1
|
Sonnabend R, Seiler L, Gressler M. Regulation of the Leucine Metabolism in Mortierella alpina. J Fungi (Basel) 2022; 8:196. [PMID: 35205950 PMCID: PMC8880518 DOI: 10.3390/jof8020196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
The oleaginous fungus Mortierella alpina is a safe source of polyunsaturated fatty acids (PUFA) in industrial food and feed production. Besides PUFA production, pharmaceutically relevant surface-active and antimicrobial oligopeptides were isolated from this basal fungus. Both production of fatty acids and oligopeptides rely on the biosynthesis and high turnover of branched-chain-amino acids (BCAA), especially l-leucine. However, the regulation of BCAA biosynthesis in basal fungi is largely unknown. Here, we report on the regulation of the leucine, isoleucine, and valine metabolism in M. alpina. In contrast to higher fungi, the biosynthetic genes for BCAA are hardly transcriptionally regulated, as shown by qRT-PCR analysis, which suggests a constant production of BCAAs. However, the enzymes of the leucine metabolism are tightly metabolically regulated. Three enzymes of the leucine metabolism were heterologously produced in Escherichia coli, one of which is inhibited by allosteric feedback loops: The key regulator is the α-isopropylmalate synthase LeuA1, which is strongly disabled by l-leucine, α-ketoisocaproate, and propionyl-CoA, the precursor of the odd-chain fatty acid catabolism. Its gene is not related to homologs from higher fungi, but it has been inherited from a phototrophic ancestor by horizontal gene transfer.
Collapse
Affiliation(s)
| | | | - Markus Gressler
- Pharmaceutical Microbiology, Friedrich-Schiller-University Jena, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745 Jena, Germany; (R.S.); (L.S.)
| |
Collapse
|
2
|
Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Nat Commun 2022; 13:270. [PMID: 35022416 PMCID: PMC8755756 DOI: 10.1038/s41467-021-27852-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Branched-chain amino acid (BCAA) metabolism fulfills numerous physiological roles and can be harnessed to produce valuable chemicals. However, the lack of eukaryotic biosensors specific for BCAA-derived products has limited the ability to develop high-throughput screens for strain engineering and metabolic studies. Here, we harness the transcriptional regulator Leu3p from Saccharomyces cerevisiae to develop a genetically encoded biosensor for BCAA metabolism. In one configuration, we use the biosensor to monitor yeast production of isobutanol, an alcohol derived from valine degradation. Small modifications allow us to redeploy Leu3p in another biosensor configuration that monitors production of the leucine-derived alcohol, isopentanol. These biosensor configurations are effective at isolating high-producing strains and identifying enzymes with enhanced activity from screens for branched-chain higher alcohol (BCHA) biosynthesis in mitochondria as well as cytosol. Furthermore, this biosensor has the potential to assist in metabolic studies involving BCAA pathways, and offers a blueprint to develop biosensors for other products derived from BCAA metabolism. There are a lack of eukaryotic biosensors specific for branched-chain amino acid (BCAA)-derived products. Here the authors report a genetically encoded biosensor for BCAA metabolism based on the Leu3p transcriptional regulator; they use this to monitor yeast production of isobutanol and isopentanol.
Collapse
|
3
|
Kim MS, Cho KH, Park KH, Jang J, Hahn JS. Activation of Haa1 and War1 transcription factors by differential binding of weak acid anions in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 47:1211-1224. [PMID: 30476185 PMCID: PMC6379682 DOI: 10.1093/nar/gky1188] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023] Open
Abstract
In Saccharomyces cerevisiae, Haa1 and War1 transcription factors are involved in cellular adaptation against hydrophilic weak acids and lipophilic weak acids, respectively. However, it is unclear how these transcription factors are differentially activated depending on the identity of the weak acid. Using a field-effect transistor (FET)-type biosensor based on carbon nanofibers, in the present study we demonstrate that Haa1 and War1 directly bind to various weak acid anions with different affinities. Haa1 is most sensitive to acetate, followed by lactate, whereas War1 is most sensitive to benzoate, followed by sorbate, reflecting their differential activation during weak acid stresses. We show that DNA binding by Haa1 is induced in the presence of acetic acid and that the N-terminal Zn-binding domain is essential for this activity. Acetate binds to the N-terminal 150-residue region, and the transcriptional activation domain is located between amino acid residues 230 and 483. Our data suggest that acetate binding converts an inactive Haa1 to the active form, which is capable of DNA binding and transcriptional activation.
Collapse
Affiliation(s)
- Myung Sup Kim
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung Hee Cho
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Villa KD, Lee S, Goossens E, Debourg A, Masschelein CA. Control of Vicinal Diketone Production by Brewer's Yeast. I. Effects ofILV5andILV3Gene Amplification on Vicinal Diketone Production andILVEnzyme Activity. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-53-0049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - S. Lee
- Coors Brewing Company, B.C. 600, Golden, CO
| | - E. Goossens
- Vrije Universiteit, Brussel, CERIA Service de Brasserie, Ave. E. Gryzon, 1, 1070 Brussels, Belgium
| | - A. Debourg
- Vrije Universiteit, Brussel, CERIA Service de Brasserie, Ave. E. Gryzon, 1, 1070 Brussels, Belgium
| | - C. A. Masschelein
- Vrije Universiteit, Brussel, CERIA Service de Brasserie, Ave. E. Gryzon, 1, 1070 Brussels, Belgium
| |
Collapse
|
5
|
Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Fungal Genet Biol 2014; 75:11-9. [PMID: 25554701 DOI: 10.1016/j.fgb.2014.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/27/2014] [Accepted: 12/20/2014] [Indexed: 01/28/2023]
Abstract
Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up-regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans.
Collapse
|
6
|
Park SH, Kim S, Hahn JS. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 2014; 98:9139-47. [DOI: 10.1007/s00253-014-6081-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
|
7
|
Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2012; 189:705-36. [PMID: 22084422 DOI: 10.1534/genetics.111.127019] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms.
Collapse
|
8
|
Yeast zinc cluster proteins Dal81 and Uga3 cooperate by targeting common coactivators for transcriptional activation of γ-aminobutyrate responsive genes. Genetics 2011; 188:523-34. [PMID: 21515579 DOI: 10.1534/genetics.110.126003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, optimal utilization of various compounds as a nitrogen source is mediated by a complex transcriptional network. The zinc cluster protein Dal81 is a general activator of nitrogen metabolic genes, including those for γ-aminobutyrate (GABA). In contrast, Uga3 (another zinc cluster protein) is an activator restricted to the control of genes involved in utilization of GABA. Uga3 binds to DNA elements found in the promoters of target genes and increases their expression in the presence of GABA. Dal81 appears to act as a coactivator since the DNA-binding activity of this factor is dispensable but its mode of action is not known. In this study, we have mapped a regulatory, as well as an activating, region for Uga3. A LexA-Uga3 chimeric protein activates a lexA reporter in a GABA- and Dal81-dependent manner. Activation by Uga3 requires the SAGA complex as well as Gal11, a component of mediator. ChIP analysis revealed that Uga3 is weakly bound to target promoters. The presence of GABA enhances binding of Uga3 and allows recruitment of Dal81 and Gal11 to target genes. Recruitment of Gal11 is prevented in the absence of Dal81. Importantly, Dal81 by itself is a potent activator when tethered to DNA and its activity depends on SAGA and Gal11 but not Uga3. Overexpression of Uga3 bypasses the requirement for Dal81 but not for SAGA or Gal11. Thus, under artificial conditions, both Dal81 and Uga3 can activate transcription independently of each other. However, under physiological conditions, both factors cooperate by targeting common coactivators.
Collapse
|
9
|
Gregori C, Schüller C, Frohner IE, Ammerer G, Kuchler K. Weak organic acids trigger conformational changes of the yeast transcription factor War1 in vivo to elicit stress adaptation. J Biol Chem 2008; 283:25752-25764. [PMID: 18621731 DOI: 10.1074/jbc.m803095200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
The Saccharomyces cerevisiae zinc cluster regulator War1 mediates an essential transcriptional and adaptive response to weak organic acid stress. Here we investigate the mechanism of War1 activation upon weak acid stress. We identified several gain-of-function WAR1 alleles mapping to the central War1 region. These mutations constitutively increase levels of the plasma membrane ABC transporter Pdr12, the main War1 target mediating stress adaptation. Functional analysis of War1 reveals that the central region and its C-terminal activation domain are required for function. Notably, the native DNA-binding and dimerization domains appear dispensable for War1 activity, because they can be replaced by a LexA DNA-binding domain. Chromatin immunoprecipitation demonstrates elevated promoter affinity of activated War1, because its PDR12 promoter association increases upon stress. Hyperactive WAR1 alleles have constitutively high PDR12 promoter association. Furthermore, fluorescence resonance energy transfer of functional CFP-War1-YFP proteins also demonstrates conformational changes of stress-activated War1 in vivo. Our results suggest a mechanism whereby War1 activation is accompanied by conformational changes enhancing promoter association, thus initiating the adaptation process.
Collapse
Affiliation(s)
- Christa Gregori
- Medical University of Vienna, Max F. Perutz Laboratories, Vienna, Austria
| | - Christoph Schüller
- University of Vienna, Max F. Perutz Laboratories, A-1030 Vienna, Austria.
| | - Ingrid E Frohner
- Medical University of Vienna, Max F. Perutz Laboratories, Vienna, Austria
| | - Gustav Ammerer
- University of Vienna, Max F. Perutz Laboratories, A-1030 Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories, Vienna, Austria.
| |
Collapse
|
10
|
Fitzgerald MX, Rojas JR, Kim JM, Kohlhaw GB, Marmorstein R. Structure of a Leu3-DNA complex: recognition of everted CGG half-sites by a Zn2Cys6 binuclear cluster protein. Structure 2006; 14:725-35. [PMID: 16615914 DOI: 10.1016/j.str.2005.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/28/2005] [Accepted: 11/30/2005] [Indexed: 11/25/2022]
Abstract
Gal4 is the prototypical Zn2Cys6 binuclear cluster transcriptional regulator that binds as a homodimer to DNA containing inverted CGG half-sites. Leu3, a member of this protein family, binds to everted (opposite polarity to inverted) CGG half-sites, and an H50C mutation within the Leu3 Zn2Cys6 binuclear motif abolishes its transcriptional repression function without impairing DNA binding. We report the X-ray crystal structures of DNA complexes with Leu3 and Leu3(H50C) and solution DNA binding studies of selected Leu3 mutant proteins. These studies reveal the molecular details of everted CGG half-site recognition, and suggest a role for the H50C mutation in transcriptional repression. Comparison with the Gal4-DNA complex shows an unexpected conservation in the DNA recognition mode of inverted and everted CGG half-sites, and points to a critical function of a linker region between the Zn2Cys6 binuclear cluster and dimerization regions in DNA binding specificity. Broader implications of these findings are discussed.
Collapse
Affiliation(s)
- Mary X Fitzgerald
- The Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
11
|
Kohlhaw GB. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 2003; 67:1-15, table of contents. [PMID: 12626680 PMCID: PMC150519 DOI: 10.1128/mmbr.67.1.1-15.2003] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After exploring evolutionary aspects of branched-chain amino acid biosynthesis, the review focuses on the extended leucine biosynthetic pathway as it operates in Saccharomyces cerevisiae. First, the genes and enzymes specific for the leucine pathway are considered: LEU4 and LEU9 (encoding the alpha-isopropylmalate synthase isoenzymes), LEU1 (isopropylmalate isomerase), and LEU2 (beta-isopropylmalate dehydrogenase). Emphasis is given to the unusual distribution of the branched-chain amino acid pathway enzymes between mitochondrial matrix and cytosol, on the newly defined role of Leu5p, and on regulatory mechanisms governing gene expression and enzyme activity, including new evidence for the metabolic importance of the regulation of alpha-isopropylmalate synthase by coenzyme A. Next, structure-function relationships of the transcriptional regulator Leu3p are addressed, defining its dual role as activator and repressor and discussing evidence in support of the self-masking model. Recent data pointing at a more extended Leu3p regulon are discussed. An overview of the layered controls of the extended leucine pathway is provided that includes a description of the newly recognized roles of Ilv5p and Bat1p in maintaining mitochondrial integrity. Finally, branched-chain amino acid biosynthesis and its regulation in other fungi are summarized, the question of leucine as metabolic signal is addressed, and possible directions of future research in this area are outlined.
Collapse
Affiliation(s)
- Gunter B Kohlhaw
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
12
|
Akache B, Wu K, Turcotte B. Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Res 2001; 29:2181-90. [PMID: 11353088 PMCID: PMC55459 DOI: 10.1093/nar/29.10.2181] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc cluster proteins (or binuclear cluster proteins) possess zinc fingers of the Zn(II)2Cys6-type involved in DNA recognition as exemplified by the well-characterized protein Gal4p. These fungal proteins are transcriptional regulators of genes involved in a wide variety of cellular processes including metabolism of compounds such as amino acids and sugars, as well as control of meiosis, multi-drug resistance etc. The yeast (Saccharomyces cerevisiae) sequencing project has allowed the identification of additional zinc cluster proteins for a total of 54. However, the role of many of these putative zinc cluster proteins is unknown. We have performed phenotypic analysis of 33 genes encoding (putative) zinc cluster proteins. Only two members of the GAL4 family are essential genes. Our results show that deletion of eight different zinc cluster genes impairs growth on non-fermentable carbon sources. The same strains are also hypersensitive to the antifungal calcofluor white suggesting a role for these genes in cell wall integrity. In addition, one of these strains (YFL052W) is also heat sensitive on rich (but not minimal) plates. Thus, deletion of YFL052W results in sensitivity to a combination of low osmolarity and high temperature. In addition, six strains are hypersensitive to caffeine, an inhibitor of the MAP kinase pathway and phosphodiesterase of the cAMP pathway. In conclusion, our analysis assigns phenotypes to a number of genes and provides a basis to better understand the role of these transcriptional regulators.
Collapse
Affiliation(s)
- B Akache
- Department of Medicine, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montréal, Québec H3A 1A1, Canada
| | | | | |
Collapse
|
13
|
Abstract
This review focuses on the molecular mechanisms involved in the regulation of multiple drug resistance in the model yeast Saccharomyces cerevisiae and the pathogenic fungus Candida albicans. Recent developments in the study of the transcription factors Pdr1p, Pdr3p and Yap1p are reported. Understanding the molecular basis leading to multiple drug resistance is a prerequisite for the development of new antifungal therapeutics. Copyright 1999 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Anna Kolaczkowska
- Unite de Biochimie Physiologique, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
14
|
Wang D, Zheng F, Holmberg S, Kohlhaw GB. Yeast transcriptional regulator Leu3p. Self-masking, specificity of masking, and evidence for regulation by the intracellular level of Leu3p. J Biol Chem 1999; 274:19017-24. [PMID: 10383402 DOI: 10.1074/jbc.274.27.19017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent work suggests that the masking of the activation domain (AD) of yeast transactivator Leu3p, observed in the absence of the metabolic signal alpha-isopropylmalate, is an intramolecular event. Much of the evidence came from the construction and analysis of a mutant form of Leu3p (Leu3-dd) whose AD is permanently masked (Wang, D., Hu, Y., Zheng, F., Zhou, K., and Kohlhaw, G. B. (1997) J. Biol. Chem. 272, 19383-19392). In a modified two-hybrid experiment, the ADs of both wild type Leu3p and Leu3-dd were shown to interact with the remainder of the Leu3 protein, in an alpha-isopropylmalate-dependent manner. The finding that masking and unmasking proceed apparently normally when full-length Leu3p is expressed in mammalian cells is also consistent with the notion of intramolecular masking. Here we report on the identification of nine missense mutations (all of them suppressors of the Leu3-dd phenotype) that cause permanent unmasking of Leu3p. The nine mutations map to three short segments located within a 140-residue-long region of the C-terminal part of the middle region of Leu3p. These segments may be part of a spatial trap for the AD. We also performed "domain swaps" between Leu3p and Cha4p, a serine/threonine-responsive activator that, like Leu3p, belongs to the family of Zn(II)2Cys6 proteins. We show that AD masking and response to the appropriate metabolic signal only occur when a given AD remains attached to its own middle region; middle region swapping results in constitutively active proteins. Finally, we show that the extent to which Leu3p regulates reporter gene expression depends on the intracellular concentration of Leu3p. The possible physiological significance of this observation is discussed in light of the known regulation of Leu3p by Gcn4p.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
15
|
Bailey LA, Ebbole DJ. The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics 1998; 148:1813-20. [PMID: 9560395 PMCID: PMC1460068 DOI: 10.1093/genetics/148.4.1813] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurospora crassa fluffy (fl) mutants are unable to produce macroconidia. We cloned the fl gene to determine its role in regulating conidiation. A cosmid clone containing fl was identified by complementation. The sequence of fl revealed that it encodes a Gal4p-type C6 zinc cluster protein with greatest similarity to the N. crassa NIT4 protein that regulates genes required for nitrate utilization. Analysis of several fl mutant alleles demonstrated that null mutants are blocked in the budding phase of development required to produce conidiophores. fl mRNA is transiently induced just prior to the developmental commitment to budding growth. This timing of fl expression is consistent with a role for FL protein in activation of the previously characterized conidiation-specific (con) genes, con-6 and con-10. These data suggest that FL acts as a developmentally regulated transcription factor required for conidiophore morphogenesis.
Collapse
Affiliation(s)
- L A Bailey
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, USA
| | | |
Collapse
|
16
|
Wang D, Hu Y, Zheng F, Zhou K, Kohlhaw GB. Evidence that intramolecular interactions are involved in masking the activation domain of transcriptional activator Leu3p. J Biol Chem 1997; 272:19383-92. [PMID: 9235937 DOI: 10.1074/jbc.272.31.19383] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Leu3 protein of Saccharomyces cerevisiae regulates the expression of genes involved in branched chain amino acid biosynthesis and in ammonia assimilation. It is modulated by alpha-isopropylmalate, an intermediate in leucine biosynthesis. In the presence of alpha-isopropylmalate, Leu3p is a transcriptional activator. In the absence of the signal molecule, the activation domain is masked, and Leu3p acts as a repressor. The recent discovery that Leu3p retains its regulatory properties when expressed in mammalian cells (Guo, H., and Kohlhaw, G. B. (1996) FEBS Lett. 390, 191-195) suggests that masking and unmasking of the activation domain occur without the participation of auxiliary proteins. Here we present experimental support for this notion and address the mechanism of masking. We show that modulation of Leu3p is exceedingly sensitive to mutations in the activation domain. An activation domain double mutant (D872N/D874N; designated Leu3-dd) was constructed that has the characteristics of a permanently masked activator. Using separately expressed segments containing either the DNA binding domain-middle region or the activation domain of wild type Leu3p (or Leu3-dd) in a modified yeast two-hybrid system, we provide direct evidence for alpha-isopropylmalate-dependent interaction between these segments. Finally, we use the phenotype of Leu3-dd-containing cells (slow growth in the absence of added leucine) to select for suppressor mutations that map to the middle region of Leu3-dd. The properties of nine such suppressors further support the idea that masking is an intramolecular process and suggest a means for mapping the surface involved in masking.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
17
|
Schjerling P, Holmberg S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Res 1996; 24:4599-607. [PMID: 8967907 PMCID: PMC146297 DOI: 10.1093/nar/24.23.4599] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The C6 zinc cluster family of fungal regulatory proteins shares as DNA-binding motif the C6 zinc cluster, also known as the Zn(II)2Cys6 binuclear cluster. This family includes transcriptional activators like Gal4p, Leu3p, Hap1p, Put3p and Cha4p from Saccharomyces cerevisiae, qutA and amdR from Aspergillus, nit4 from Neurospora and Ntf1 from Schizosaccharomyces pombe. Seventy-nine proteins were retrieved from databases by homology to the C6 zinc cluster. All were fungal and 56 were found in the entire genome sequence of S.cerevisiae. Sequence analysis suggests that 60 of the 79 proteins possess one or more coiled-coil dimerization regions succeeding the C6 zinc cluster. Previous comparisons of Gal4p and seven other C6 zinc cluster proteins identified an additional region with weak homology. This region, designated the middle homology region (MHR), was shown to be present in 50 of the 79 proteins. Although reported mutation and deletion analyses suggest a role of MHR in regulation of protein activity, no function has yet been assigned specifically to this region. We find that the family of MHR sequences is confined to C6 zinc cluster proteins and hypothesize that one MHR function is to assist the C6 zinc cluster in DNA target discrimination.
Collapse
Affiliation(s)
- P Schjerling
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Denmark
| | | |
Collapse
|
18
|
Hellauer K, Rochon MH, Turcotte B. A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats. Mol Cell Biol 1996; 16:6096-102. [PMID: 8887639 PMCID: PMC231612 DOI: 10.1128/mcb.16.11.6096] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Gal4, Put3, and Ppr1 yeast zinc cluster proteins bind as homodimers to DNA sequences composed of palindromic CGG triplets. Spacing between the triplets specifies the target site for a given zinc cluster protein. In addition, Hap1p, another zinc cluster protein, also recognizes CGG triplets but only when oriented as a direct repeat. Unexpectedly, our results show that Leu3p, another member of this family, also recognizes CGG triplets but oriented in opposite directions and spaced by 4 nucleotides (an everted repeat or inverted palindrome: CCG-N4-CGG). This constitutes a novel DNA motif for zinc cluster proteins. Moreover, the presence of this motif was shown to be essential for in vivo activation by Leu3p of a minimal reporter containing one copy of a target site for this activator. We also provide evidence that another member of this family, Pdr3p, binds to an everted repeat spaced by 0 nucleotides (CCGCGG). Thus, our results show that three CGG motifs are used by members of the zinc cluster family: palindromes, direct repeats, and everted repeats.
Collapse
Affiliation(s)
- K Hellauer
- Department of Medicine, Royal Victoria Hospital, Québec, Canada
| | | | | |
Collapse
|
19
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
20
|
Kirkpatrick CR, Schimmel P. Detection of leucine-independent DNA site occupancy of the yeast Leu3p transcriptional activator in vivo. Mol Cell Biol 1995; 15:4021-30. [PMID: 7623798 PMCID: PMC230641 DOI: 10.1128/mcb.15.8.4021] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The product of the Saccharomyces cerevisiae LEU3 gene, Leu3p, is a transcriptional activator which regulates leucine biosynthesis in response to intracellular levels of leucine through the biosynthetic intermediate alpha-isopropylmalate. We devised a novel assay to examine the DNA site occupancy of Leu3p under different growth conditions, using a reporter gene with internal Leu3p-binding sites. Expression of the reporter is inhibited by binding of nuclear Leu3p to these sites; inhibition is dependent on the presence of the sites in the reporter, on the integrity of the Leu3p DNA-binding domain, and, surprisingly, on the presence of a transcriptional activation domain in the inhibiting protein. By this assay, Leu3p was found to occupy its binding site under all conditions tested, including high and low levels of leucine and in the presence and absence of alpha-isopropylmalate. The localization of Leu3p to the nucleus was confirmed by immunofluorescence staining of cells expressing epitope-tagged Leu3p derivatives. We conclude that Leu3p regulates transcription in vivo without changing its intracellular localization and DNA site occupancy.
Collapse
Affiliation(s)
- C R Kirkpatrick
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
21
|
Hu Y, Cooper TG, Kohlhaw GB. The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol Cell Biol 1995; 15:52-7. [PMID: 7799961 PMCID: PMC231907 DOI: 10.1128/mcb.15.1.52] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Leu3 protein of Saccharomyces cerevisiae has been shown to be a transcriptional regulator of genes encoding enzymes of the branched-chain amino acid biosynthetic pathways. Leu3 binds to upstream activating sequences (UASLEU) found in the promoters of LEU1, LEU2, LEU4, ILV2, and ILV5. In vivo and in vitro studies have shown that activation by Leu3 requires the presence of alpha-isopropylmalate. In at least one case (LEU2), Leu3 actually represses basal-level transcription when alpha-isopropylmalate is absent. Following identification of a UASLEU-homologous sequence in the promoter of GDH1, the gene encoding NADP(+)-dependent glutamate dehydrogenase, we demonstrate that Leu3 specifically interacts with this UASLEU element. We then show that Leu3 is required for full activation of the GDH1 gene. First, the expression of a GDH1-lacZ fusion gene is three- to sixfold lower in a strain lacking the LEU3 gene than in an isogenic LEU3+ strain. Expression is restored to near-normal levels when the leu3 deletion cells are transformed with a LEU3-bearing plasmid. Second, a significant decrease in GDH1-lacZ expression is also seen when the UASLEU of the GDH1-lacZ construct is made nonfunctional by mutation. Third, the steady-state level of GDH1 mRNA decreases about threefold in leu3 null cells. The decrease in GDH1 expression in leu3 null cells is reflected in a diminished specific activity of NADP(+)-dependent glutamate dehydrogenase. We also demonstrate that the level of GDH1-lacZ expression correlates with the cells' ability to generate alpha-isopropylmalate and is lowest in cells unable to produce alpha-isopropylmalate. We conclude that GDH1, which plays an important role in the assimilation of ammonia in yeast cells, is, in part, activated by a Leu3-alpha-isopropylmalate complex. This conclusion suggests that Leu3 participates in transcriptional regulation beyond the branched-chain amino acid biosynthetic pathways.
Collapse
Affiliation(s)
- Y Hu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
22
|
Abstract
The Leu3 protein (Leu3p) of Saccharomyces cerevisiae is a pleiotropic transregulator that can function both as an activator and as a repressor of transcription. It binds to upstream promoter elements (UASLEU) with the consensus sequence 5'-GCCGGNNCCGGC-3'. The DNA-binding motif of Leu3p belongs to the family of Zn(II)2-Cys6 clusters. The motif is located between amino acid residues 37 and 67 of the 886-residue protein. In this study, we used a recombinant peptide consisting of residues 17 to 147 to explore the interaction between Leu3p and its cognate DNA. We found that the Leu3p(17-147) peptide is a monomer in the absence of UASLEU but assumes a dimeric structure when the DNA is present. Results of protein-DNA cross-linking and methylation and ethylation interference footprinting experiments show that the Leu3p(17-147) dimer interacts symmetrically with two contact triplets separated by 6 bp and suggest that the peptide approaches its target DNA in such a way that each subunit is positioned closer to one DNA strand than to the other. The binding of Leu3p is strongly affected by the spacing between the contact triplets of the UASLEU and by the type of triplet. Binding occurs when the triplets are 6 bp apart (normal spacing) but fails to occur when the triplets are 0, 5, or 8 bp apart. Weak binding occurs when the triplets are 7 bp apart. Binding does not occur when the UASLEU triplets (GCC....GGC) are replaced with triplets found in the UAS elements for Gal4p, Put3p, and Ppr1p (CGG....CCG). The apparent Kd for the normal Leu3p(17-147)-UASLEU complex is about 3 nM. A mutant form of Leu3p(17-147) in which the histidine at position 50 has been replaced with cysteine binds UASLEU with significantly greater affinity (apparent Kd of about 0.7 nM), even though the interaction between the mutant peptide and target DNA appears to be unchanged. Interestingly, repression of basal-level transcription, which is a hallmark property of the wild-type Leu3p(17-147) peptide, is largely lost with the mutant peptide, indicating that there is no direct correlation between strength of binding and repression.
Collapse
|
23
|
Remboutsika E, Kohlhaw GB. Molecular architecture of a Leu3p-DNA complex in solution: a biochemical approach. Mol Cell Biol 1994; 14:5547-57. [PMID: 8035829 PMCID: PMC359074 DOI: 10.1128/mcb.14.8.5547-5557.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Leu3 protein (Leu3p) of Saccharomyces cerevisiae is a pleiotropic transregulator that can function both as an activator and as a repressor of transcription. It binds to upstream promoter elements (UASLEU) with the consensus sequence 5'-GCCGGNNCCGGC-3'. The DNA-binding motif of Leu3p belongs to the family of Zn(II)2-Cys6 clusters. The motif is located between amino acid residues 37 and 67 of the 886-residue protein. In this study, we used a recombinant peptide consisting of residues 17 to 147 to explore the interaction between Leu3p and its cognate DNA. We found that the Leu3p(17-147) peptide is a monomer in the absence of UASLEU but assumes a dimeric structure when the DNA is present. Results of protein-DNA cross-linking and methylation and ethylation interference footprinting experiments show that the Leu3p(17-147) dimer interacts symmetrically with two contact triplets separated by 6 bp and suggest that the peptide approaches its target DNA in such a way that each subunit is positioned closer to one DNA strand than to the other. The binding of Leu3p is strongly affected by the spacing between the contact triplets of the UASLEU and by the type of triplet. Binding occurs when the triplets are 6 bp apart (normal spacing) but fails to occur when the triplets are 0, 5, or 8 bp apart. Weak binding occurs when the triplets are 7 bp apart. Binding does not occur when the UASLEU triplets (GCC....GGC) are replaced with triplets found in the UAS elements for Gal4p, Put3p, and Ppr1p (CGG....CCG). The apparent Kd for the normal Leu3p(17-147)-UASLEU complex is about 3 nM. A mutant form of Leu3p(17-147) in which the histidine at position 50 has been replaced with cysteine binds UASLEU with significantly greater affinity (apparent Kd of about 0.7 nM), even though the interaction between the mutant peptide and target DNA appears to be unchanged. Interestingly, repression of basal-level transcription, which is a hallmark property of the wild-type Leu3p(17-147) peptide, is largely lost with the mutant peptide, indicating that there is no direct correlation between strength of binding and repression.
Collapse
Affiliation(s)
- E Remboutsika
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
24
|
Li Q, Jarai G, Yaghmai B, Marzluf GA. The leu-1 gene of Neurospora crassa: nucleotide and deduced amino acid sequence comparisons. Gene 1993; 136:301-5. [PMID: 8294021 DOI: 10.1016/0378-1119(93)90484-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Neurospora crassa leu-1 gene encodes beta-isopropylmalate dehydrogenase (IPMDH; EC 1.1.1.85), an enzyme in the leucine biosynthetic pathway. We determined the nucleotide sequence of the entire leu-1 gene and of four independent cDNA clones. By comparing the genomic and cDNA sequences, four introns were identified in the 5' portion of the gene and a single open reading frame was established. One of the introns is located within the 5'-noncoding region of the transcript. The deduced amino acid sequence encoded by leu-1 was aligned with that of the homologous yeast enzyme and extensive sequence identity was uncovered. The lesion present in a conventional leu-1 mutant was identified as the insertion of a single base pair.
Collapse
Affiliation(s)
- Q Li
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
25
|
Transcriptional regulator Leu3 of Saccharomyces cerevisiae: separation of activator and repressor functions. Mol Cell Biol 1993. [PMID: 8355711 DOI: 10.1128/mcb.13.9.5702] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Leu3 protein of Saccharomyces cerevisiae binds to specific DNA sequences present in the 5' noncoding region of at least five RNA polymerase II-transcribed genes. Leu3 functions as a transcriptional activator only when the metabolic intermediate alpha-isopropylmalate is also present. In the absence of alpha-isopropylmalate, Leu3 causes transcription to be repressed below basal levels. We show here that different portions of the Leu3 protein are responsible for activation and repression. Fusion of the 30 C-terminal residues of Leu3 to the DNA-binding domain of the Gal4 protein created a strong cross-species activator, demonstrating that the short C-terminal region is not only required but also sufficient for transcriptional activation. Using a recently developed Leu3-responsive in vitro transcription assay as a test system for repression (J. Sze, M. Woontner, J. Jaehning, and G. B. Kohlhaw, Science 258:1143-1145, 1992), we show that mutant forms of the Leu3 protein that lack the activation domain still function as repressors. The shortest repressor thus identified had only about 15% of the mass of the full-length Leu3 protein and was centered on the DNA-binding region of Leu3. Implications of this finding for the mechanism of repression are discussed.
Collapse
|
26
|
Sze JY, Remboutsika E, Kohlhaw GB. Transcriptional regulator Leu3 of Saccharomyces cerevisiae: separation of activator and repressor functions. Mol Cell Biol 1993; 13:5702-9. [PMID: 8355711 PMCID: PMC360305 DOI: 10.1128/mcb.13.9.5702-5709.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Leu3 protein of Saccharomyces cerevisiae binds to specific DNA sequences present in the 5' noncoding region of at least five RNA polymerase II-transcribed genes. Leu3 functions as a transcriptional activator only when the metabolic intermediate alpha-isopropylmalate is also present. In the absence of alpha-isopropylmalate, Leu3 causes transcription to be repressed below basal levels. We show here that different portions of the Leu3 protein are responsible for activation and repression. Fusion of the 30 C-terminal residues of Leu3 to the DNA-binding domain of the Gal4 protein created a strong cross-species activator, demonstrating that the short C-terminal region is not only required but also sufficient for transcriptional activation. Using a recently developed Leu3-responsive in vitro transcription assay as a test system for repression (J. Sze, M. Woontner, J. Jaehning, and G. B. Kohlhaw, Science 258:1143-1145, 1992), we show that mutant forms of the Leu3 protein that lack the activation domain still function as repressors. The shortest repressor thus identified had only about 15% of the mass of the full-length Leu3 protein and was centered on the DNA-binding region of Leu3. Implications of this finding for the mechanism of repression are discussed.
Collapse
Affiliation(s)
- J Y Sze
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
27
|
|
28
|
Mountain HA, Byström AS, Korch C. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae. Mol Microbiol 1993; 7:215-28. [PMID: 8446029 DOI: 10.1111/j.1365-2958.1993.tb01113.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A met4 mutant of Saccharomyces cerevisiae was unable to transcribe a number of genes encoding enzymes of the methionine biosynthetic pathway. The sequence of the cloned MET4 gene allowed the previously sequenced flanking LEU4 and POL1 genes to be linked to MET4 into a 10,327 bp contiguous region of chromosome XIV. From the sequence and mapping of the transcriptional start points, MET4 is predicted to encode a protein of 634 amino acids (as opposed to 666 amino acids published by others) with a leucine zipper domain at the C-terminus, preceded by both acidic and basic regions. Thus, MET4 belongs to the family of basic leucine zipper trans-activator proteins. Disruption of MET4 resulted in methionine auxotrophy with no other phenotype. Transcriptional studies showed that MET4 was regulated by the general amino acid control and hence by another bZIP protein encoded by GCN4. GCN4 binding sequences are present between the divergently transcribed MET4 and LEU4 genes. Over-expression of MET4 resulted in leaky expression from the otherwise tightly regulated MET3 promoter under its control. The presence of consensus sequences for other potential regulatory elements in the MET4 promoter suggests a complex regulation of this gene.
Collapse
Affiliation(s)
- H A Mountain
- Department of Microbiology, Umeå University, Sweden
| | | | | |
Collapse
|
29
|
Sze JY, Woontner M, Jaehning JA, Kohlhaw GB. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate. Science 1992; 258:1143-5. [PMID: 1439822 DOI: 10.1126/science.1439822] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the absence of the leucine biosynthetic precursor alpha-isopropylmalate (alpha-IPM), the yeast LEU3 protein (Leu3p) binds DNA and acts as a transcriptional repressor in an in vitro extract. Addition of alpha-IPM resulted in a dramatic increase in Leu3p-dependent transcription. The presence of alpha-IPM was also required for Leu3p to compete effectively with another transcriptional activator, GAL4/VP16, for limiting transcription factors. Therefore, the addition of alpha-IPM appears to convert a transcriptional repressor into an activator. This represents an example in eukaryotes of direct transcriptional regulation by a small effector molecule.
Collapse
Affiliation(s)
- J Y Sze
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | | | | | | |
Collapse
|
30
|
Parsons LM, Davis MA, Hynes MJ. Identification of functional regions of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Microbiol 1992; 6:2999-3007. [PMID: 1479891 DOI: 10.1111/j.1365-2958.1992.tb01758.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amdR (intA) regulatory gene of Aspergillus nidulans encodes a 765-amino-acid polypeptide which determines the omega-amino acid induction of at least five structural genes. The AmdR polypeptide contains a potential Zn(II)2Cys6 DNA-binding motif which has been shown to be present in the N-terminal region of a large number of fungal activator proteins. In vitro mutagenesis of the fourth cysteine of this motif abolishes AmdR function as shown by loss of complementation of an amdR- mutation and by the AmdR- phenotype of a mutant gene replacement strain. Studies using constructs in which the proposed AmdR DNA-binding motif is replaced with that from another activator, FacB, shows that induction is independent of DNA-binding specificity and that sequences in the C-terminal region of AmdR are activation domains. Sequencing of several amdR mutant alleles which affect activation and/or induction, together with studies of deletion constructs indicate that changes in the conformation of the protein determines its activity and that this is modulated by inducers.
Collapse
Affiliation(s)
- L M Parsons
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
31
|
Bai YL, Kohlhaw GB. Manipulation of the 'zinc cluster' region of transcriptional activator LEU3 by site-directed mutagenesis. Nucleic Acids Res 1991; 19:5991-7. [PMID: 1945883 PMCID: PMC329057 DOI: 10.1093/nar/19.21.5991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transcriptional activator LEU3 of Saccharomyces cerevisiae belongs to a family of lower eukaryotic DNA binding proteins with a well-conserved DNA binding motif known as the Zn(II)2Cys6 binuclear cluster. We have constructed mutations in LEU3 that affect either one of the conserved cysteines (Cys47) or one of several amino acids located within a variable subregion of the DNA binding motif. LEU3 proteins with a mutation at Cys47 were very poor activators which could not be rescued by supplying Zn(II) to the growth medium. Mutations within the variable subregion were generally well-tolerated. Only two of seven mutations in this region generated poor activators, and both could be reactivated by Zn(II) supplements. Three of the other five mutations gave rise to activators that were better than wild type. One of these, His50Cys, exhibited a 1.5 fold increase in in vivo target gene activation and a notable increase in the affinity for target DNA. The properties of the His50Cys mutant are discussed in terms of a variant structure of the DNA binding motif. During the course of this work, evidence was obtained suggesting that only one of the two LEU3 protein-DNA complexes routinely seen actually activates transcription. The other (which may contain an additional protein factor) does not.
Collapse
Affiliation(s)
- Y L Bai
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
32
|
Transcriptional activator LEU3 of yeast. Mapping of the transcriptional activation function and significance of activation domain tryptophans. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38174-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Brisco PR, Kohlhaw GB. Regulation of yeast LEU2. Total deletion of regulatory gene LEU3 unmasks GCN4-dependent basal level expression of LEU2. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38449-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|