1
|
Homotypic cooperativity and collective binding are determinants of bHLH specificity and function. Proc Natl Acad Sci U S A 2019; 116:16143-16152. [PMID: 31341088 DOI: 10.1073/pnas.1818015116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Eukaryotic cells express transcription factor (TF) paralogues that bind to nearly identical DNA sequences in vitro but bind at different genomic loci and perform different functions in vivo. Predicting how 2 paralogous TFs bind in vivo using DNA sequence alone is an important open problem. Here, we analyzed 2 yeast bHLH TFs, Cbf1p and Tye7p, which have highly similar binding preferences in vitro, yet bind at almost completely nonoverlapping target loci in vivo. We dissected the determinants of specificity for these 2 proteins by making a number of chimeric TFs in which we swapped different domains of Cbf1p and Tye7p and determined the effects on in vivo binding and cellular function. From these experiments, we learned that the Cbf1p dimer achieves its specificity by binding cooperatively with other Cbf1p dimers bound nearby. In contrast, we found that Tye7p achieves its specificity by binding cooperatively with 3 other DNA-binding proteins, Gcr1p, Gcr2p, and Rap1p. Remarkably, most promoters (63%) that are bound by Tye7p do not contain a consensus Tye7p binding site. Using this information, we were able to build simple models to accurately discriminate bound and unbound genomic loci for both Cbf1p and Tye7p. We then successfully reprogrammed the human bHLH NPAS2 to bind Cbf1p in vivo targets and a Tye7p target intergenic region to be bound by Cbf1p. These results demonstrate that the genome-wide binding targets of paralogous TFs can be discriminated using sequence information, and provide lessons about TF specificity that can be applied across the phylogenetic tree.
Collapse
|
2
|
Cheng J, Wan DF, Gu JR, Gong Y, Yang SL, Hao DC, Yang L. Establishment of a yeast system that stably expresses human cytochrome P450 reductase: Application for the study of drug metabolism of cytochrome P450s in vitro. Protein Expr Purif 2006; 47:467-76. [PMID: 16434211 DOI: 10.1016/j.pep.2005.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/20/2005] [Accepted: 11/25/2005] [Indexed: 11/30/2022]
Abstract
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Eukaryotic cells possess an exquisitely interwoven and fine-tuned series of signal transduction mechanisms with which to sense and respond to the ubiquitous fermentable carbon source glucose. The budding yeast Saccharomyces cerevisiae has proven to be a fertile model system with which to identify glucose signaling factors, determine the relevant functional and physical interrelationships, and characterize the corresponding metabolic, transcriptomic, and proteomic readouts. The early events in glucose signaling appear to require both extracellular sensing by transmembrane proteins and intracellular sensing by G proteins. Intermediate steps involve cAMP-dependent stimulation of protein kinase A (PKA) as well as one or more redundant PKA-independent pathways. The final steps are mediated by a relatively small collection of transcriptional regulators that collaborate closely to maximize the cellular rates of energy generation and growth. Understanding the nuclear events in this process may necessitate the further elaboration of a new model for eukaryotic gene regulation, called "reverse recruitment." An essential feature of this idea is that fine-structure mapping of nuclear architecture will be required to understand the reception of regulatory signals that emanate from the plasma membrane and cytoplasm. Completion of this task should result in a much improved understanding of eukaryotic growth, differentiation, and carcinogenesis.
Collapse
Affiliation(s)
- George M Santangelo
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406-5018, USA.
| |
Collapse
|
4
|
Harrier LA. Isolation and sequence analysis of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol & Gerd.) Gerdemann & Trappe 3-phosphoglycerate kinase (PGK) gene promoter region. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2002; 11:463-73. [PMID: 11696973 DOI: 10.3109/10425170109041330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Glomus mosseae 3-phosphoglycerate kinase (GmPGK) gene promoter has been isolated from a phage genomic library and represents one of the few promoter elements to be isolated and analysed from these symbiotic fungi. The analysis revealed the presence of several motifs which are found in the promoter region of other fungal PGK genes. In particular, DNA sequences homologous to segments of the S. cerevisiae and Rhizopus niveus upstream activating elements (UAS). The importance of these UAS sequences in regulating carbon source in PGK genes is known and the presence of two carbon source regulated UAS sequences in the GmPGK gene promoter and its role in the biology of AM fungi is discussed briefly.
Collapse
Affiliation(s)
- L A Harrier
- Plant Science Division, Kings Buildings, Scottish Agricultural College, West Mains Road, Edinburgh, Scotland, UK EH9 3JG.
| |
Collapse
|
5
|
Jiao K, Nau JJ, Cool M, Gray WM, Fassler JS, Malone RE. Phylogenetic footprinting reveals multiple regulatory elements involved in control of the meiotic recombination gene, REC102. Yeast 2002; 19:99-114. [PMID: 11788965 DOI: 10.1002/yea.800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
REC102 is a meiosis-specific early exchange gene absolutely required for meiotic recombination in Saccharomyces cerevisiae. Sequence analysis of REC102 indicates that there are multiple potential regulatory elements in its promoter region, and a possible regulatory element in the coding region. This suggests that the regulation of REC102 may be complex and may include elements not yet reported in other meiotic genes. To identify potential cis-regulatory elements, phylogenetic footprinting analysis was used. REC102 homologues were cloned from other two Saccharomyces spp. and sequence comparison among the three species defined evolutionarily conserved elements. Deletion analysis demonstrated that the early meiotic gene regulatory element URS1 was necessary but not sufficient for proper regulation of REC102. Upstream elements, including the binding sites for Gcr1p, Yap1p, Rap1p and several novel conserved sequences, are also required for the normal regulation of REC102 as well as a Rap1p binding site located in the coding region. The data in this paper support the use of phylogenetic comparisions as a method for determining important sequences in complex promoters.
Collapse
Affiliation(s)
- Kai Jiao
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52246, USA
| | | | | | | | | | | |
Collapse
|
6
|
Dance GS, Sowden MP, Yang Y, Smith HC. APOBEC-1 dependent cytidine to uridine editing of apolipoprotein B RNA in yeast. Nucleic Acids Res 2000; 28:424-9. [PMID: 10606639 PMCID: PMC102520 DOI: 10.1093/nar/28.2.424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Revised: 11/19/1999] [Accepted: 11/19/1999] [Indexed: 11/14/2022] Open
Abstract
Cytidine to uridine editing of apolipoprotein B (apoB) mRNA requires the cytidine deaminase APOBEC-1 as well as a tripartite sequence motif flanking a target cytidine in apoB mRNA and an undefined number of auxiliary proteins that mediate RNA recognition and determine site-specific editing. Yeast engineered to express APOBEC-1 and apoB mRNA supported editing under conditions of late log phase growth and stationary phase. The cis -acting sequence requirements and the intracellular distribution of APOBEC-1 in yeast were similar to those described in mammalian cells. These findings suggest that auxiliary protein functions necessary for the assembly of editing complexes, or 'editosomes', are expressed in yeast and that the distribution of editing activity is to the cell nucleus.
Collapse
Affiliation(s)
- G S Dance
- Department of Biochemistry, University of Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
7
|
Sato T, Lopez MC, Sugioka S, Jigami Y, Baker HV, Uemura H. The E-box DNA binding protein Sgc1p suppresses the gcr2 mutation, which is involved in transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. FEBS Lett 1999; 463:307-11. [PMID: 10606743 DOI: 10.1016/s0014-5793(99)01654-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycolytic gene expression is mediated by the Gcr1p-Gcr2p transcriptional activation complex. A screen for multicopy suppressors of gcr2 yielded SGC1. SGC1's suppression activity was specific to gcr2, it did not extend to gcr1. Disruption of SGC1 moderately affected glycolytic enzyme activities, although no growth defect was evident. Sgc1p exhibits a bHLH motif which is characteristic of E-box DNA-binding proteins. DNA footprinting experiments demonstrated Sgc1p's ability to bind at an E-box. However, its binding specificity was less than 10-fold, which is also characteristic of E-box binding proteins. LexA fusion experiments demonstrated that Sgc1p has weak intrinsic activating activity independent of GCR1 and GCR2. We propose that Sgc1p binds at E-boxes of glycolytic genes and contributes to their activation.
Collapse
Affiliation(s)
- T Sato
- Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Tsukuba Research Center (MITI), Higashi 1-1, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
8
|
López MC, Smerage JB, Baker HV. Multiple domains of repressor activator protein 1 contribute to facilitated binding of glycolysis regulatory protein 1. Proc Natl Acad Sci U S A 1998; 95:14112-7. [PMID: 9826662 PMCID: PMC24335 DOI: 10.1073/pnas.95.24.14112] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of repressor activator protein 1 (Rap1p) at glycolytic enzyme gene upstream activating sequence (UAS) elements in Saccharomyces cerevisiae is to facilitate binding of glycolysis regulatory protein 1 (Gcr1p) at adjacent sites. Rap1p has a modular domain structure. In its amino terminus there is an asymmetric DNA-bending domain, which is distinct from its DNA-binding domain, which resides in the middle of the protein. In the carboxyl terminus of Rap1p lie its silencing and putative activation domains. We carried out a molecular dissection of Rap1p to identify domains contributing to its ability to facilitate binding of Gcr1p. We prepared full-length and three truncated versions of Rap1p and tested their ability to facilitate binding of Gcr1p by gel shift assay. The ability to detect ternary complexes containing Rap1p.DNA. Gcr1p depended on the presence of binding sites for both proteins in the probe DNA. The DNA-binding domain of Rap1p, although competent to bind DNA, was unable to facilitate binding of Gcr1p. Full-length Rap1p and the amino- and carboxyl-truncated versions of Rap1p were each able to facilitate binding of Gcr1p at an appropriately spaced binding site. Under these conditions, Gcr1p displayed an approximately 4-fold greater affinity for Rap1p-bound DNA than for otherwise identical free DNA. When spacing between Rap1p- and Gcr1p-binding sites was altered by insertion of five nucleotides, the ability to form ternary Rap1p.DNA.Gcr1p complexes was inhibited by all but the DNA-binding domain of Rap1p itself; however, the ability of each individual protein to bind the DNA probe was unaffected.
Collapse
Affiliation(s)
- M C López
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Box 100266, JHMHC, Gainesville, FL 32610-0266, USA
| | | | | |
Collapse
|
9
|
Uemura H, Koshio M, Inoue Y, Lopez MC, Baker HV. The role of Gcr1p in the transcriptional activation of glycolytic genes in yeast Saccharomyces cerevisiae. Genetics 1997; 147:521-32. [PMID: 9335590 PMCID: PMC1208175 DOI: 10.1093/genetics/147.2.521] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study the interdependence of Gcr1p and Rap1p, we prepared a series of synthetic regulatory sequences that contained various numbers and combinations of CT-boxes (Gcr1p-binding sites) and RPG-boxes (Rap1p-binding sites). The ability of the synthetic oligonucleotides to function as regulatory sequences was tested using an ENO1-lacZ reporter gene. As observed previously, synthetic oligonucleotides containing both CT- and RPG-boxes conferred strong UAS activity. Likewise, a lone CT-box did not show any UAS activity. By contrast, oligonucleotides containing tandem Ct-boxes but no RPG-box conferred strong promoter activity. This UAS activity was not dependent on position or orientation of the oligonucleotides in the 5' noncoding region. However, it was dependent on both GCR1 and GCR2. These results suggest that the ability of Gcr1p to bind Gcr1p-binding sites in vivo is not absolutely dependent on Rap1p. Eleven independent mutants of GCR1 were isolated that conferred weak UAS activity to a single CT-box. Five mutants has single mutations in Gcr1p's DNA-binding domain and displayed slightly higher affinity for the CT-box. These results support the hypothesis that Gcr1p and Gcr2p play the central role in glycolytic gene expression and that the function of Rap1p is to facilitate the binding of Gcr1p to its target.
Collapse
Affiliation(s)
- H Uemura
- Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Tsukuba Research Center, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
10
|
Drazinic CM, Smerage JB, López MC, Baker HV. Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol Cell Biol 1996; 16:3187-96. [PMID: 8649429 PMCID: PMC231312 DOI: 10.1128/mcb.16.6.3187] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcriptional activation in eukaryotic organisms normally requires combinatorial interactions of multiple transcription factors. In most cases, the precise role played by each transcription factor is not known. The upstream activating sequence (UAS) elements of glycolytic enzyme genes in Saccharomyces cerevisiae are excellent model systems for the study of combinatorial interactions. The yeast protein known as Rap1p acts as both a transcriptional repressor and an activator, depending on sequence context. Rap1p-binding sites are found adjacent to Gcr1p-binding sites in the UAS elements of glycolytic enzyme genes. These UAS elements constitute some of the strongest activating sequences known in S. cerevisiae. In this study, we have investigated the relationship between Rap1p- and Gcr1p-binding sites and the proteins that bind them. In vivo DNA-binding studies with rap1ts mutant strains demonstrated that the inability of Rap1p to bind at its site resulted in the inability of Gcr1p to bind at adjacent binding sites. Synthetic oligonucleotides, modeled on the UAS element of PYK1, in which the relative positions of the Rap1p- and Gcr1p-binding sites were varied prepared and tested for their ability to function as UAS elements. The ability of the oligonucleotides to function as UAS elements was dependent not only on the presence of both binding sites but also on the relative distance between the binding sites. In vivo DNA-binding studies showed that the ability of Rap1p bind its site was independent of Gcr1p but that the ability of Gcr1p to bind its site was dependent on the presence of an appropriately spaced and bound Rap1p-binding site. In vitro binding studies showed Rap1p-enhanced binding of Gcr1p on oligonucleotides modeled after the native PYK1 UAS element but not when the Rap1p- and Gcr1p-binding sites were displaced by 5 nucleotides. This work demonstrates that the role of the Rap1p in the activation of glycolytic enzyme genes is to bind in their UAS elements and to facilitate the binding of Gcr1p at adjacent binding sites.
Collapse
Affiliation(s)
- C M Drazinic
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266, USA
| | | | | | | |
Collapse
|
11
|
Packham EA, Graham IR, Chambers A. The multifunctional transcription factors Abf1p, Rap1p and Reb1p are required for full transcriptional activation of the chromosomal PGK gene in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:348-56. [PMID: 8602150 DOI: 10.1007/bf02174393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have identified two new transcription factor binding sites upstream of the previously defined UAS within the phosphoglycerate kinase (PGK) gene promoter in Saccharomyces cerevisiae. These sites are bound in vitro by the multifunctional factors Cpf1p and Reb1p. We have generated targeted deletions of Rap1p, Abf1p and Reb1p binding sites in the promoter of the chromosomal copy of the PGK gene. Northern blot analysis confirmed that most PGK promoter activity is mediated through the Rap1p binding site. However, significant effects are also mediated through both the Reb1p and Abf1p sites. In contrast, when the promoter is present on a high-copy-number plasmid, both the Abf1p and Reb1p sites play no role in transcriptional activation. The role of Cpf1p was examined using a cpf1 null strain. Cpf1p was found to have little if any, effect on activation of either the chromosomal or plasmid-borne PGK gene.
Collapse
Affiliation(s)
- E A Packham
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
12
|
Daniel J. Detection of antagonistic cellular regulatory functions by the gene-gene interference method in yeast. Curr Genet 1996; 29:114-21. [PMID: 8821657 DOI: 10.1007/bf02221574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It was previously assumed that a new genetic method in yeast, termed gene-gene interference, leads to the selection of genes that antagonize, and/or are antagonized by, the particular reference gene used for their selection (Daniel 1993). In this paper two pieces of evidence are advanced in favour of this view. Firstly, the reconstitution of a system of known antagonistic genes was shown to be detectable by the gene-gene interference method. Secondly, since ART1, a new gene selected in reference to the protein kinase A gene, has been shown to contain in its deduced polypeptide a putative site for phosphorylation by protein kinase A, a mutagenesis study directed toward this putative site has been performed. Two phenotypes-in vivo filamenting activity and gene-gene interference relative to the protein kinase A gene-were tested with the various mutations thus obtained and found to be consistent with the hypothesis that, under physiological conditions, phosphorylation by protein kinase A exerts an inhibitory effect on Art1 activity. The relevance of these findings on the mechanisms and potential applications of the gene-gene interference phenomenon is discussed.
Collapse
Affiliation(s)
- J Daniel
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Chambers A, Packham EA, Graham IR. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr Genet 1995; 29:1-9. [PMID: 8595651 DOI: 10.1007/bf00313187] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A Chambers
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
14
|
Punt PJ, Kuyvenhoven A, van den Hondel CA. A mini-promoter lacZ gene fusion for the analysis of fungal transcription control sequences. Gene X 1995; 158:119-23. [PMID: 7789794 DOI: 10.1016/0378-1119(95)00166-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A system for the in vivo analysis of fungal transcription control sequences, based on a mini-promoter, was designed. The mini-promoter, providing all sequences necessary and sufficient for transcription initiation, was derived from the Aspergillus nidulans gpdA promoter region. Transcription initiation was not affected by the introduction of transcription control sequences directly upstream from the mini-promoter. Furthermore, the expression of the mini-promoter was not affected by wide-domain carbon or nitrogen control circuits. Using the mini-promoter vector, a previously identified upstream activating sequence from the A. nidulans gpdA gene was further characterized.
Collapse
Affiliation(s)
- P J Punt
- Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, Rijswijk, The Netherlands
| | | | | |
Collapse
|
15
|
|
16
|
Henry YA, López MC, Gibbs JM, Chambers A, Kingsman SM, Baker HV, Stanway CA. The yeast protein Gcr1p binds to the PGK UAS and contributes to the activation of transcription of the PGK gene. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:506-11. [PMID: 7808400 DOI: 10.1007/bf00302263] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Analysis of the upstream activation sequence (UAS) of the yeast phosphoglycerate kinase gene (PGK) has demonstrated that a number of sequence elements are involved in its activity and two of these sequences are bound by the multifunctional factors Rap1p and Abf1p. In this report we show by in vivo footprinting that the regulatory factor encoded by GCR1 binds to two elements in the 3' half of the PGK UAS. These elements contain the sequence CTTCC, which was previously suggested to be important for the activity of the PGK UAS and has been shown to be able to bind Gcr1p in vitro. Furthermore, we find that Gcr1p positively influences PGK transcription, although it is not responsible for the carbon source dependent regulation of PGK mRNA synthesis. In order to mediate its transcriptional influence we find that Gcr1p requires the Rap1p binding site, in addition to its own, but not the Abf1p site. As neither a Rap1p nor a Gcr1p binding site alone is able to activate transcription, we propose that Gcr1p and Rap1p interact in an interdependent fashion to activate PGK transcription.
Collapse
Affiliation(s)
- Y A Henry
- Department of Biochemistry, Oxford University, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Simon B, Tillotson L, Brand SJ. Activation of gastrin gene transcription in islet cells by a RAP1-like cis-acting promoter element. FEBS Lett 1994; 351:340-4. [PMID: 8082791 DOI: 10.1016/0014-5793(94)00862-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gastrin transcription in islet cells is activated by a cis-regulatory sequence containing a binding site for the yeast transcription factor RAP1. The DNA-protein interactions between RAP1 protein and the gastrin DNA element determined by methylation interference assays are identical to those of RAP1 and yeast genes. Point mutations in the gastrin RAP1 binding site, which abolished RAP1 binding, decreased transcriptional activation by this sequence. Islet cells revealed a DNA binding protein with RAP1-like binding specificity. These findings support the conclusion that gastrin transcription is activated in mammalian cells by a RAP1-like transcription factor.
Collapse
Affiliation(s)
- B Simon
- Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston 02114
| | | | | |
Collapse
|
18
|
Graham IR, Chambers A. A Reb1p-binding site is required for efficient activation of the yeast RAP1 gene, but multiple binding sites for Rap1p are not essential. Mol Microbiol 1994; 12:931-40. [PMID: 7934900 DOI: 10.1111/j.1365-2958.1994.tb01081.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Saccharomyces cerevisiae RAP1 protein (Rap1p) is a key multifunctional transcription factor. Using gel retardation analysis, four binding sites for Rap1p have been identified within the promoter of the RAP1 gene. These sites are located downstream of a binding site for the transcription factor Reb1p. The Reb1p site and an associated AT-rich region are important for transcriptional activation, but deletion of three of the Rap1p-binding sites had little effect on promoter activity. The activity of the RAP1 promoter has been analysed in a yeast strain (YDS410) that contains a temperature-sensitive mutation in the RAP1 gene. This mutation renders the DNA-binding activity of Rap1p temperature dependent. When YDS410 was grown at a semi-permissive temperature (30 degrees C), the activity of the RAP1 promoter increased by approximately 170%, compared with the same strain grown at the permissive temperature (25 degrees C). A RAP1 promoter in which three of the four Rap1p-binding sites had been deleted, showed only a small increase in activity in the same experiment. These data confirm that Rap1p is not required for activation of the RAP1 gene, and suggest a role for Rap1p in negative autoregulation.
Collapse
Affiliation(s)
- I R Graham
- Department of Genetics, University of Nottingham, Queen's Medical Centre, UK
| | | |
Collapse
|
19
|
Stanway CA, Gibbs JM, Kearsey SE, López MC, Baker HV. The yeast co-activator GAL11 positively influences transcription of the phosphoglycerate kinase gene, but only when RAP1 is bound to its upstream activation sequence. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:207-14. [PMID: 8177217 DOI: 10.1007/bf00280318] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcription of the yeast phosphoglycerate kinase gene (PGK) is activated by an array of nuclear factors including the multifunctional protein RAP1. We have demonstrated that the transcriptional co-activator GAL11, which was identified as an auxiliary factor to GAL4 and which is believed to interact with the zinc finger of the trans-activator, positively influences the level of PGK transcription on both fermentable and non-fermentable carbon sources. This positive effect is only observed when the RAP1 site in the upstream activation sequence (UAS) is present, implying that GAL11 acts through RAP1. Expression of the RAP1 gene is not reduced in the gal11 background, and in vivo footprinting shows that GAL11 does not influence RAP1 DNA-binding activity. Therefore the effect of GAL11 on PGK transcription must be mediated at the PGK UAS, presumably as part of the activation complex. It has been proposed that RAP1 may act as a facilitator of GCR1 binding at the PGK UAS and therefore it is conceivable that the target for GAL11 may in fact be GCR1. A further implication of this study is that GAL11 can interact with proteins such as RAP1 or GCR1 that are apparently structurally dissimilar from GAL4 and other zinc finger DNA-binding proteins.
Collapse
Affiliation(s)
- C A Stanway
- Department of Plant Sciences, University of Oxford, UK
| | | | | | | | | |
Collapse
|
20
|
Wenzel TJ, Zuurmond AM, Bergmans A, van den Berg JA, Steensma HY. Promoter analysis of the PDA1 gene encoding the E1 alpha subunit of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Yeast 1994; 10:297-308. [PMID: 8017100 DOI: 10.1002/yea.320100303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The location and sequence of the PDA1 gene, encoding the E1 alpha subunit of the pyruvate dehydrogenase (PDH) complex from Saccharomyces cerevisiae, were determined. The PDA1 gene was located on a 6.2 kb fragment of chromosome V, approximately 18 kb centromere distal to RAD3. Consistent with this, the PDA1 gene was genetically mapped at 4 cM from RAD3. A part of the 6.2 kb fragment of chromosome V was sequenced. The nucleotide sequence contained the PDA1 open reading frame and the entire putative promoter. Computer analysis revealed a putative GCN4 binding motif in the PDA1 promoter. The presence of transcriptional elements was experimentally determined by deletion analysis. To this end, ExoIII deletions were constructed in the 5' to 3' direction of the PDA1 promoter and effects on transcription were determined by Northern analysis. Transcription was unaffected upon deletion to position -190 relative to the ATG start codon. Deletions from position -148 and beyond, however, reduced promoter activity at least 40-fold. Apparently the 42 bp between nucleotides -190 and -148 contain an element essential for transcription. Inactivation of the PDA1 promoter could not be attributed to deletions of a recognizable TATA element or any known yeast regulatory motifs. The possible role of the CCCTT sequence present in the 42 bp region and also in the promoters of the other genes encoding subunits of the PDH complex is discussed.
Collapse
Affiliation(s)
- T J Wenzel
- Department of Molecular and Cellular Biology, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Daniel J. Potentially rapid walking in cellular regulatory networks using the gene-gene interference method in yeast. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:245-57. [PMID: 8355657 DOI: 10.1007/bf00277063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The recognition that cellular regulatory circuitry is composed of antagonistic elements has made possible a new approach to the selection of regulatory genes, called the gene-gene interference method. The method was used to identify and isolate genes possibly related in an antagonistic way to protein kinase A. Two such genes were recovered: ART1 encodes a potential regulator of cytokinesis and KAI1 appears to be involved in the Start control. The principles of the gene-gene interference method are discussed, as well as its possible general use for 'walking' within the cellular regulatory networks of eukaryotes.
Collapse
Affiliation(s)
- J Daniel
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Pollice A, Ciaramella M, Pulitzer JF. Saccharomyces cerevisiae multifunctional protein RAP1 binds to a conserved sequence in the Polyoma virus enhancer and is responsible for its transcriptional activity in yeast cells. FEBS Lett 1993; 323:77-82. [PMID: 8388336 DOI: 10.1016/0014-5793(93)81452-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Polyoma virus enhancer (A + B domain) activates transcription in Saccharomyces cerevisiae when joined to appropriate yeast promoter elements. We demonstrate by DNase I footprints and inhibition of binding by specific antibody, that the yeast protein RAP1 binds to the B-domain of the Polyoma enhancer and, at least in some promoter contexts, is responsible for transcriptional activity of the enhancer B-domain in yeast. Close matches to a consensus RAP1-binding site are also present in other viral enhancers.
Collapse
Affiliation(s)
- A Pollice
- Dipartimento di Genetica e Biologia Generale e Molecolare, Facoltà di Scienze Università di Napoli Federico II, Italy
| | | | | |
Collapse
|
23
|
Fantino E, Marguet D, Lauquin GJ. Downstream activating sequence within the coding region of a yeast gene: specific binding in vitro of RAP1 protein. MOLECULAR & GENERAL GENETICS : MGG 1992; 236:65-75. [PMID: 1494352 DOI: 10.1007/bf00279644] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using a gel retardation assay, a protein factor that specifically interacts with a 33 bp intragenic sequence of the highly expressed and glucose-inducible SRP1 gene of Saccharomyces cerevisiae has been detected. This binding site is located in a transcribed region and within the open reading frame (positions +710 to +743 relative to the first base of the initiation codon). A mutant strain carrying a deletion of this binding site showed a dramatic decrease in steady-state levels of SRP1 transcripts. This decline is not the result of a decrease in mRNA stability, since expression of hybrid genes in which the SRP1 promoter was replaced by the heterologous CYC1 promoter was not affected by the binding site deletion. These findings suggest that the 33 bp sequence contains a cis-acting downstream activating element which is involved in the transcriptional activation of the SRP1 promoter. Sequence comparisons showed similarities between a site located within the 33 bp sequence and the high-affinity consensus binding site of the RAP1/GRF1 (also named TUF) factor and methylation interference experiments confirmed that this site was involved in the protein-DNA interaction. Both the results of competition experiments with upstream activating sequences of ribosomal protein genes (UASrpg), which are targets for RAP1 binding, and determination of the apparent molecular weight of the affinity-purified DNA-binding protein indicated that RAP1 factor recognized the SRP1 33 bp element. The 33 bp sequence was found to be unable to provide UAS activity when placed upstream of the TATA box and transcription start site.
Collapse
|
24
|
Hardy CF, Sussel L, Shore D. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 1992; 6:801-14. [PMID: 1577274 DOI: 10.1101/gad.6.5.801] [Citation(s) in RCA: 405] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The yeast RAP1 protein is a sequence-specific DNA-binding protein that functions as both a repressor and an activator of transcription. RAP1 is also involved in the regulation of telomere structure, where its binding sites are found within the terminal poly(C1-3A) sequences. Previous studies have indicated that the regulatory function of RAP1 is determined by the context of its binding site and, presumably, its interactions with other factors. Using the two-hybrid system, a genetic screen for the identification of protein-protein interactions, we have isolated a gene encoding a RAP1-interacting factor (RIF1). Strains carrying gene disruptions of RIF1 grow normally but are defective in transcriptional silencing and telomere length regulation, two phenotypes strikingly similar to those of silencing-defective rap1s mutants. Furthermore, hybrid proteins containing rap1s missense mutations are defective in an interaction with RIF1 in the two-hybrid system. Taken together, these data support the idea that the rap1s phenotypes are attributable to a failure to recruit RIF1 to silencers and telomeres and suggest that RIF1 is a cofactor or mediator for RAP1 in the establishment of a repressed chromatin state at these loci. By use of the two-hybrid system, we have isolated a mutation in RIF1 that partially restores the interaction with rap1s mutant proteins.
Collapse
Affiliation(s)
- C F Hardy
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
25
|
Vohra GB, Golding GB, Tsao N, Pearlman RE. A phylogenetic analysis based on the gene encoding phosphoglycerate kinase. J Mol Evol 1992; 34:383-95. [PMID: 1602492 DOI: 10.1007/bf00162995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have determined the nucleotide sequence of both genomic and complementary DNA (cDNA) for the gene encoding the glycolytic enzyme phosphoglycerate kinase from the ciliated protozoan Tetrahymena thermophila. The amino acid sequence for the enzyme has also been derived from the cDNA sequence. The gene contains an open reading frame of 1260 nucleotides encoding 420 amino acids. Coding sequence in genomic DNA is interrupted by two introns at positions corresponding to introns 3 and 4 in mammalian phosphoglycerate kinase genes. The derived amino acid sequence was used to prepare a phylogeny by aligning the Tetrahymena sequence with 25 other phosphoglycerate kinase amino acid sequences. The Tetrahymena sequence is a typical eukaryotic sequence. There is recognizable and clear homology across species that cover nearly the complete range of life forms. The phylogenetic reconstruction of these sequences generally supports the conclusions that have been reached using rRNA sequences.
Collapse
Affiliation(s)
- G B Vohra
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Dissection of a carboxy-terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing. Mol Cell Biol 1992. [PMID: 1545802 DOI: 10.1128/mcb.12.3.1209] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAP1 is an essential sequence-specific DNA-binding protein in Saccharomyces cerevisiae whose binding sites are found in a large number of promoters, where they function as upstream activation sites, and at the silencer elements of the HMR and HML mating-type loci, where they are important for repression. We have examined the involvement of specific regions of the RAP1 protein in both repression and activation of transcription by studying the properties of a series of hybrid proteins containing RAP1 sequences fused to the DNA-binding domain of the yeast protein GAL4 (amino acids 1 to 147). GAL4 DNA-binding domain/RAP1 hybrids containing only the carboxy-terminal third of the RAP1 protein (which lacks the RAP1 DNA-binding domain) function as transcriptional activators of a reporter gene containing upstream GAL4 binding sites. Expression of some hybrids from the strong ADH1 promoter on multicopy plasmids has a dominant negative effect on silencers, leading to either partial or complete derepression of normally silenced genes. The GAL4/RAP1 hybrids have different effects on wild-type and several mutated but functional silencers. Silencers lacking either an autonomously replicating sequence consensus element or the RAP1 binding site are strongly derepressed, whereas the wild-type silencer or a silencer containing a deletion of the binding site for another silencer-binding protein, ABF1, are only weakly affected by hybrid expression. By examining a series of GAL4 DNA-binding domain/RAP1 hybrids, we have mapped the transcriptional activation and derepression functions to specific parts of the RAP1 carboxy terminus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
27
|
Hardy CF, Balderes D, Shore D. Dissection of a carboxy-terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing. Mol Cell Biol 1992; 12:1209-17. [PMID: 1545802 PMCID: PMC369552 DOI: 10.1128/mcb.12.3.1209-1217.1992] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RAP1 is an essential sequence-specific DNA-binding protein in Saccharomyces cerevisiae whose binding sites are found in a large number of promoters, where they function as upstream activation sites, and at the silencer elements of the HMR and HML mating-type loci, where they are important for repression. We have examined the involvement of specific regions of the RAP1 protein in both repression and activation of transcription by studying the properties of a series of hybrid proteins containing RAP1 sequences fused to the DNA-binding domain of the yeast protein GAL4 (amino acids 1 to 147). GAL4 DNA-binding domain/RAP1 hybrids containing only the carboxy-terminal third of the RAP1 protein (which lacks the RAP1 DNA-binding domain) function as transcriptional activators of a reporter gene containing upstream GAL4 binding sites. Expression of some hybrids from the strong ADH1 promoter on multicopy plasmids has a dominant negative effect on silencers, leading to either partial or complete derepression of normally silenced genes. The GAL4/RAP1 hybrids have different effects on wild-type and several mutated but functional silencers. Silencers lacking either an autonomously replicating sequence consensus element or the RAP1 binding site are strongly derepressed, whereas the wild-type silencer or a silencer containing a deletion of the binding site for another silencer-binding protein, ABF1, are only weakly affected by hybrid expression. By examining a series of GAL4 DNA-binding domain/RAP1 hybrids, we have mapped the transcriptional activation and derepression functions to specific parts of the RAP1 carboxy terminus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C F Hardy
- Department of Microbiology, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
28
|
Doorenbosch T, Mager WH, Planta RJ. Multifunctional DNA-binding proteins in yeast. Gene Expr 1992; 2:193-201. [PMID: 1450661 PMCID: PMC6057378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- T Doorenbosch
- Department of Biochemistry and Molecular Biology, Free University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
29
|
Compagno C, Ranzi BM, Martegani E. The promoter of Saccharomyces cerevisiae FBA1 gene contains a single positive upstream regulatory element. FEBS Lett 1991; 293:97-100. [PMID: 1959676 DOI: 10.1016/0014-5793(91)81160-a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The glycolytic enzyme fructose 1,6-bisphosphate aldolase is encoded by the FBA1 gene of Saccharomyces cerevisiae. Transcription of aldolase gene is not regulated by glucose and high levels of expression have been observed also during growth on nonfermentable carbon source. A FBA1::lacZ gene fusion was constructed and a deletion analysis demonstrated the presence of a unique cis-acting positive upstream element (UAS) required for high levels of FBA1 expression. This element is located between positions -550 and -440 upstream of the aldolase open reading frame and it contains sequences known to constitute the binding sites for the multifunctional proteins RAP1 and ABFI and two TTCC motifs.
Collapse
Affiliation(s)
- C Compagno
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Italy
| | | | | |
Collapse
|
30
|
Vanhanen S, Saloheimo A, Ilmén M, Knowles JK, Penttilä M. Promoter structure and expression of the 3-phosphoglycerate kinase-encoding gene (pgk1) of Trichoderma reesei. Gene X 1991; 106:129-33. [PMID: 1937034 DOI: 10.1016/0378-1119(91)90577-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription of the 3-phosphoglycerate kinase (PGK)-encoding gene (pgk1) of Trichoderma reesei results in two transcripts due to two main transcription start points (tsp) which are differentially regulated during the growth cycle. The nucleotide sequence of the promoter reveals a number of putative regulatory elements present also in the PGK promoter of Saccharomyces cerevisiae: a 20-nt long sequence similar to the CTTCC-repeat region of the upstream activating sequence UAS, the eukaryotic heat-shock consensus sequence, HSE, and a putative eukaryotic cAMP regulatory sequence. The functionality of the putative HSE sequence was examined, but no clear effect could be seen on the total amount of pgk1 mRNA at elevated temperatures nor on transcription initiation from the upstream tsp, preceded by the HSE sequence.
Collapse
Affiliation(s)
- S Vanhanen
- VTT Biotechnical Laboratory, Espoo, Finland
| | | | | | | | | |
Collapse
|
31
|
RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol Cell Biol 1991. [PMID: 1904543 DOI: 10.1128/mcb.11.7.3642] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.
Collapse
|
32
|
Devlin C, Tice-Baldwin K, Shore D, Arndt KT. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol Cell Biol 1991; 11:3642-51. [PMID: 1904543 PMCID: PMC361116 DOI: 10.1128/mcb.11.7.3642-3651.1991] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.
Collapse
Affiliation(s)
- C Devlin
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
33
|
Mager WH, Planta RJ. Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate. Mol Cell Biochem 1991; 104:181-7. [PMID: 1921998 DOI: 10.1007/bf00229818] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rate of ribosome formation in yeast is precisely adjusted to the physiological demands of the cell. During all growth conditions a balance is maintained in the production of all ribosomal constituents. Coordinate expression of the ribosomal protein (rp) genes is primarily accomplished at the transcriptional level. Transcription activation of the majority of the rp-genes is mediated through common upstream activating sequences, so-called RPG boxes, which occur usually in a tandem at a distance of 200-500 bp from the start codon. These RPG-boxes represent binding sites for a transcriptional activator, called TUF or RAP. The concentration of TUF parallels the cellular growth rate and evidence exists that the response of rp-genes upon nutritional changes is mediated by this factor. Recent findings indicate that TUF/RAP also activates other gene families involved in cellular growth rate. Furthermore, this multifunctional protein also binds to the mating-type silencer and telomeres in yeast. Some other rp-genes (e.g. those encoding S33 and L45) do not contain an RPG-box. They appear to be activated by another multifunctional protein, called ABF1 or SUF, by binding to another nucleotide motif. This multifunctional protein also activates other gene families, and in addition binds to the mating type silencer and ARS-elements.
Collapse
Affiliation(s)
- W H Mager
- Biochemisch Laboratorium, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
34
|
Tsang JS, Henry YA, Chambers A, Kingsman AJ, Kingsman SM. Phosphorylation influences the binding of the yeast RAP1 protein to the upstream activating sequence of the PGK gene. Nucleic Acids Res 1990; 18:7331-7. [PMID: 2175432 PMCID: PMC332870 DOI: 10.1093/nar/18.24.7331] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Yeast repressor activator protein 1 (RAP1) binds in vitro to specific DNA sequences that are found in diverse genetic elements. Expression of the yeast phosphoglycerate kinase gene (PGK) requires the binding of RAP1 to the activator core sequence within the upstream activating sequence (UAS) of PGK. A DNA fragment Z+ which contains the activator core sequence of the PGK(UAS) has been shown to bind RAP1. Here we report that phosphatase treatment of RAP1 affected its binding to the PGK(UAS) but that this depended on the nature of the sequence flanking the 5' end of the activator core sequence. When the sequence flanking the 5' end of the activator core sequence was different from the PGK RAP1-binding site, phosphatase treatment of RAP1 decreased its binding to the DNA. When the 5' end of the binding site was a match to the PGK RAP1-binding site dephosphorylation of RAP1 increased RAP1 binding to the DNA. These observations were reproduced when the minimal functional DNA-binding domain of the RAP1 protein was used, implicating a phosphorylation-dependent binding of RAP1. This is the first evidence for phosphorylation-dependent binding of RAP1.
Collapse
Affiliation(s)
- J S Tsang
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | |
Collapse
|
35
|
Chambers A, Stanway C, Tsang JS, Henry Y, Kingsman AJ, Kingsman SM. ARS binding factor 1 binds adjacent to RAP1 at the UASs of the yeast glycolytic genes PGK and PYK1. Nucleic Acids Res 1990; 18:5393-9. [PMID: 2120676 PMCID: PMC332215 DOI: 10.1093/nar/18.18.5393] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The UAS of the yeast gene encoding the glycolytic enzyme phosphoglycerate kinase (PGK) contains several different sequence elements involved in transcriptional activation. These elements include the activator core sequence, which is bound by the RAP1 protein, and three copies of the pentamer sequence 5' CTTCC 3'. Upstream of the activator core sequence is a region (Yfp), identified as the site of a strong DNA-protein interaction. The Yfp region contains the consensus binding site for the factor ABF1. We have purified the Y protein, which binds to the Yfp region, to homogeneity. The Y protein migrates as a doublet on SDS-polyacrylamide gel electrophoresis with an apparent molecular weight of 125 KDa. These properties are similar to those of ABF1. ABF1 synthesised in vitro bound strongly to the Yfp region and formed a gel retardation complex of identical mobility to the complex formed by the Y protein. UAS1 of the pyruvate kinase gene (PYK1) promoter contains a RAP1 binding site and single copy of the CTTCC sequence. We have now identified an ABF1 binding site close to the RAP1 binding site and CTTCC sequence in the PYK1 promoter. This site is strongly bound by ABF1 in vitro. The organisation of the PGK and PYK1 UASs is thus similar to each other and to the transcriptional silencer HMR(E) which also contains these sequences.
Collapse
Affiliation(s)
- A Chambers
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
36
|
Mager WH, Planta RJ. Multifunctional DNA-binding proteins mediate concerted transcription activation of yeast ribosomal protein genes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:351-5. [PMID: 2207166 DOI: 10.1016/0167-4781(90)90193-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcription activation of ribosomal protein genes (rp genes) in yeast is mediated through two different abundant transacting proteins, RAP1 and ABF1. These factors are multifunctional proteins playing a part in diverse cellular processes, all related to cellular growth.
Collapse
Affiliation(s)
- W H Mager
- Biochemisch Laboratorium, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Henry YA, Chambers A, Tsang JS, Kingsman AJ, Kingsman SM. Characterisation of the DNA binding domain of the yeast RAP1 protein. Nucleic Acids Res 1990; 18:2617-23. [PMID: 2187178 PMCID: PMC330744 DOI: 10.1093/nar/18.9.2617] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 827 amino acid yeast RAP1 protein interacts with DNA to regulate gene expression at numerous unrelated loci in the yeast genome. By a combination of amino, carboxy and internal deletions, we have defined an internal 235 amino acid fragment of the yeast RAP1 protein that can bind efficiently to the RAP1 binding site of the PGK Upstream Activation Sequence (UAS). This domain spans residues 361 to 596 of the full length protein and lacks any homology to the DNA binding 'zinc finger' or 'helix-turn-helix' structural motifs. All the RAP1 binding sites we have tested bind domain 361-596, arguing that RAP1 binds all its chromosomal sites via this domain. The domain could not be further reduced in size suggesting that it represents the minimal functional DNA binding domain. The relevance of potential regions of secondary structure within the minimal binding domain is discussed.
Collapse
Affiliation(s)
- Y A Henry
- Department of Biochemistry, Oxford University, UK
| | | | | | | | | |
Collapse
|