initiation. We discuss some features of two secondary structures in the translational initiation regions of T4 genes 25 and 38.
Collapse
Affiliation(s)
- R Nivinskas
- Institute of Biochemistry, Mokslininku 12, Vilnius, 2600, Lithuania.
| | | | | | | | | |
Collapse
|
13
|
Miele G, Mouland A, Harrison GP, Cohen E, Lever AM. The human immunodeficiency virus type 1 5' packaging signal structure affects translation but does not function as an internal ribosome entry site structure. J Virol 1996; 70:944-51. [PMID: 8551634 PMCID: PMC189898 DOI: 10.1128/jvi.70.2.944-951.1996] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The role of the RNA secondary structure in the 5' packaging signal region of human immunodeficiency virus type 1 (HIV-1) in initiating translation of gag mRNA has been investigated both in vitro and in the presence of cellular cofactors in vivo. Heat denaturation of the structure and mutagenic deletion both lead to an increase in levels of translated products, indicating that the structure is a significant inhibitor of translation. The proximity of the gag AUG to the packaging signal structure suggested that it might function as an internal ribosome entry site. However, in both a cell-free system and eukaryotic cells, translation will initiate at a novel upstream initiation codon introduced within the 5' noncoding region. This codon is utilized exclusively, resulting in gag protein products with an extra 11 amino acids at the amino terminus, which, when expressed in T lymphocytes, are confined intracellularly, probably because of the lack of an N-terminal glycine myristoylation signal. Deletion of the secondary structure abolishes gag production even in the presence of tat and rev in trans. Using dicistronic constructs containing the HIV-1 5' leader cloned between two heterologous open reading frames, we were unable to detect any significant expression of the second open reading frame that would have been supportive of an internal ribosome entry site mechanism. Using mutant proviruses either lacking the entire packaging signal structure region or containing the introduced upstream initiation codon in long-term replication studies, we were unable to detect reverse transcriptase activity in culture supernatants. The 5' packaging signal structure of HIV-1 does not serve as an internal ribosome entry site. The translation of gag is consistent with ribosomal scanning. However, the packaging signal structure causes significant translational inhibition.
Collapse
Affiliation(s)
- G Miele
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Abstract
Recognition of function of newly sequenced DNA fragments is an important area of computational molecular biology. Here we present an extensive review of methods for prediction of functional sites, tRNA, and protein-coding genes and discuss possible further directions of research in this area.
Collapse
Affiliation(s)
- M S Gelfand
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
15
|
Ganoza MC, Louis BG. Potential secondary structure at the translational start domain of eukaryotic and prokaryotic mRNAs. Biochimie 1994; 76:428-39. [PMID: 7849110 DOI: 10.1016/0300-9084(94)90120-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to identify conserved potential secondary structures within translational start sites, mRNA sequences derived from different species were studied with programs able to depict such features. The potential secondary structure of 71 bases around the initiator AUG or AUGs in the coding sequences of 290 eukaryotic mRNAs was first examined and compared to 290 similarly analyzed regions derived from prokaryotic mRNA sequences (Nucleic Acids Res (1987) 15, 345-360). In both sets of sequences the initiator codon was often found to be in an open potential structure whereas a denser region characterized by nearly-periodic spacings defined the coding regions. Randomization of the sequences obliterated the observed patterns suggesting that the structure of the mRNA may determine these differences. Three sets of eukaryotic and prokaryotic mRNAs of approximately equal length were analyzed and found to preserve an open unpaired non-coding region 5' to the start codon. The start codon was found free of potential secondary structure in over 80% of all the sequences analyzed. These data, and study of mutants that restrict the accessibility of the start codon to the ribosomal initiation complex, suggest that both the prokaryotic and eukaryotic mRNA start sites must occur free of potential secondary structure for efficient initiation. A striking difference of the eukaryotic mRNA sequences analyzed was the high propensity of the coding region vicinal to the start codon to form secondary structures. Certain translation-defective mutants exhibit impaired formation of these secondary structures suggesting that the structure of the coding regions adjacent to the start codons of eukaryotic mRNAs may be an important, thus far unexamined, determinant of initiation. We propose that, for all genes studied, the transition in secondary structure between the coding and non-coding regions may be an important determinant of initiation.
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Helke A, Geisen RM, Vollmer M, Sprengart ML, Fuchs E. An unstructured mRNA region and a 5' hairpin represent important elements of the E. coli translation initiation signal determined by using the bacteriophage T7 gene 1 translation start site. Nucleic Acids Res 1993; 21:5705-11. [PMID: 8284218 PMCID: PMC310538 DOI: 10.1093/nar/21.24.5705] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Gene 1 of bacteriophage T7 early region--the RNA polymerase gene--is very actively translated during the infectious cycle of this phage. A 29 base pair fragment of its ribosome binding site containing the initiation triplet, the Shine-Dalgarno sequence (S-D), 10 nucleotides (nt) upstream and 6 nt downstream of these central elements was cloned into a vector to control the expression of the mouse dihydrofolate reductase gene (dhfr). Although all essential parts of this translation initiation region (TIR) should be present, this fragment showed only very low activity. Computer analysis revealed a potentially inhibitory hairpin binding the S-D sequence into its stem base paired to vector-derived upstream sequences. Mutational alterations demonstrated that this hairpin was not responsible for the low activity. However, addition of 21 nt of the T7 gene 1 upstream sequence to the 29 base pair fragment were capable of increasing the translational efficiency by one order of magnitude. Computer analysis of this sequence, including nucleotide shuffling, revealed that it contains a highly unstructured region lacking mRNA secondary structures but with a hairpin at its 5' end, here formed solely by T7 sequences. There was not much difference in activity whether the mRNA included or lacked vector-derived sequences upstream of the hairpin. Such highly unstructured mRNA regions were found in all very efficiently expressed T7 genes without any obvious sequence homologies. The delta G values of these regions were higher, i.e. potential secondary structural elements were fewer, than in TIR of genes from E. coli. This is likely due to the fact that T7 as a lytic phage is relying for successful infection on much stronger signals which a cell cannot afford because of the indispensable balanced equilibria of its interdependent biochemical processes. When the 5' ends of efficient T7 gene mRNA are formed by the action of RNase III they generally start with an unstructured region. Efficiently expressed T7 genes within a polycistronic mRNA, however, always contain a hairpin preceding the structure free sequence. We suggest that the formation of this 5' hairpin is releasing enough energy to keep the unstructured regions free of secondary RNA structures for sufficient time to give ribosomes and factors a good chance for binding to the TIR. In addition, sequences further downstream of the start codon give rise to an additional increase in efficiency of the TIR by almost two orders of magnitude.
Collapse
Affiliation(s)
- A Helke
- University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
17
|
Ganoza MC, Farrow NA, An G. Effect of deletions 5' to the translation initiation sequence on the expression of an mRNA in animal cells. Mol Biol Rep 1992; 16:277-84. [PMID: 1454061 DOI: 10.1007/bf00419668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To learn if an mRNA.18S rRNA interaction or a special secondary structure in the mRNA start region is essential for translation in eukaryotic cells, we constructed recombinant plasmids with the SV40 early promoter 5' to part of the Escherichia coli tufB-lacZ gene. Deletion of bases potentially complementary to the 18S rRNA highly increased the transient beta-galactosidase expressed in transfected CHO cells. Deletion of bases that fostered formation of potential hairpins with the mRNA 5'-terminus or altered the structure of the coding region reduced beta-galactosidase activity suggesting that these features of the mRNA secondary structure may be essential for initiation of translation. Computer aided analysis of the potential structure of 290 mRNAs suggests these are conserved features of the initiation region.
Collapse
Affiliation(s)
- M C Ganoza
- C.H. Best Institute, Banting & Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
18
|
Nucleotide sequence selection for increased expression of heterologous genes in Escherichia coli. Methods 1992. [DOI: 10.1016/1046-2023(92)90047-c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Harrison GP, Lever AM. The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure. J Virol 1992; 66:4144-53. [PMID: 1602537 PMCID: PMC241217 DOI: 10.1128/jvi.66.7.4144-4153.1992] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interaction of cis-acting RNA sequences with nucleocapsid proteins is one of the critical events leading to retroviral genomic RNA packaging. We have derived a potentially stable secondary structure for the packaging signal region of human immunodeficiency virus strain IIIB, using a combination of biochemical analysis and computer modelling. This region encompasses the major splice donor (SD), which is found in a highly structured conserved stem-loop. Comparison with other published human immunodeficiency virus type 1 sequences shows almost absolute nucleotide conservation in base-paired regions required to maintain this structure. Presently and previously described packaging-defective mutants would disrupt the structure. The structure depends on base pairing between nucleotide sequences 5' of the major SD which are common to both genomic and subgenomic RNAs and sequences 3' of SD which are unique to the unspliced RNA. This may explain how in retroviruses such as Rous sarcoma virus, mutations in regions common to genomic and subgenomic RNA might prevent packaging of the unspliced mRNA by disrupting a signal structure which can exist only in the genomic RNA species.
Collapse
Affiliation(s)
- G P Harrison
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Flache P, Baumeister R, Hillen W. The Tn10-encoded tetracycline resistance mRNA contains a translational silencer in the 5' nontranslated region. J Bacteriol 1992; 174:2478-84. [PMID: 1372890 PMCID: PMC205885 DOI: 10.1128/jb.174.8.2478-2484.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed a mutational analysis of the left half of Tn10-encoded tet operator O2, located in the 5' nontranslated region of the mRNA for the resistance protein TetA, and determined the importance of that region for translation efficiency and mRNA stability. Transcriptional fusions of 17 mutants to lacZ expressed the same amounts of beta-galactosidase, while translational fusions varied 35-fold in expression efficiency. The mRNA half-lives varied 24-fold, with 9.6 min for the most highly expressed mRNA and 0.4 min for the least efficiently expressed mRNA. Toeprint experiments were performed to distinguish whether these mutations define a determinant of mRNA stability or influence translation initiation. The highly expressed mRNA was 24-fold more efficient in forming the initiation complex in vitro than the low-expression mutant. It was concluded that this sequence, albeit located upstream of the ribosome-binding sequence, is an important determinant for efficient initiation of translation. Secondary-structure calculations of the mRNAs revealed no correlation of the potential to form double strands masking the ribosome-binding sequence with expression efficiency.
Collapse
Affiliation(s)
- P Flache
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
21
|
Abstract
Lactic acid bacteria are of major economic importance, as they occupy a key position in the manufacture of fermented foods. A considerable body of research is currently being devoted to the development of lactic acid bacterial strains with improved characteristics, that may be used to make fermentations pass of more efficiently, or to make new applications possible. Therefore, and because the lactococci are designated 'GRAS' organisms ('generally recognized as safe') which may be used for safe production of foreign proteins, detailed knowledge of homologous and heterologous gene expression in these organisms is desired. An overview is given of our current knowledge concerning gene expression in Lactococcus lactis. A general picture of gene expression signals in L. lactis emerges that shows considerable similarity to those observed in Escherichia coli and Bacillus subtilis. This feature allowed the expression of a number of L. lactis-derived genes in the latter bacterial species. Several studies have indicated, however, that in spite of the similarities, the expression signals from E. coli, B. subtilis and L. lactis are not equally efficient in these three organisms.
Collapse
Affiliation(s)
- M van de Guchte
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
22
|
van de Guchte M, van der Lende T, Kok J, Venema G. A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis. FEMS Microbiol Lett 1991; 65:201-8. [PMID: 1715834 DOI: 10.1111/j.1574-6968.1991.tb04746.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression. Mutations were made such that the DNA sequence upstream of the ATG start codon was not changed. Moreover, care was taken that the substitutions, which were all within the first six codons, neither affected the amino acid sequence of the gene product nor introduced codons rarely used in L. lactis. The results suggest that mRNA secondary structure contributes to the efficiency of translation initiation in L. lactis.
Collapse
Affiliation(s)
- M van de Guchte
- Department of Genetics, Centre of Biological Sciences, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
23
|
de Smit MH, van Duin J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A 1990; 87:7668-72. [PMID: 2217199 PMCID: PMC54809 DOI: 10.1073/pnas.87.19.7668] [Citation(s) in RCA: 383] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have quantitatively analyzed the relationship between translational efficiency and the mRNA secondary structure in the initiation region. The stability of a defined hairpin structure containing a ribosome binding site was varied over 12 kcal/mol (1 cal = 4.184 J) by site-directed mutagenesis and the effects on protein yields were analyzed in vivo. The results reveal a strict correlation between translational efficiency and the stability of the helix. An increase in its delta G0 of -1.4 kcal/mol (i.e., less than the difference between an A.U and a G.C pair) corresponds to the reduction by a factor of 10 in initiation rate. Accordingly, a single nucleotide substitution led to the decrease by a factor of 500 in expression because it turned a mismatch in the helix into a match. We find no evidence that exposure of only the Shine-Dalgarno region or the start codon preferentially favors recognition. Translational efficiency is strictly correlated with the fraction of mRNA molecules in which the ribosome binding site is unfolded, indicating that initiation is completely dependent on spontaneous unfolding of the entire initiation region. Ribosomes appear not to recognize nucleotides outside the Shine-Dalgarno region and the initiation codon.
Collapse
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | |
Collapse
|
24
|
Abstract
We discuss the features of Escherichia coli mRNAs which determine where and how efficiently translation is initiated. We have shown that DNA fragments comprising 60-80 nucleotides that bracket the initiation codon of real genes generally promote translation when inserted within a foreign mRNA, while those not corresponding to an authentic gene start do not do so even if they include a Shine-Dalgarno-like element followed by AUG or GUG. Therefore, the information that pinpoints the correct start sites, while extending beyond the mere presence of these elements, remains essentially local. The possible nature of this information is discussed. Next, we point out that, in order to remain accessible, translational starts must escape long-range base-pairing within large mRNAs, and we argue that the tight coupling between translation and transcription plays an important role in achieving this. Finally, we discuss two intriguing situations in which the initiation frequency should be dependent upon the rate of translation elongation.
Collapse
Affiliation(s)
- N Jacques
- Laboratoire de Génétique Moléculaire (CNRS D 1302), Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|
25
|
Abstract
Awareness of the importance of post-transcriptional control of gene expression in prokaryotes has grown enormously over the past ten years. In particular, translation features as a step where both control over constitutive rates of gene expression, as well as cis and trans regulation are exercised. Recent research has provided us with new insights into the molecular basis of these phenomena.
Collapse
Affiliation(s)
- J E McCarthy
- GBF - Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, FRG
| | | |
Collapse
|
26
|
Prats AC, Roy C, Wang PA, Erard M, Housset V, Gabus C, Paoletti C, Darlix JL. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA. J Virol 1990; 64:774-83. [PMID: 2153242 PMCID: PMC249172 DOI: 10.1128/jvi.64.2.774-783.1990] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation.
Collapse
Affiliation(s)
- A C Prats
- Labo-Retro, Centre de Recherche de Biochimie et Génétique Cellulaires du C.N.R.S., Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bieth E, Gabus C, Darlix JL. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro. Nucleic Acids Res 1990; 18:119-27. [PMID: 2155394 PMCID: PMC330211 DOI: 10.1093/nar/18.1.119] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12.
Collapse
Affiliation(s)
- E Bieth
- LaboRetro, Centre de Recherches de Biochimie et de Génétique Cellulaires du CNRS, Toulouse, France
| | | | | |
Collapse
|
28
|
de Smit MH, van Duin J. Control of prokaryotic translational initiation by mRNA secondary structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:1-35. [PMID: 2183291 DOI: 10.1016/s0079-6603(08)60707-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Leiden University, The Netherlands
| | | |
Collapse
|
29
|
Hagen TJ, Shimkets LJ. Nucleotide sequence and transcriptional products of the csg locus of Myxococcus xanthus. J Bacteriol 1990; 172:15-23. [PMID: 2152896 PMCID: PMC208395 DOI: 10.1128/jb.172.1.15-23.1990] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The csg locus of Myxococcus xanthus appears to control the production of an intercellular signal that is essential for development. The complete nucleotide sequence of a clone containing the csg locus was determined by the dideoxy-chain termination method. Pattern recognition analyses of the DNA sequence revealed the presence of two protein-coding regions that are convergently oriented and separated by only 8 nucleotides. Tn5 lac insertions into this clone detected two transcriptional units that are transcribed in a convergent fashion and whose expression increases during development. The two genes represented by these protein-coding regions and transcriptional units have been designated csgA and fprA. Northern (RNA) blot analyses detected an 800-nucleotide RNA specific to the csgA gene and a 900-nucleotide RNA specific to the fprA gene. Our results, along with mutational studies, identify csgA as the gene involved in cell communication. The function of the fprA gene is described in an accompanying paper (L. J. Shimkets, J. Bacteriol. 172:24-30, 1990).
Collapse
Affiliation(s)
- T J Hagen
- Department of Microbiology, University of Georgia, Athens 30602
| | | |
Collapse
|
30
|
Margalit H, Shapiro BA, Oppenheim AB, Maizel JV. Detection of common motifs in RNA secondary structures. Nucleic Acids Res 1989; 17:4829-45. [PMID: 2473442 PMCID: PMC318035 DOI: 10.1093/nar/17.12.4829] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe a novel computerized system for comparison of RNA secondary structures and demonstrate its use for experimental studies. The system is able to screen a very large number of structures, to cluster similar structures and to detect specific structural motifs. In particular, the system is useful for detecting mutations with specific structural effects among all possible point mutations, and for predicting compensatory mutations that will restore the wild type structure. The algorithms are independent of the folding rules that are used to generate the secondary structures.
Collapse
Affiliation(s)
- H Margalit
- Laboratory of Mathematical Biology, National Cancer Institute, Bethesda, MD 20892
| | | | | | | |
Collapse
|
31
|
Bonham-Smith PC, Bourque DP. Translation of chloroplast-encoded mRNA: potential initiation and termination signals. Nucleic Acids Res 1989; 17:2057-80. [PMID: 2928114 PMCID: PMC317542 DOI: 10.1093/nar/17.5.2057] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A survey of 196 protein-coding chloroplast DNA sequences demonstrated the preference for AUG and UAA codons for initiation and termination of translation, respectively. As in prokaryotes at every nucleotide position from -25 to +25 (AUG is +1 to +3) and for 25 nucleotides 5' and 3' to the termination codon an A or U is predominant, except for C at +5 and G at +22. A Shine-Dalgarno (SD) sequence (GGAGG or tri- or tetranucleotide variant) was found within 100 bp 5' to the AUG codon in 92% of the genes. In 40% of these cases, the location of the SD sequence was similar to that of the consensus for prokaryotes (-12 to -7 5' to AUG), presumed to be optimal for translation initiation. A SD sequence could not be located in 6% of the chloroplast sequences. We propose that mRNA secondary structures may be required for the relocation of a distal SD sequences to within the optimal region (-12 to -7) for initiation of translation. We further suggest that termination at UGA codons in chloroplast genes may occur by a mechanism, involving 16S rRNA secondary structure, which has been proposed for UGA termination in E. coli.
Collapse
|
32
|
Gallie DR, Kado CI. A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc Natl Acad Sci U S A 1989; 86:129-32. [PMID: 2643095 PMCID: PMC286417 DOI: 10.1073/pnas.86.1.129] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
When present at the 5' end of mRNAs, the untranslated leader sequence (omega) of tobacco mosaic virus RNA significantly enhances translation in eukaryotes and prokaryotes. We have tested a deletion derivative of the omega sequence, omega delta 3, for its enhancing ability on gene constructs in which the ribosomal binding site was either present or deleted, in several Gram-negative bacterial species including Escherichia coli, Agrobacterium tumefaciens, Xanthomonas campestris pv. vitians, Erwinia amylovora, and Salmonella typhimurium. In vivo production of chloramphenicol acetyltransferase from a gene construct lacking its native ribosomal binding site was enhanced 40- to 120-fold by the presence of omega delta 3. Similar levels of enhancement (30- to 240-fold) were observed when the gene encoding beta-glucuronidase was tested. With a chloramphenicol acetyltransferase construct containing a ribosomal binding site, enhancement was markedly less, between 1- and 3.8-fold. Omega delta 3 appeared to enhance translation independent of its position upstream of the AUG codon used for initiation.
Collapse
Affiliation(s)
- D R Gallie
- Department of Plant Pathology, University of California Davis, 95616
| | | |
Collapse
|
33
|
Smith CP, Chater KF. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J Mol Biol 1988; 204:569-80. [PMID: 3225846 DOI: 10.1016/0022-2836(88)90356-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The pathway for glycerol catabolism in Streptomyces coelicolor is determined by the gylABX operon. The sequence of about 1500 base-pairs (bp) preceding the structural genes of the operon has been determined, and related to a detailed transcriptional analysis of this region. The gylABX operon contains two major promoters, gylP1 and gylP2, separated by 50 bp. Both promoters are glycerol-inducible and glucose-repressible. A 900-base transcription unit, gylR, is situated immediately upstream of the gylABX promoter region and contains an open reading frame for a 27,600 Mr protein. The predicted sequence of this protein contains a region that is similar to the helix-turn-helix domains of certain DNA-binding proteins. Transcription of gylR is also glycerol-inducible, but is only weakly glucose-repressible, and initiates predominantly from a single promoter, gylRp. The three promoters, gylRP, gylP1 and gylP2, each resemble the "typical" prokaryotic consensus promoter sequence. The DNA sequence of the gylR and gylABX promoter regions share some striking features. These include almost identical operator-like elements (segments of which are tandemly repeated around gylRP) and tracts of alternating purine-pyrimidine residues.
Collapse
|
34
|
Cho KO, Yanofsky C. Sequence changes preceding a Shine-Dalgarno region influence trpE mRNA translation and decay. J Mol Biol 1988; 204:51-60. [PMID: 2464067 DOI: 10.1016/0022-2836(88)90598-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In studies with a trpE promoter-strength measuring system we observed that constructs containing the Escherichia coli trp promoter and its adjacent transcribed region yielded lower levels of trpE protein than were expected. To analyze this observation we introduced mutational changes in the nucleotide sequence preceding the trpE Shine-Dalgarno region and examined their effects on trpE mRNA synthesis, translation and decay. We found that certain deletion, insertion and substitution mutations in the pre-Shine-Dalgarno region caused a two- to fivefold increase in trpE enzyme activity. These increases were accompanied by increases in steady-state levels of trpE mRNA. Pulse-chase analyses of trpE mRNA degradation revealed that the observed steady-state trpE mRNA levels correlated with changes in trpE mRNA stability. These findings are interpreted in terms of alternative models in which the primary effect of mutational changes that elevate trpE expression is to increase trpE mRNA translation, versus increasing trpE mRNA stability.
Collapse
Affiliation(s)
- K O Cho
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | |
Collapse
|
35
|
Louis BG, Ganoza MC. Signals determining translational start-site recognition in eukaryotes and their role in prediction of genetic reading frames. Mol Biol Rep 1988; 13:103-15. [PMID: 3221841 DOI: 10.1007/bf00539058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A special methionyl-tRNA (RNAi) is universally required to initiate translation. The conversation of this reactant throughout evolution, as well as its unusual decoding properties, suggested an alternate mechanism for tRNA-mRNA interactions at initiation. We have reported that the sequence of bases neighboring the start codons of many eubacterial genes are complementary not only to the 16S rRNA 3' end and to the anticodon of tRNAi, but, also, have the potential to base-pair the D, T or extended anticodon loops of this tRNAi. The coding properties of tRNAi and mutations that affect translation suggest that these signals may function. This hypothesis explains the observation that unusual triplets can start prokaryotic and mitochondrial genes and predicts the occurrence of other reading frames. Furthermore, it suggests a unifying model of chain initiation based on RNA-RNA contacts and displacements. Here we examine the start domain of 290 eukaryotic genes for their ability to base-pair the tRNAi loops and the 18S rRNA. We observe that both methionine start, and methionine coding regions have the potential to pair with the 18S rRNA, but that the nucleotide distribution about start codons strongly favoured such pairings over that near internal AUGs. The 5' extended anticodon of tRNAi is methylated, and was not represented in the mRNA with high frequency. However, the tetramer AUGg did occur with high frequency in the start domain. A modification of the tRNAi T loop also decreases its base-pairing potential. Interestingly, complementarity to the T loop did not occur with high frequency in the start sites. The early coding region, 10 to 34 nucleotides 3' to the initiator AUG, is complementary to the tRNAi D loop in many cases, while no such affinity is found near internal AUGs. The nucleotides around initiator AUGs were heavily biassed toward the sequence gccaccAUGgcg. No such tendency was noted around internal AUGs. Although the role of this sequence bias is unclear, the sequence gccaccAUGg has been shown by Kozak to promote initiation. Another distinguishing feature was a C-rich tract 7 to 34 nucleotides 5' to the initiator AUGs. Ability to pair with more than eight bases of the start consensus sequence, matching of 6 or 7 nucleotides to the D loop on the 3' side, an C-richness on the 5' side were used as criteria for distinguishing start AUGs.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B G Louis
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res 1987; 15:8693-711. [PMID: 2825117 PMCID: PMC306399 DOI: 10.1093/nar/15.21.8693] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 5'-untranslated leader sequences of several plant RNA viruses, and a portion of the 5'-leader of an animal retrovirus, were tested for their ability to enhance expression of contiguous open reading frames for chloramphenicol acetyltransferase (CAT) or beta-glucuronidase (GUS) in tobacco mesophyll protoplasts, Escherichia coli and oocytes of Xenopus laevis. Translation of capped or uncapped transcripts was substantially enhanced in almost all systems by the leader sequence of either the U1 or SPS strain of TMV. All leader sequences, except that of TYMV, stimulated expression of 5'-capped GUS mRNA with the native prokaryotic initiation codon context, in electroporated protoplasts. Only the TMV leaders enhanced translation of uncapped GUS mRNAs in protoplasts and increased expression of uncapped CAT mRNA in microinjected X. laevis oocytes. In oocytes, the TYMV leader sequence was inhibitory. In transformed E. coli, the TMV-U1 leader enhanced expression of both the native and eukaryotic context forms of GUS mRNA about 7.5-fold, despite the absence of a Shine-Dalgarno region in any of the transcripts. The absolute levels of GUS activity were all about 6-fold higher with mRNAs containing the native initiation codon context. In E. coli, the leaders of AlMV RNA4 and TYMV were moderately stimulatory whereas those of BMV RNA3, RSV and the SPS strain of TMV enhanced GUS expression by only 2- to 3-fold.
Collapse
Affiliation(s)
- D R Gallie
- Department of Virus Research, John Innes Institute, Norwich, UK
| | | | | | | | | |
Collapse
|