1
|
Milanowski R, Karnkowska A, Ishikawa T, Zakryś B. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Mol Biol Evol 2013; 31:584-93. [PMID: 24296662 PMCID: PMC3935182 DOI: 10.1093/molbev/mst227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear genomes of euglenids contain three types of introns: conventional spliceosomal introns, nonconventional introns for which a splicing mechanism is unknown (variable noncanonical borders, RNA secondary structure bringing together intron ends), and so-called intermediate introns, which combine features of conventional and nonconventional introns. Analysis of two genes, tubA and tubB, from 20 species of euglenids reveals contrasting distribution patterns of conventional and nonconventional introns--positions of conventional introns are conserved, whereas those of the nonconventional ones are unique to individual species or small groups of closely related taxa. Moreover, in the group of phototrophic euglenids, 11 events of conventional intron loss versus 15 events of nonconventional intron gain were identified. A comparison of all nonconventional intron sequences highlighted the most conserved elements in their sequence and secondary structure. Our results led us to put forward two hypotheses. 1) The first one posits that mutational changes in intron sequence could lead to a change in their excision mechanism--intermediate introns would then be a transitional form between the conventional and nonconventional introns. 2) The second hypothesis concerns the origin of nonconventional introns--because of the presence of inverted repeats near their ends, insertion of MITE-like transposon elements is proposed as a possible source of new introns.
Collapse
Affiliation(s)
- Rafał Milanowski
- Department of Plant Systematics and Geography, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
2
|
Torres-Machorro AL, Hernández R, Cevallos AM, López-Villaseñor I. Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 2010; 34:59-86. [DOI: 10.1111/j.1574-6976.2009.00196.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
Charette JM, Gray MW. U3 snoRNA genes are multi-copy and frequently linked to U5 snRNA genes in Euglena gracilis. BMC Genomics 2009; 10:528. [PMID: 19917113 PMCID: PMC2784804 DOI: 10.1186/1471-2164-10-528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022] Open
Abstract
Background U3 snoRNA is a box C/D small nucleolar RNA (snoRNA) involved in the processing events that liberate 18S rRNA from the ribosomal RNA precursor (pre-rRNA). Although U3 snoRNA is present in all eukaryotic organisms, most investigations of it have focused on fungi (particularly yeasts), animals and plants. Relatively little is known about U3 snoRNA and its gene(s) in the phylogenetically broad assemblage of protists (mostly unicellular eukaryotes). In the euglenozoon Euglena gracilis, a distant relative of the kinetoplastid protozoa, Southern analysis had previously revealed at least 13 bands hybridizing with U3 snoRNA, suggesting the existence of multiple copies of U3 snoRNA genes. Results Through screening of a λ genomic library and PCR amplification, we recovered 14 U3 snoRNA gene variants, defined by sequence heterogeneities that are mostly located in the U3 3'-stem-loop domain. We identified three different genomic arrangements of Euglena U3 snoRNA genes: i) stand-alone, ii) linked to tRNAArg genes, and iii) linked to a U5 snRNA gene. In arrangement ii), the U3 snoRNA gene is positioned upstream of two identical tRNAArg genes that are convergently transcribed relative to the U3 gene. This scenario is reminiscent of a U3 snoRNA-tRNA gene linkage previously described in trypanosomatids. We document here twelve different U3 snoRNA-U5 snRNA gene arrangements in Euglena; in each case, the U3 gene is linked to a downstream and convergently oriented U5 gene, with the intergenic region differing in length and sequence among the variants. Conclusion The multiple U3 snoRNA-U5 snRNA gene linkages, which cluster into distinct families based on sequence similarities within the intergenic spacer, presumably arose by genome, chromosome, and/or locus duplications. We discuss possible reasons for the existence of the unusually large number of U3 snoRNA genes in the Euglena genome. Variability in the signal intensities of the multiple Southern hybridization bands raises the possibility that Euglena contains a naturally aneuploid chromosome complement.
Collapse
Affiliation(s)
- J Michael Charette
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
4
|
Zufall RA, Robinson T, Katz LA. Evolution of developmentally regulated genome rearrangements in eukaryotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:448-55. [PMID: 16032699 DOI: 10.1002/jez.b.21056] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Developmentally regulated genome rearrangements (DRGR)--processes that alter genomes either in specific cells or during specific life cycle stages--are widespread throughout eukaryotes. This contrasts with the view that genome structure and content remain essentially constant throughout an organism's life cycle. Here we review three categories of developmentally regulated genome processing in eukaryotes: genome-wide rearrangements, targeted rearrangements, and a special case of amplification of ribosomal DNA genes. Mapping these types of DRGR onto eukaryotic phylogeny indicates that each type of processing is found in multiple independent lineages. We propose that such genome rearrangements were present within the last common ancestor of extant eukaryotes, and that future research will yield evidence of homologous epigenetic mechanisms underlying genome processing among diverse eukaryotes.
Collapse
Affiliation(s)
- Rebecca A Zufall
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA.
| | | | | |
Collapse
|
5
|
Dimario PJ. Cell and Molecular Biology of Nucleolar Assembly and Disassembly. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:99-178. [PMID: 15464853 DOI: 10.1016/s0074-7696(04)39003-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleoli disassemble in prophase of the metazoan mitotic cycle, and they begin their reassembly (nucleologenesis) in late anaphase?early telophase. Nucleolar disassembly and reassembly were obvious to the early cytologists of the eighteenth and nineteenth centuries, and although this has lead to a plethora of literature describing these events, our understanding of the molecular mechanisms regulating nucleolar assembly and disassembly has expanded immensely just within the last 10-15 years. We briefly survey the findings of nineteenth-century cytologists on nucleolar assembly and disassembly, followed by the work of Heitz and McClintock on nucleolar organizers. A primer review of nucleolar structure and functions precedes detailed descriptions of modern molecular and microscopic studies of nucleolar assembly and disassembly. Nucleologenesis is concurrent with the reinitiation of rDNA transcription in telophase. The perichromosomal sheath, prenucleolar bodies, and nucleolar-derived foci serve as repositories for nucleolar processing components used in the previous interphase. Disassembly of the perichromosomal sheath along with the dynamic movements and compositional changes of the prenucleolar bodies and nucleolus-derived foci coincide with reactivation of rDNA synthesis within the chromosomal nucleolar organizers during telophase. Nucleologenesis is considered in various model organisms to provide breadth to our understanding. Nucleolar disassembly occurs at the onset of mitosis primarily as a result of the mitosis-specific phosphorylation of Pol I transcription factors and processing components. Although we have learned much regarding nucleolar assembly and disassembly, many questions still remain, and these questions are as vibrant for us today as early questions were for nineteenth- and early twentieth-century cytologists.
Collapse
Affiliation(s)
- Patrick J Dimario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1715, USA
| |
Collapse
|
6
|
Abstract
The gene coding for the small ribosomal subunit RNA of Ploeotia costata contains an actively splicing group I intron (Pco.S516) which is unique among euglenozoans. Secondary structure predictions indicate that paired segments P1-P10 as well as several conserved elements typical of group I introns and of subclass IC1 in particular are present. Phylogenetic analyses of SSU rDNA sequences demonstrate a well-supported placement of Ploeotia costata within the Euglenozoa; whereas, analyses of intron data sets uncover a close phylogenetic relation of Pco.S516 to S-516 introns from Acanthamoeba, Aureoumbra lagunensis (Stramenopila) and red algae of the order Bangiales. Discrepancies between SSU rDNA and intron phylogenies suggest horizontal spread of the group I intron. Monophyly of IC1 516 introns from Ploeotia costata, A. lagunensis and rhodophytes is supported by a unique secondary structure element: helix P5b possesses an insertion of 19 nt length with a highly conserved tetraloop which is supposed to take part in tertiary interactions. Neither functional nor degenerated ORFs coding for homing endonucleases can be identified in Pco.S516. Nevertheless, degenerated ORFs with His-Cys box motifs in closely related intron sequences indicate that homing may have occurred during evolution of the investigated intron group.
Collapse
Affiliation(s)
- Ingo Busse
- Fakultät für Biologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
7
|
Greenwood SJ, Schnare MN, Cook JR, Gray MW. Analysis of intergenic spacer transcripts suggests 'read-around' transcription of the extrachromosomal circular rDNA in Euglena gracilis. Nucleic Acids Res 2001; 29:2191-8. [PMID: 11353089 PMCID: PMC55454 DOI: 10.1093/nar/29.10.2191] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2001] [Accepted: 03/21/2001] [Indexed: 11/14/2022] Open
Abstract
We report here the sequence of the 1743 bp intergenic spacer (IGS) that separates the 3'-end of the large subunit ribosomal RNA (rRNA) gene from the 5'-end of the small subunit (SSU) rRNA gene in the circular, extrachromosomal ribosomal DNA (rDNA) of Euglena gracilis. The IGS contains a 277 nt stretch of sequence that is related to a sequence found in ITS 1, an internal transcribed spacer between the SSU and 5.8S rRNA genes. Primer extension analysis of IGS transcripts identified three abundant reverse transcriptase stops that may be analogous to the transcription initiation site (TIS) and two processing sites (A' and A0) that are found in this region in other eukaryotes. Features that could influence processing at these sites include an imperfect palindrome near site A0 and a sequence near site A' that could potentially base pair with U3 small nucleolar RNA. Our identification of the TIS (verified by mung bean nuclease analysis) is considered tentative because we also detected low-abundance transcripts upstream of this site throughout the entire IGS. This result suggests the possibility of 'read-around' transcription, i.e. transcription that proceeds multiple times around the rDNA circle without termination.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Conserved Sequence/genetics
- DNA, Circular/genetics
- DNA, Intergenic/genetics
- DNA, Ribosomal/genetics
- Euglena/genetics
- Molecular Sequence Data
- Nuclease Protection Assays
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- S J Greenwood
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
8
|
Abstract
Although plasmids containing rRNA genes (rDNA) are commonly found in fungi, they have not been reported in Candida. We discovered that the yeast opportunistic pathogen Candida albicans contains two types of rDNA plasmids which differ in their structure and number of rDNA repeats. A large circular plasmid of unknown size consists of multiple rDNA repeats, each of which includes an associated autonomously replicating sequence (ARS). In contrast, a linear plasmid, which is represented by a series of molecules with a spread of sizes ranging from 50-150 kbp, carries a limited number of rDNA units and associated ARSs, as well as telomeres. The number of linear plasmids per cell is growth cycle-dependent, accumulating in abundance in actively growing cells. We suggest that the total copy number of rDNA is better controlled when a portion of copies are on a linear extrachromosomal plasmid, thus allowing a rapid shift in the number of corresponding genes and, as a result, better adaptation to the environment. This is the first report of a linear rDNA plasmid in yeast, as well as of the coexistence of circular and linear plasmids. In addition, this is a first report of naturally occurring plasmids in C. albicans.
Collapse
MESH Headings
- Blotting, Southern
- Candida albicans/chemistry
- Candida albicans/genetics
- Candida albicans/growth & development
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/genetics
- DNA Probes/chemistry
- DNA, Circular/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Electrophoresis, Gel, Pulsed-Field
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/isolation & purification
Collapse
Affiliation(s)
- D Huber
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642, USA
| | | |
Collapse
|
9
|
Greenwood SJ, Gray MW. Processing of precursor rRNA in Euglena gracilis: identification of intermediates in the pathway to a highly fragmented large subunit rRNA. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:128-38. [PMID: 9838079 DOI: 10.1016/s0167-4781(98)00201-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have identified and characterized the stable steady-state intermediates that appear during formation of the cytoplasmic rRNA in Euglena gracilis. A 10.2 kb RNA is the precursor to both the small subunit (SSU) rRNA and 14 discrete fragments that comprise the large subunit (LSU) rRNA. The SSU rRNA is produced via two intermediates of 4.4 kb and 3.2 kb, whereas the LSU rRNA is generated by way of two RNA species of 5.8 kb and 5.3 kb. A number of unique intermediates are associated with a novel processing pathway by which the 14 mature fragments of the LSU rRNA are produced. Analysis of transcripts mapping within ITS1, the internal transcribed spacer separating the SSU and LSU rRNA coding regions, revealed that the LSU1 (=5.8S) rRNA is heterogeneous at its 5'-end, with a major cluster of primer extension products terminating approx. 4-5 nucleotides upstream from the predominant, mature 5'-end and a second, low-level extension product appearing further upstream within ITS1. The results reported here define the pre-rRNA processing pathway in E. gracilis and provide the basis for further studies of the mechanism of excision of the novel ITSs in this system.
Collapse
Affiliation(s)
- S J Greenwood
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
10
|
Dhar SK, Choudhury NR, Mittal V, Bhattacharya A, Bhattacharya S. Replication initiates at multiple dispersed sites in the ribosomal DNA plasmid of the protozoan parasite Entamoeba histolytica. Mol Cell Biol 1996; 16:2314-24. [PMID: 8628298 PMCID: PMC231219 DOI: 10.1128/mcb.16.5.2314] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the protozoan parasite Entamoeba histolytica (which causes amoebiasis in humans), the rRNA genes (rDNA) in the nucleus are carried on an extrachromosomal circular plasmid. For strain HM-1:IMSS, the size of the rDNA plasmid is 24.5 kb, and 200 copies per genome are present. Each circle contains two rRNA transcription units as inverted repeats separated by upstream and downstream spacers. We have studied the replication of this molecule by neutral/neutral two-dimensional gel electrophoresis and by electron microscopy. All restriction fragments analyzed by two-dimensional gel electrophoresis gave signals corresponding to simple Y's and bubbles. This showed that replication initiated in this plasmid at multiple, dispersed locations spread throughout the plasmid. On the basis of the intensity of the bubble arcs, initiations from the rRNA transcription units seemed to occur more frequently than those from intergenic spacers. Multiple, dispersed initiation sites were also seen in the rDNA plasmid of strain HK-9 when it was analyzed by two-dimensional gel electrophoresis. Electron microscopic visualization of replicating plasmid molecules in strain HM-1:IMISS showed multiple replication bubbles in the same molecule. The location of bubbles on the rDNA circle was mapped by digesting with PvuI or BsaHI, which linearize the molecule, and with SacII, which cuts the circle twice. The distance of the bubbles from one end of the molecule was measured by electron microscopy. The data corroborated those from two-dimensional gels and showed that replication bubbles were distributed throughout the molecule and that they appeared more frequently in rRNA transcription units. The same interpretation was drawn from electron microscopic analysis of the HK-9 plasmid. Direct demonstration of more than one bubble in the same molecule is clear evidence that replication of this plasmid initiates at multiple sites. Potential replication origins are distributed throughout the plasmid. Such a mechanism is not known to operate in any naturally occurring prokaryotic or eukaryotic plasmid.
Collapse
MESH Headings
- Amebiasis
- Animals
- Cell Nucleus/metabolism
- DNA Replication
- DNA, Protozoan/biosynthesis
- DNA, Protozoan/genetics
- DNA, Protozoan/ultrastructure
- DNA, Ribosomal/biosynthesis
- DNA, Ribosomal/genetics
- DNA, Ribosomal/ultrastructure
- Entamoeba histolytica/genetics
- Entamoeba histolytica/metabolism
- Humans
- Introns
- Microscopy, Electron
- Plasmids/ultrastructure
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/isolation & purification
- RNA, Ribosomal/biosynthesis
- Restriction Mapping
Collapse
Affiliation(s)
- S K Dhar
- Genetic Engineering Unit, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | |
Collapse
|
11
|
Sehgal D, Mittal V, Ramachandran S, Dhar SK, Bhattacharya A, Bhattacharya S. Nucleotide sequence organisation and analysis of the nuclear ribosomal DNA circle of the protozoan parasite Entamoeba histolytica. Mol Biochem Parasitol 1994; 67:205-14. [PMID: 7870125 DOI: 10.1016/0166-6851(94)00129-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have sequenced the extrachromsomal ribosomal DNA (rDNA) circle of the human protozoan parasite Entamoeba histolytica HM-1:IMSS and present here the complete sequence organisation of the 24.5-kb molecule. Each circle contains two 5.9-kb rDNA transcription units organised as inverted repeats. The regions downstream (3543 bp) and upstream (9216 bp) of the rDNAs contain various families of short tandem repeats. Some of the upstream repeats share extensive sequence homology with the downstream repeats. In addition to the rDNAs themselves, the rDNA circle appears to code for only one other transcript which is 0.7 kb in size as seen in Northern blots. From DNA sequence analysis, no open reading frame could be assigned to the transcript. Extrachromosomal rDNA circles also exist in other E. histolytica strains. Restriction enzyme maps of rDNA circles were constructed from E. histolytica strains 200:NIH, HK-9 and Rahman; and Entamoeba moshkovskii strain Laredo. Striking differences were observed in the organisation of some of them, e.g. the HK-9, Rahman and Laredo circles contained only one rDNA unit and lacked the 0.7-kb transcript sequence. The short repeat sequences upstream and downstream of rDNAs were present in HK-9 and Rahman but absent in Laredo. Circles with one rDNA unit may be derived from those with two units by homologous recombination at direct repeat sequences located upstream and downstream of the two rDNAs.
Collapse
Affiliation(s)
- D Sehgal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Indiana
| | | | | | | | | | | |
Collapse
|
12
|
Bertaux O, Mederic C, Valencia R. Amplification of ribosomal DNA in the nucleolus of vitamin B12-deficient Euglena cells. Exp Cell Res 1991; 195:119-28. [PMID: 2055261 DOI: 10.1016/0014-4827(91)90507-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the nucleoli of vitamin B12-deprived Euglena cells there is a 10-fold amplification of rDNA which correlates with increased numbers of fibrillar centers in the hypertrophic nucleoli. This rDNA amplification was demonstrated by means of molecular hybridization using a specific cytoplasmic rRNA probe. Most of the amplified sequences appear as extrachromosomal copies which were observed without digestion of total cellular or nuclear Euglena DNA. Five different hybridizing sequences, three of high molecular weight and two of 19.0 and 11.5 kb, were identified. The rDNA repeat unit which contains the 11.5-kb transcriptible sequence is 19.0 kb in length and was always more abundant in the undigested total cellular DNA. The possible mechanisms involved in the induction of rDNA amplification in vitamin B12-deficient cells are discussed.
Collapse
Affiliation(s)
- O Bertaux
- Département de Biochimie, Faculté de Pharmacie, Université de Paris-Sud, Chatenay-Malabry, France
| | | | | |
Collapse
|
13
|
Schnare MN, Cook JR, Gray MW. Fourteen internal transcribed spacers in the circular ribosomal DNA of Euglena gracilis. J Mol Biol 1990; 215:85-91. [PMID: 2118961 DOI: 10.1016/s0022-2836(05)80097-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic ribosomes from Euglena gracilis contain 16 rRNA components. These include the typical 5 S, 5.8 S and 19 S rRNAs that are found in other eukaryotes as well as 13 discrete small RNAs that interact to form the equivalent of eukaryotic 25-28 S rRNA (accompanying paper). We have utilized DNA sequencing techniques to establish that genes for all of these RNAs, with the exception of 5 S rRNA, are encoded by the 11,500 base-pair circular rDNA of E. gracilis. We have determined the relative positions of the coding regions for the 19 S rRNA and the 14 components (including 5.8 S rRNA) of the large subunit rRNA, thereby establishing that the genes for each of these rRNAs are separated by internal transcribed spacers. We conclude that sequences corresponding to these spacers are removed post-transcriptionally from a high molecular weight pre-rRNA, resulting in a multiply fragmented large subunit rRNA. Internal transcribed spacers, in positions analogous to some of these additional Euglena rDNA spacers, have been found in the rDNA of other organisms and organelles. This finding supports the view that at least some internal transcribed spacers may have been present at an early stage in the evolution of rRNA genes.
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry, Dalhousie University Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
14
|
Bhattacharya S, Bhattacharya A, Diamond LS, Soldo AT. Circular DNA of Entamoeba histolytica encodes ribosomal RNA. THE JOURNAL OF PROTOZOOLOGY 1989; 36:455-8. [PMID: 2553935 DOI: 10.1111/j.1550-7408.1989.tb01080.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The presence of repeated DNA sequences encoding RNA in Entamoeba histolytica has been reported. In the present study we demonstrate by agarose gel electrophoresis. DNase digestion and electron microscopic analysis that these genes are located on extrachromosomal circular DNA molecules with an approximate size of 26 kb. Detection of replication intermediates suggests the episomal nature of these molecules. Amplified, extrachromosomal rRNA genes appear to be a common feature among the lower eukaryotes, occurring more commonly as linear molecules and less commonly as circles. Entamoeba histolytica is 1 of the few organisms studied in which rRNA genes are located predominantly on extrachromosomal circles.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- DNA Probes
- DNA Replication
- DNA, Circular/analysis
- DNA, Circular/genetics
- DNA, Circular/ultrastructure
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- DNA, Ribosomal/ultrastructure
- Deoxyribonuclease I/metabolism
- Electrophoresis, Agar Gel
- Entamoeba histolytica/genetics
- Microscopy, Electron
- Nucleic Acid Hybridization
- RNA, Ribosomal/genetics
Collapse
Affiliation(s)
- S Bhattacharya
- Laboratory of Parasitic Diseases, NIAID, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|