1
|
Zufall RA, Dimond KL, Doerder FP. Restricted distribution and limited gene flow in the model ciliate Tetrahymena thermophila. Mol Ecol 2012; 22:1081-91. [PMID: 23094694 DOI: 10.1111/mec.12066] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 11/30/2022]
Abstract
The biogeography of microbial eukaryotes has long been debated, but few phylogeographic data have been available to assess whether protists tend to have ubiquitous or endemic distributions. We addressed this issue in the ciliate Tetrahymena thermophila, a highly successful model system in cell and molecular biology. We found that this species has a distribution that is restricted to the Eastern United States, with high diversity in the northeast and low diversity across the rest of its distribution. We find high levels of population subdivision, low rates of migration and significant isolation by distance, supporting the moderate endemicity model of protist biogeography. This restricted gene flow may be a result of small population size, which would reduce the probability of migration events, or the inability to establish after migration. This work lays the foundation for T. thermophila to become a valuable model system for studying population biology.
Collapse
Affiliation(s)
- Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | | | | |
Collapse
|
2
|
Coyne RS, Hannick L, Shanmugam D, Hostetler JB, Brami D, Joardar VS, Johnson J, Radune D, Singh I, Badger JH, Kumar U, Saier M, Wang Y, Cai H, Gu J, Mather MW, Vaidya AB, Wilkes DE, Rajagopalan V, Asai DJ, Pearson CG, Findly RC, Dickerson HW, Wu M, Martens C, Van de Peer Y, Roos DS, Cassidy-Hanley DM, Clark TG. Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control. Genome Biol 2011; 12:R100. [PMID: 22004680 PMCID: PMC3341644 DOI: 10.1186/gb-2011-12-10-r100] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/15/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023] Open
Abstract
Background Ichthyophthirius multifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for 'white spot', a disease causing significant economic losses to the global aquaculture industry. Options for disease control are extremely limited, and Ich's obligate parasitic lifestyle makes experimental studies challenging. Unlike most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members. Indeed, it is closely related to the model organism Tetrahymena thermophila. Genomic studies represent a promising strategy to reduce the impact of this disease and to understand the evolutionary transition to parasitism. Results We report the sequencing, assembly and annotation of the Ich macronuclear genome. Compared with its free-living relative T. thermophila, the Ich genome is reduced approximately two-fold in length and gene density and three-fold in gene content. We analyzed in detail several gene classes with diverse functions in behavior, cellular function and host immunogenicity, including protein kinases, membrane transporters, proteases, surface antigens and cytoskeletal components and regulators. We also mapped by orthology Ich's metabolic pathways in comparison with other ciliates and a potential host organism, the zebrafish Danio rerio. Conclusions Knowledge of the complete protein-coding and metabolic potential of Ich opens avenues for rational testing of therapeutic drugs that target functions essential to this parasite but not to its fish hosts. Also, a catalog of surface protein-encoding genes will facilitate development of more effective vaccines. The potential to use T. thermophila as a surrogate model offers promise toward controlling 'white spot' disease and understanding the adaptation to a parasitic lifestyle.
Collapse
Affiliation(s)
- Robert S Coyne
- Genomic Medicine, J Craig Venter Institute, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Gray MW, Cedergren R, Abel Y, Sankoff D. On the evolutionary origin of the plant mitochondrion and its genome. Proc Natl Acad Sci U S A 2010; 86:2267-71. [PMID: 16594021 PMCID: PMC286893 DOI: 10.1073/pnas.86.7.2267] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher plants occupy very different positions in the mitochondrial and nuclear lineages of global phylogenetic trees based on conserved regions of small subunit (SSU) and large subunit (LSU) rRNA sequences. In the nuclear subtree, plants branch off late, at a position reflecting a massive radiation of the major multicellular (and some unicellular) groups; in the mitochondrial subtree, in contrast, plants branch off early, near the point of connection between the mitochondrial and eubacterial lineages. Moreover, in the nuclear lineage, plants branch together with the unicellular green alga Chlamydomonas reinhardtii, whereas in the mitochondrial lineage (in both SSU and LSU trees), metaphytes and chlorophyte branch separately. Statistical evaluation indicates that the anomalous branching position of higher plants in the mitochondrial lineage is not a treeing artifact attributable to the relatively rapid rate of sequence divergence of non-plant mitochondrial rRNA sequences. In considering alternative biological explanations for these results, we are led to propose that the rRNA genes in plant mitochondria may be of more recent evolutionary origin than the rRNA genes in other mitochondria. This proposal has implications for monophyletic vs. polyphyletic scenarios of mitochondrial origin and is consistent with other evidence indicating that plant mtDNA is an evolutionary mosaic.
Collapse
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4H7 Canada
| | | | | | | |
Collapse
|
4
|
Brunk CF, Lee LC, Tran AB, Li J. Complete sequence of the mitochondrial genome of Tetrahymena thermophila and comparative methods for identifying highly divergent genes. Nucleic Acids Res 2003; 31:1673-82. [PMID: 12626709 PMCID: PMC152872 DOI: 10.1093/nar/gkg270] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2002] [Revised: 01/16/2003] [Accepted: 01/16/2003] [Indexed: 11/13/2022] Open
Abstract
The complete sequence of the mitochondrial genome of Tetrahymena thermophila has been determined and compared with the mitochondrial genome of Tetrahymena pyriformis. The sequence similarity clearly indicates homology of the entire T.thermophila and T.pyriformis mitochondrial genomes. The T.thermophila genome is very compact, most of the intergenic regions are short (only three are longer than 63 bp) and comprise only 3.8% of the genome. The nad9 gene is tandemly duplicated in T.thermophila. Long terminal inverted repeats and the nad9 genes are undergoing concerted evolution. There are 55 putative genes: three ribosomal RNA genes, eight transfer RNA genes, 22 proteins with putatively assigned functions and 22 additional open reading frames of unknown function. In order to extend indications of homology beyond amino acid sequence similarity we have examined a number of physico-chemical properties of the mitochondrial proteins, including theoretical pI, molecular weight and particularly the predicted transmembrane spanning regions. This approach has allowed us to identify homologs to ymf58 (nad4L), ymf62 (nad6) and ymf60 (rpl6).
Collapse
Affiliation(s)
- Clifford F Brunk
- Department of Organismic Biology, Ecology and Evolution, University of California-Los Angeles, Los Angeles, CA 90095-1606, USA.
| | | | | | | |
Collapse
|
5
|
Tomaska L, Nosek J, Makhov AM, Pastorakova A, Griffith JD. Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res 2000; 28:4479-87. [PMID: 11071936 PMCID: PMC113878 DOI: 10.1093/nar/28.22.4479] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the typical mitochondrial DNA (mtDNA) is portrayed as a circular molecule, a large number of organisms contain linear mitochondrial genomes classified by their telomere structure. The class of mitochondrial telomeres identified in three yeast species, Candida parapsilosis, Pichia philodendra and Candida salmanticensis, is characterized by inverted terminal repeats each consisting of several tandemly repeating units and a 5' single-stranded extension. The molecular mechanisms of the origin, replication and maintenance of this type of mitochondrial telomere remain unknown. While studying the replication of linear mtDNA of C.parapsilosis by 2-D gel electrophoresis distinct DNA fragments composed solely of mitochondrial telomeric sequences were detected and their properties were suggestive of a circular conformation. Electron microscopic analysis of these DNAs revealed the presence of highly supertwisted circular molecules which could be relaxed by DNase I. The minicircles fell into distinct categories based on length, corresponding to n x 0.75 kb (n = 1-7). Similar results were obtained with two other yeast species (P.philodendra and C. salmanticensis) which possess analogous telomeric structure.
Collapse
MESH Headings
- Candida/genetics
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Circular/ultrastructure
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/ultrastructure
- Deoxyribonuclease EcoRI/metabolism
- Electrophoresis, Agar Gel
- Electrophoresis, Gel, Two-Dimensional
- Microscopy, Electron
- Pichia/genetics
- Telomere/genetics
Collapse
Affiliation(s)
- L Tomaska
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-27514, USA
| | | | | | | | | |
Collapse
|
6
|
Burger G, Zhu Y, Littlejohn TG, Greenwood SJ, Schnare MN, Lang BF, Gray MW. Complete sequence of the mitochondrial genome of Tetrahymena pyriformis and comparison with Paramecium aurelia mitochondrial DNA. J Mol Biol 2000; 297:365-80. [PMID: 10715207 DOI: 10.1006/jmbi.2000.3529] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the complete nucleotide sequence of the Tetrahymena pyriformis mitochondrial genome and a comparison of its gene content and organization with that of Paramecium aurelia mtDNA. T. pyriformis mtDNA is a linear molecule of 47,172 bp (78.7 % A+T) excluding telomeric sequences (identical tandem repeats of 31 bp at each end of the genome). In addition to genes encoding the previously described bipartite small and large subunit rRNAs, the T. pyriformis mitochondrial genome contains 21 protein-coding genes that are clearly homologous to genes of defined function in other mtDNAs, including one (yejR) that specifies a component of a cytochrome c biogenesis pathway. As well, T. pyriformis mtDNA contains 22 open reading frames of unknown function larger than 60 codons, potentially specifying proteins ranging in size from 74 to 1386 amino acid residues. A total of 13 of these open reading frames ("ciliate-specific") are found in P. aurelia mtDNA, whereas the remaining nine appear to be unique to T. pyriformis; however, of the latter, five are positionally equivalent and of similar size in the two ciliate mitochondrial genomes, suggesting they may also be homologous, even though this is not evident from sequence comparisons. Only eight tRNA genes encoding seven distinct tRNAs are found in T. pyriformis mtDNA, formally confirming a long-standing proposal that most T. pyriformis mitochondrial tRNAs are nucleus-encoded species imported from the cytosol. Atypical features of mitochondrial gene organization and expression in T. pyriformis mtDNA include split and rearranged large subunit rRNA genes, as well as a split nad1 gene (encoding subunit 1 of NADH dehydrogenase of respiratory complex I) whose two segments are located on and transcribed from opposite strands, as is also the case in P. aurelia. Gene content and arrangement are very similar in T. pyriformis and P. aurelia mtDNAs, the two differing by a limited number of duplication, inversion and rearrangement events. Phylogenetic analyses using concatenated sequences of several mtDNA-encoded proteins provide high bootstrap support for the monophyly of alveolates (ciliates, dinoflagellates and apicomplexans) and slime molds.
Collapse
Affiliation(s)
- G Burger
- Program in Evolutionary Biology, Canadian Institute for Advanced Research Département de Biochimie, Montréal, Québec, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- J Frankel
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
8
|
Junker V, Teichmann T, Hekele A, Fingerhut C, Beier H. The tRNATyr-isoacceptors and their genes in the ciliate Tetrahymena thermophila: cytoplasmic tRNATyr has a QPsiA anticodon and is coded by multiple intron-containing genes. Nucleic Acids Res 1997; 25:4194-200. [PMID: 9336446 PMCID: PMC147040 DOI: 10.1093/nar/25.21.4194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the ciliated protozoa Tetrahymena thermophila introns have been detected in rRNA and mRNAs until now. We have isolated and sequenced seven tRNATyr genes from the T.thermophila nuclear genome. All of these genes contain introns of identical length and sequence. The 11 bp long intervening sequences are located 1 nt 3' to the anticodon as found in other eukaryotic nuclear tRNA genes. Tetrahymena tRNATyr genes are efficiently transcribed in HeLa cell nuclear extract. Moreover, processing and splicing occurred in HeLa as well as in wheat germ extracts, supporting the notion that Tetrahymena tRNATyr introns can be classified as authentic tRNA introns. We have also isolated cytoplasmic tRNATyr from Tetrahymena cells. This tRNATyr isoacceptor has a QPsiA anticodon and is not a UAG suppressor as shown in in vitro translation studies. Since UAG and UAA codons are used as glutamine codons in Tetrahymena macronuclear DNA, the presence of a strong natural UAG suppressor such as tRNATyr with GPsiA anticodon should cause misreading of the glutamine as tyrosine codons and the absence of the latter had thus been predicted. Furthermore we have studied the organization of tRNATyr genes in the genome of T.thermophila and have found two types of tRNATyr gene arrangement. A minimum of 12 tRNATyr genes are present as single copies in genomic DNA HindIII restriction fragments ranging in size from 0.6 to 7 kb. Additionally one cluster of tRNATyr genes consisting of six members has been detected in a 2.3 kb HindIII fragment.
Collapse
MESH Headings
- Animals
- Anticodon/genetics
- Base Sequence
- Cell Extracts
- Cell Nucleus/metabolism
- Cell-Free System
- Cloning, Molecular
- Cytoplasm/chemistry
- Gene Dosage
- Genes, Protozoan/genetics
- HeLa Cells
- Humans
- Introns/genetics
- Mitochondria/chemistry
- Molecular Sequence Data
- Multigene Family/genetics
- Nucleic Acid Conformation
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Splicing/genetics
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Restriction Mapping
- Sequence Analysis, DNA
- Tetrahymena thermophila/genetics
Collapse
Affiliation(s)
- V Junker
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Rusconi CP, Cech TR. Mitochondrial import of only one of three nuclear-encoded glutamine tRNAs in Tetrahymena thermophila. EMBO J 1996; 15:3286-95. [PMID: 8670829 PMCID: PMC451891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mitochondrial genome of Tetrahymena does not appear to encode enough tRNAs to perform mitochondrial protein synthesis. It has therefore been proposed that nuclear-encoded tRNAs are imported into the mitochondria. T.thermophila has three major glutamine tRNAs: tRNA(Gln)(UUG), tRNA(Gln)(UUA) and tRNA(Gln)(CUA). Each of these tRNAs functions in cytosolic translation. However, due to differences between the Tetrahymena nuclear and mitochondrial genetic codes, only tRNA(Gln)(UUG) has the capacity to function in mitochondrial translation as well. Here we show that approximately 10-20% of the cellular complement of tRNA(Gln)(UUG) is present in mitochondrial RNA fractions, compared with 1% or less for the other two glutamine tRNAs. Furthermore, this glutamine tRNA is encoded only by a family of nuclear genes, the sequences of several of which are presented. Finally, when marked versions of tRNA(Gln)(UUG) and tRNA(Gln)(UUA) flanked by identical sequences are expressed in the macronucleus, only the former undergoes mitochondrial import; thus sequences within tRNA(Gln)(UUG) direct import. Because tRNA(Gln)(UUG) is a constituent of mitochondrial RNA fractions and is encoded only by nuclear genes, and because ectopically expressed tRNA(Gln)(UUG) fractionates with mitochondria like its endogenous counterpart, we conclude that it is an imported tRNA in T.thermophila.
Collapse
Affiliation(s)
- C P Rusconi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
10
|
Schnare MN, Greenwood SJ, Gray MW. Primary sequence and post-transcriptional modification pattern of an unusual mitochondrial tRNA(Met) from Tetrahymena pyriformis. FEBS Lett 1995; 362:24-8. [PMID: 7535250 DOI: 10.1016/0014-5793(95)00179-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In a previous investigation of the rDNA region in Tetrahymena pyriformis mitochondrial DNA, we identified a putative tRNA(Met) gene [Heinonen et al. (1987) J. Biol. Chem. 262, 2879-2887]. On the basis of Northern hybridization analyses, we suggested that this gene is expressed, even though the resulting tRNA would be unusually small and have an atypical dihydrouridine stem-loop domain. We report here the complete nucleotide sequence and post-transcriptional modification pattern of this tRNA(Met), confirming its predicted primary structure and supporting the view that this structurally aberrant species functions in translation in T. pyriformis mitochondria.
Collapse
Affiliation(s)
- M N Schnare
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax
| | | | | |
Collapse
|
11
|
Nawrot B, Malkiewicz A, Smith WS, Sierzputowska-Gracz H, Agris PF. RNA Modified Uridines VII: Chemical Synthesis and Initial Analysis of tRNA D-Loop Oligomers with Tandem Modified Uridines. ACTA ACUST UNITED AC 1995. [DOI: 10.1080/15257779508014659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Steinberg S, Cedergren R. Structural compensation in atypical mitochondrial tRNAs. NATURE STRUCTURAL BIOLOGY 1994; 1:507-10. [PMID: 7664076 DOI: 10.1038/nsb0894-507] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
14
|
Wolstenholme DR. Animal mitochondrial DNA: structure and evolution. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 141:173-216. [PMID: 1452431 DOI: 10.1016/s0074-7696(08)62066-5] [Citation(s) in RCA: 1103] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Clark-Walker GD. Contrasting mutation rates in mitochondrial and nuclear genes of yeasts versus mammals. Curr Genet 1991; 20:195-8. [PMID: 1657417 DOI: 10.1007/bf00326232] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Base substitutions have been compared in two mitochondrial and two nuclear genes from three yeasts and three mammals. In yeasts, the two mitochondrial genes, cytochrome oxidase subunit 2 (COX2) and apocytochrome b (CYB), have fewer changes on a percentage basis than the nuclear-encoded cytochrome c (CYC) gene. By contrast, in mammals, the same mitochondrial genes have more mutations than CYC on a percentage basis. Sequence comparisons of the nuclear small-subunit ribosomal RNA (nSSU) gene shows that there are more substitutions per unit length in the three yeasts than in the three mammals. This result suggests that although the yeasts are more distantly related than the mammals, their mitochondrial genes have accumulated fewer changes.
Collapse
Affiliation(s)
- G D Clark-Walker
- Research School of Biological Sciences, Australian National University, Canberra, A.C.T
| |
Collapse
|
16
|
Sprinzl M, Dank N, Nock S, Schön A. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 1991; 19 Suppl:2127-71. [PMID: 2041802 PMCID: PMC331350 DOI: 10.1093/nar/19.suppl.2127] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | |
Collapse
|
17
|
Heinonen TY, Schnare MN, Gray MW. Sequence heterogeneity in the duplicate large subunit ribosomal RNA genes of Tetrahymena pyriformis mitochondrial DNA. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45710-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Byers TJ, Hugo ER, Stewart VJ. Genes of Acanthamoeba: DNA, RNA and protein sequences (a review). THE JOURNAL OF PROTOZOOLOGY 1990; 37:17S-25S. [PMID: 1701831 DOI: 10.1111/j.1550-7408.1990.tb01141.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes knowledge about the structure of nuclear genes and mitochondrial DNA in Acanthamoeba. The information about nuclear genes is derived from studies of DNA, RNA and protein sequences. The genes considered are those for 5S, 5.8S and 18S rRNA, actin I, profilins Ia/b and II, myosins IB, IC and II, and calmodulin. All of the sequences show strong similarities to comparable sequences from other organisms. Introns have been found in the actin and myosin genes. The location of the actin intron is unique, but many of the myosin introns occur at the same sites as introns in myosins of other organisms. Sequence comparisons, especially of 5S and 5.8S rRNA and actin, support previous evidence, based primarily on 18S rRNA, that Acanthamoeba genes are at least as closely related to those of higher plants and animals as they are to various other protistan genera. The functional organization of the promoter region for the nuclear rDNA transcription unit has been studied extensively, but there is a need for information about the functional organization of regulatory sequences for other genes. Restriction fragment length profile (RFLP) studies of mitochondrial DNA reveal relatively high levels of overall sequence diversity, but information on the structure and function of individual genes is needed. The RFLP appear to have potential as tools for taxonomic studies of this genus.
Collapse
Affiliation(s)
- T J Byers
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
19
|
Fo¨rster H, Oudemans P, Coffey MD. Mitochondrial and nuclear DNA diversity within six species ofPhytophthora. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0147-5975(90)90083-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Telomeric repeats of Tetrahymena malaccensis mitochondrial DNA: a multimodal distribution that fluctuates erratically during growth. Mol Cell Biol 1988. [PMID: 3185556 DOI: 10.1128/mcb.8.10.4450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The linear mitochondrial DNA (mtDNA) of Tetrahymena malaccensis has tandem 52-base-pair repeats at its telomeres. The mtDNA has a multimodal distribution of telomeres. Different groups in the distribution have different numbers of telomeric repeats. The standard deviation of the size of each end group is independent of the mean size of the end group. The two sides of the mtDNA have different multimodal distributions of repeats. Cloned cell lines have multimodal distributions of mtDNA telomeres distinct from that of the original cell line. The number of telomere end groups and the average size of the end groups change in an erratic fashion as the cells are passaged and do not reach a stable equilibrium distribution in 185 generations. We propose that the mean size of a telomere end group and the size distribution of an end group are independently regulated. The system controlling the average size of end groups may be defective in T. malaccensis, since a closely related species (T. thermophila) does not have a multimodal distribution of mtDNA telomeres. T. hyperangularis, which has different telomeric repeats on each side of its mtDNA, has a multimodal distribution of mtDNA telomeres on only one side, suggesting that the mechanism controlling the average number of repeats in an end group can be sequence specific. These mitochondrial telomeres provide a new example of the more general phenomenon of expansion and contraction of arrays of repeated sequences seen, for example, with simple-sequence "satellite" DNAs; however, the mitochondrial telomeres change on a very short time scale.
Collapse
|
21
|
Abstract
We describe here a bizarre organization of the single large subunit (LSU) and small subunit (SSU) rRNA genes in the mitochondrial DNA of Chlamydomonas reinhardtii. Each gene is discontinuous, with gene pieces encoding specific rRNA domains ("modules") interspersed with one another and with intact protein coding and tRNA genes throughout a 6 kbp region. Transcript mapping experiments reveal the presence of abundant small rRNAs whose sizes approximate the sizes of the modules encoding them. Evidently, rRNA splicing does not occur in this system; instead, secondary structure modeling supports the view that the SSU and LSU rRNAs each functions as a noncovalent network of small RNAs, rather than as a single covalently continuous molecule. We propose that such a modular pattern may reflect the structure of the primordial ribosome.
Collapse
MESH Headings
- Blotting, Northern
- Chlamydomonas/genetics
- Chromosome Mapping
- DNA Restriction Enzymes
- DNA, Mitochondrial/genetics
- DNA, Ribosomal/genetics
- Endonucleases
- Genes
- Nucleic Acid Conformation
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer/genetics
- Single-Strand Specific DNA and RNA Endonucleases
- Transcription, Genetic
Collapse
Affiliation(s)
- P H Boer
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
22
|
Morin GB, Cech TR. Telomeric repeats of Tetrahymena malaccensis mitochondrial DNA: a multimodal distribution that fluctuates erratically during growth. Mol Cell Biol 1988; 8:4450-8. [PMID: 3185556 PMCID: PMC365519 DOI: 10.1128/mcb.8.10.4450-4458.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The linear mitochondrial DNA (mtDNA) of Tetrahymena malaccensis has tandem 52-base-pair repeats at its telomeres. The mtDNA has a multimodal distribution of telomeres. Different groups in the distribution have different numbers of telomeric repeats. The standard deviation of the size of each end group is independent of the mean size of the end group. The two sides of the mtDNA have different multimodal distributions of repeats. Cloned cell lines have multimodal distributions of mtDNA telomeres distinct from that of the original cell line. The number of telomere end groups and the average size of the end groups change in an erratic fashion as the cells are passaged and do not reach a stable equilibrium distribution in 185 generations. We propose that the mean size of a telomere end group and the size distribution of an end group are independently regulated. The system controlling the average size of end groups may be defective in T. malaccensis, since a closely related species (T. thermophila) does not have a multimodal distribution of mtDNA telomeres. T. hyperangularis, which has different telomeric repeats on each side of its mtDNA, has a multimodal distribution of mtDNA telomeres on only one side, suggesting that the mechanism controlling the average number of repeats in an end group can be sequence specific. These mitochondrial telomeres provide a new example of the more general phenomenon of expansion and contraction of arrays of repeated sequences seen, for example, with simple-sequence "satellite" DNAs; however, the mitochondrial telomeres change on a very short time scale.
Collapse
Affiliation(s)
- G B Morin
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
23
|
Morin GB, Cech TR. Mitochondrial telomeres: surprising diversity of repeated telomeric DNA sequences among six species of Tetrahymena. Cell 1988; 52:367-74. [PMID: 3125982 DOI: 10.1016/s0092-8674(88)80029-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The DNA sequences at the ends of the linear mtDNA of 6 species of Tetrahymena encompassing 13 strains were determined. All the strains have variable numbers of a tandemly repeated DNA sequence, 31 bp to 53 bp in size, at their mtDNA termini. Based upon the size and nucleotide sequence of the terminal repeats, the telomeres can be separated into four classes. T. pigmentosa, hyperangularis, and hegewischi have different telomeric repeats on the two ends of their mtDNAs. The only conserved feature of the mtDNA termini is the presence of tandem repeats. The function of the repeats might be to promote unequal crossing over during recombination, thereby overcoming the problem of telomere replication for these linear DNAs.
Collapse
Affiliation(s)
- G B Morin
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|