1
|
Ohtsuki N, Kizawa K, Mori A, Nishizawa-Yokoi A, Komatsuda T, Yoshida H, Hayakawa K, Toki S, Saika H. Precise Genome Editing in miRNA Target Site via Gene Targeting and Subsequent Single-Strand-Annealing-Mediated Excision of the Marker Gene in Plants. Front Genome Ed 2021; 2:617713. [PMID: 34713238 PMCID: PMC8525353 DOI: 10.3389/fgeed.2020.617713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Gene targeting (GT) enables precise genome modification-e.g., the introduction of base substitutions-using donor DNA as a template. Combined with clean excision of the selection marker used to select GT cells, GT is expected to become a standard, generally applicable, base editing system. Previously, we demonstrated marker excision via a piggyBac transposon from GT-modified loci in rice. However, piggyBac-mediated marker excision has the limitation that it recognizes only the sequence TTAA. Recently, we proposed a novel and universal precise genome editing system consisting of GT with subsequent single-strand annealing (SSA)-mediated marker excision, which has, in principle, no limitation of target sequences. In this study, we introduced base substitutions into the microRNA miR172 target site of the OsCly1 gene-an ortholog of the barley Cleistogamy1 gene involved in cleistogamous flowering. To ensure efficient SSA, the GT vector harbors 1.2-kb overlapped sequences at both ends of a selection marker. The frequency of positive-negative selection-mediated GT using the vector with overlapped sequences was comparable with that achieved using vectors for piggyBac-mediated marker excision without overlapped sequences, with the frequency of SSA-mediated marker excision calculated as ~40% in the T0 generation. This frequency is thought to be adequate to produce marker-free cells, although it is lower than that achieved with piggyBac-mediated marker excision, which approaches 100%. To date, introduction of precise substitutions in discontinuous multiple bases of a targeted gene using base editors and the prime editing system based on CRISPR/Cas9 has been quite difficult. Here, using GT and our SSA-mediated marker excision system, we succeeded in the precise base substitution not only of single bases but also of artificial discontinuous multiple bases in the miR172 target site of the OsCly1 gene. Precise base substitution of miRNA target sites in target genes using this precise genome editing system will be a powerful tool in the production of valuable crops with improved traits.
Collapse
Affiliation(s)
- Namie Ohtsuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Akiko Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan
| | | | - Hitoshi Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hiroaki Saika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
2
|
Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim JY. Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. RICE (NEW YORK, N.Y.) 2019; 12:95. [PMID: 31858277 PMCID: PMC6923311 DOI: 10.1186/s12284-019-0355-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 05/18/2023]
Abstract
Continuing crop domestication/redomestication and modification is a key determinant of the adaptation and fulfillment of the food requirements of an exploding global population under increasingly challenging conditions such as climate change and the reduction in arable lands. Monocotyledonous crops are not only responsible for approximately 70% of total global crop production, indicating their important roles in human life, but also the first crops to be challenged with the abovementioned hurdles; hence, monocot crops should be the first to be engineered and/or de novo domesticated/redomesticated. A long time has passed since the first green revolution; the world is again facing the challenge of feeding a predicted 9.7 billion people in 2050, since the decline in world hunger was reversed in 2015. One of the major lessons learned from the first green revolution is the importance of novel and advanced trait-carrying crop varieties that are ideally adapted to new agricultural practices. New plant breeding techniques (NPBTs), such as genome editing, could help us succeed in this mission to create novel and advanced crops. Considering the importance of NPBTs in crop genetic improvement, we attempt to summarize and discuss the latest progress with major approaches, such as site-directed mutagenesis using molecular scissors, base editors and especially homology-directed gene targeting (HGT), a very challenging but potentially highly precise genome modification approach in plants. We therefore suggest potential approaches for the improvement of practical HGT, focusing on monocots, and discuss a potential approach for the regulation of genome-edited products.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
3
|
Schiemann J, Dietz-Pfeilstetter A, Hartung F, Kohl C, Romeis J, Sprink T. Risk Assessment and Regulation of Plants Modified by Modern Biotechniques: Current Status and Future Challenges. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:699-726. [PMID: 30822113 DOI: 10.1146/annurev-arplant-050718-100025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review describes the current status and future challenges of risk assessment and regulation of plants modified by modern biotechniques, namely genetic engineering and genome editing. It provides a general overview of the biosafety and regulation of genetically modified plants and details different regulatory frameworks with a focus on the European situation. The environmental risk and safety assessment of genetically modified plants is explained, and aspects of toxicological assessments are discussed, especially the controversial debate in Europe on the added scientific value of untargeted animal feeding studies. Because RNA interference (RNAi) is increasingly explored for commercial applications, the risk and safety assessment of RNAi-based genetically modified plants is also elucidated. The production, detection, and identification of genome-edited plants are described. Recent applications of modern biotechniques, namely synthetic biology and gene drives, are discussed, and a short outlook on the future follows.
Collapse
Affiliation(s)
- Joachim Schiemann
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Antje Dietz-Pfeilstetter
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Frank Hartung
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Christian Kohl
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Thorben Sprink
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| |
Collapse
|
4
|
Sun Y, Li J, Xia L. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1928. [PMID: 28066481 PMCID: PMC5167731 DOI: 10.3389/fpls.2016.01928] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 05/17/2023]
Abstract
Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes' encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT) that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired "safe" harbor in a predefined manner. The emergence of three programmable SSNs, such as zinc finger nucleases, transcriptional activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential mechanisms underlying HDR events in plant cells. We then address the challenges and propose future perspectives in order to facilitate the implementation of precise genome modification through SSNs-mediated GT for crop improvement in a global context.
Collapse
|
5
|
Rosa M, Von Harder M, Aiese Cigliano R, Schlögelhofer P, Mittelsten Scheid O. The Arabidopsis SWR1 chromatin-remodeling complex is important for DNA repair, somatic recombination, and meiosis. THE PLANT CELL 2013; 25:1990-2001. [PMID: 23780875 PMCID: PMC3723608 DOI: 10.1105/tpc.112.104067] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
All processes requiring interaction with DNA are attuned to occur within the context of the complex chromatin structure. As it does for programmed transcription and replication, this also holds true for unscheduled events, such as repair of DNA damage. Lesions such as double-strand breaks occur randomly; their repair requires that enzyme complexes access DNA at potentially any genomic site. This is achieved by chromatin remodeling factors that can locally slide, evict, or change nucleosomes. Here, we show that the Swi2/Snf2-related (SWR1 complex), known to deposit histone H2A.Z, is also important for DNA repair in Arabidopsis thaliana. Mutations in genes for Arabidopsis SWR1 complex subunits photoperiod-independent Early Flowering1, actin-related protein6, and SWR1 complex6 cause hypersensitivity to various DNA damaging agents. Even without additional genotoxic stress, these mutants show symptoms of DNA damage accumulation. The reduced DNA repair capacity is connected with impaired somatic homologous recombination, in contrast with the hyper-recombinogenic phenotype of yeast SWR1 mutants. This suggests functional diversification between lower and higher eukaryotes. Finally, reduced fertility and irregular gametogenesis in the Arabidopsis SWR1 mutants indicate an additional role for the chromatin-remodeling complex during meiosis. These results provide evidence for the importance of Arabidopsis SWR1 in somatic DNA repair and during meiosis.
Collapse
Affiliation(s)
- Marisa Rosa
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Mona Von Harder
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Riccardo Aiese Cigliano
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
- Address correspondence to
| |
Collapse
|
6
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Abstract
Homologous recombination (HR) is a central cellular process involved in many aspects of genome maintenance such as DNA repair, replication, telomere maintenance, and meiotic chromosomal segregation. HR is highly conserved among eukaryotes, contributing to genome stability as well as to the generation of genetic diversity. It has been intensively studied, for almost a century, in plants and in other organisms. In this antireview, rather than reviewing existing knowledge, we wish to underline the many open questions in plant HR. We will discuss the following issues: how do we define homology and how the degree of homology affects HR? Are there any plant-specific HR qualities, how extensive is functional conservation and did HR proteins acquire new functions? How efficient is HR in plants and what are the cis and the trans factors that regulate it? Finally, we will give the prospects for enhancing the rates of gene targeting and meiotic HR for plant breeding purposes.
Collapse
|
8
|
Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient production of ethanol from hemicellulose hydrolysates. Appl Environ Microbiol 2009; 75:5743-9. [PMID: 19617386 DOI: 10.1128/aem.01180-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dilute acid pretreatment is an established method for hydrolyzing the methylglucuronoxylans of hemicellulose to release fermentable xylose. In addition to xylose, this process releases the aldouronate methylglucuronoxylose, which cannot be metabolized by current ethanologenic biocatalysts. Enterobacter asburiae JDR-1, isolated from colonized wood, was found to efficiently ferment both methylglucuronoxylose and xylose in acid hydrolysates of sweet gum xylan, producing predominantly ethanol and acetate. Transformation of E. asburiae JDR-1 with pLOI555 or pLOI297, each containing the PET operon containing pyruvate decarboxylase (pdc) and alcohol dehydrogenase B (adhB) genes derived from Zymomonas mobilis, replaced mixed-acid fermentation with homoethanol fermentation. Deletion of the pyruvate formate lyase (pflB) gene further increased the ethanol yield, resulting in a stable E. asburiae E1(pLOI555) strain that efficiently utilized both xylose and methylglucuronoxylose in dilute acid hydrolysates of sweet gum xylan. Ethanol was produced from xylan hydrolysate by E. asburiae E1(pLOI555) with a yield that was 99% of the theoretical maximum yield and at a rate of 0.11 g ethanol/g (dry weight) cells/h, which was 1.57 times the yield and 1.48 times the rate obtained with the ethanologenic strain Escherichia coli KO11. This engineered derivative of E. asburiae JDR-1 that is able to ferment the predominant hexoses and pentoses derived from both hemicellulose and cellulose fractions is a promising subject for development as an ethanologenic biocatalyst for production of fuels and chemicals from agricultural residues and energy crops.
Collapse
|
9
|
Pecinka A, Rosa M, Schikora A, Berlinger M, Hirt H, Luschnig C, Scheid OM. Transgenerational stress memory is not a general response in Arabidopsis. PLoS One 2009; 4:e5202. [PMID: 19381297 PMCID: PMC2668180 DOI: 10.1371/journal.pone.0005202] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/09/2009] [Indexed: 12/25/2022] Open
Abstract
Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR) events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.
Collapse
Affiliation(s)
- Ales Pecinka
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
| | - Marisa Rosa
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
| | - Adam Schikora
- INRA – URGV, Plant Genomics Research Unit, Evry, France
| | - Marc Berlinger
- University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Heribert Hirt
- INRA – URGV, Plant Genomics Research Unit, Evry, France
| | - Christian Luschnig
- University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
10
|
Van der Auwera G, Baute J, Bauwens M, Peck I, Piette D, Pycke M, Asselman P, Depicker A. Development and application of novel constructs to score C:G-to-T:A transitions and homologous recombination in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:22-31. [PMID: 17921342 PMCID: PMC2230553 DOI: 10.1104/pp.107.105213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report on the development of five missense mutants and one recombination substrate of the beta-glucuronidase (GUS)-encoding gene of Escherichia coli and their use for detecting mutation and recombination events in transgenic Arabidopsis (Arabidopsis thaliana) plants by reactivation of GUS activity in clonal sectors. The missense mutants were designed to find C:G-to-T:A transitions in a symmetrical sequence context and are in that respect complementary to previously published GUS point mutants. Small peptide tags (hemagglutinin tag and Strep tag II) and green fluorescent protein were translationally fused to GUS, which offers possibilities to check for mutant GUS production levels. We show that spontaneous mutation and recombination events took place. Mutagenic treatment of the plants with ethyl methanesulfonate and ultraviolet-C increased the number of mutations, validating the use of these constructs to measure mutation and recombination frequencies in plants exposed to biotic or abiotic stress conditions, or in response to different genetic backgrounds. Plants were also subjected to heavy metals, methyl jasmonate, salicylic acid, and heat stress, for which no effect could be seen. Together with an ethyl methanesulfonate mutation induction level much higher than previously described, the need is illustrated for many available scoring systems in parallel. Because all GUS missense mutants were cloned in a bacterial expression vector, they can also be used to score mutation events in E. coli.
Collapse
Affiliation(s)
- Gert Van der Auwera
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vicient CM, Kalendar R, Schulman AH. Variability, Recombination, and Mosaic Evolution of the Barley BARE-1 Retrotransposon. J Mol Evol 2005; 61:275-91. [PMID: 16034651 DOI: 10.1007/s00239-004-0168-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 03/11/2005] [Indexed: 11/27/2022]
Abstract
BARE-1 is a highly abundant, copia-like, LTR (long terminal repeat) retrotransposon in the genus Hordeum. The LTRs provide the promoter, terminator, and polyadenylation signals necessary for the replicational life cycle of retrotransposons. We have examined the variability and evolution of BARE-1-like elements, focusing on the LTRs. Three groups were found, corresponding to each of the Hordeum genome types analyzed, which predate the divergence of these types. The most variable LTR regions are tandem repeats near the 3' end and the promoter. In barley (H. vulgare L.), two main classes of LTR promoters were defined, corresponding to BARE-1 and to a new class we call BARE-2. These can be considered as families within the group I BARE elements. Although less abundant in cultivated barley than is BARE-1, BARE-2 is transcriptionally active in leaves and calli. A sequenced BARE-2 has more than 99% similar LTRs and perfect terminal direct repeats (TDRs), indicating it is a recent insertion, but the coding region, especially gag, is disrupted by frameshifts and stop codons. BARE-2 appears to be a chimeric element resulting from retrotransposon recombination by strand switching during replication, with LTRs and 5'UTR more similar to BARE-1 and the rest more similar to Wis-2. We provide evidence as well for another form of recombination, where LTR-LTR recombination has generated tandem multimeric BARE-1 elements in which internal coding domains are interspersed with shared LTRs. The data indicate that recombination contributes to the complexity and plasticity of retroelement evolution in plant genomes.
Collapse
Affiliation(s)
- Carlos M Vicient
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | |
Collapse
|
12
|
Opperman R, Emmanuel E, Levy AA. The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics 2005; 168:2207-15. [PMID: 15611187 PMCID: PMC1448723 DOI: 10.1534/genetics.104.032896] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that sequence divergence has an inhibitory effect on homologous recombination. However, a detailed analysis of this relationship is missing for most higher eukaryotes. We have measured the rate of somatic recombination between direct repeats as a function of the number, type, and position of divergent nucleotides in Arabidopsis. We show that a minor divergence level of 0.16% (one mutation in otherwise identical 618 bp) has a profound effect, decreasing the recombination rate approximately threefold. A further increase in the divergence level affects the recombination rate to a smaller extent until a "divergence saturation" effect is reached at relatively low levels of divergence ( approximately 0.5%). The type of mismatched nucleotide does not affect recombination rates. The decrease in the rate of recombination caused by a single mismatch was not affected by the position of the mismatch along the repeat. This suggests that most recombination intermediate tracts contain a mismatch and thus are as long as the full length of the 618-bp repeats. Finally, we could deduce an antirecombination efficiency of approximately 66% for the first mismatch in the repeat. Altogether, this work shows some degree of conservation across kingdoms when compared to previous reports in yeast; it also provides new insight into the effect of sequence divergence on homologous recombination.
Collapse
Affiliation(s)
- Roy Opperman
- Plant Sciences Department, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
13
|
Ilnytskyy Y, Yao Y, Kovalchuk I. Double-strand break repair machinery is sensitive to UV radiation. J Mol Biol 2005; 345:707-15. [PMID: 15588820 DOI: 10.1016/j.jmb.2004.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 11/22/2022]
Abstract
The precision of the repair of linearized plasmid DNA was analyzed using a nonsense mutation inactivated beta-glucuronidase (uidA) marker gene delivered to Nicotiana plumbaginifolia protoplasts and Nicotiana tabacum leaves. The reversions at the stop-codon allowed the reactivation of the marker gene. Here we report that irradiation of plant protoplasts or plant tissue prior to the delivery of the DNA repair substrate significantly potentiated the reversion frequency leading to a two to fourfold increase over the non-irradiated samples. The increase in reversion frequency was highest upon the delivery of the linear substrates, suggesting increased sensitivity of the double-strand break (DSB) repair apparatus to UV-C. Moreover, the most significant UV irradiation effect was observed in plasmids linearized in close proximity to the stop codon. The higher reversion frequency in UV-treated samples was apparently due to the involvement of free radicals as pretreatment of irradiated tissue with radical scavenging enzyme N-acetyl-l-cysteine abolished the effect of UV-C. We discuss the UV-sensitivity of various repair enzymes as well as possible mechanisms of involvement of error-prone polymerases in processing of DSBs.
Collapse
Affiliation(s)
- Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| | | | | |
Collapse
|
14
|
Li L, Santerre-Ayotte S, Boivin EB, Jean M, Belzile F. A novel reporter for intrachromosomal homoeologous recombination in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:1007-15. [PMID: 15584964 DOI: 10.1111/j.1365-313x.2004.02270.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A reporter system using engineered introns as recombination substrates in the uidA (GUS) gene has been developed and characterized in Arabidopsis thaliana. The non-coding nature of the recombination substrate has allowed us to monitor recombination events between duplicated copies of the intron that are either identical (homologous recombination) or harbour sequence polymorphisms (homoeologous recombination). The effects of substrate length and divergence on the frequency of recombination events were examined. A positive correlation between substrate length and somatic recombination frequency was found as the frequency of recombination increased 183-fold when the recombination substrate was lengthened from 153 to 589 bp. The existence of 11 polymorphisms in a 589-bp recombination substrate (1.9% sequence divergence) led to an almost 10-fold reduction in the frequency of recombination. This result demonstrates that relatively modest levels of sequence divergence can substantially reduce the frequency of recombination in plants. A molecular analysis of recombination products revealed that the recombination junctions are more frequent in the central segment of the recombination substrate.
Collapse
Affiliation(s)
- Liangliang Li
- Département de phytologie, 1243 Pavillon C.-E. Marchand, Université Laval, Québec, Qc, Canada G1K 7P4
| | | | | | | | | |
Collapse
|
15
|
Li HQ, Terada R, Li MR, Iida S. RecQ helicase enhances homologous recombination in plants. FEBS Lett 2004; 574:151-5. [PMID: 15358556 DOI: 10.1016/j.febslet.2004.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 11/16/2022]
Abstract
RecQ helicase is a key component in the RecF pathway of Escherichia coli for initiation of homologous recombination. Here, we demonstrate that transient expression of RecQ gene in rice embryogenic cell increases the homologous recombination efficiency as much as 4-fold. Further experiments reveal that this effect is influenced by the RecQ dosage. Stable expression of RecQ in rice dramatically increases the homologous recombination events 20- to 40-fold in leaf tissue from different transgenic lines. This is the first evidence indicating that overexpression of RecQ gene can stimulate homologous recombination in plants.
Collapse
Affiliation(s)
- Hong-Qing Li
- Guangdong Key Lab of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, China.
| | | | | | | |
Collapse
|
16
|
Dubest S, Gallego ME, White CI. Roles of the AtErcc1 protein in recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:334-342. [PMID: 15255863 DOI: 10.1111/j.1365-313x.2004.02136.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Summary Atercc1, the recently characterized Arabidopsis homologue of the Ercc1 (Rad10) protein, is a key component of nucleotide excision repair as part of a structure-specific endonuclease which cleaves 5' to UV photoproducts in DNA. This endonuclease also acts in removing overhanging non-homologous DNA 'tails' in synapsed recombination intermediates. We have previously demonstrated this recombination function of the Arabidopsis thaliana Xpf homologue, AtRad1p, and show here that recombination between plasmid DNA substrates containing non-homologous tails is specifically reduced 12-fold in atercc1 mutant plants compared with the wild type. Furthermore, using chromosomal tandem-repeat recombination substrates, we show that AtErcc1p is required for bleomycin induction of mitotic recombination in the chromosomal context. This work thus confirms both the specific and general recombination roles of the Atercc1 protein in recombination in Arabidopsis.
Collapse
Affiliation(s)
- Sandra Dubest
- UMR 6547 CNRS, Université Blaise Pascal, 24, ave. des Landais, 63177 Aubière, France
| | | | | |
Collapse
|
17
|
Orel N, Puchta H. Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. PLANT MOLECULAR BIOLOGY 2003; 51:523-31. [PMID: 12650618 DOI: 10.1023/a:1022324205661] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surprising species-specific differences in non-homologous end-joining (NHEJ) of genomic double-strand breaks (DSBs) have been reported for the two dicotyledonous plants Arabidopsis thaliana and Nicotiana tabacum. In Arabidopsis deletions were, on average, larger than in tobacco and not associated with insertions. To establish the molecular basis of the phenomenon we analysed the fate of free DNA ends in both plant species by biolistic transformation of leaf tissue with linearized plasmid molecules. Southern blotting indicated that, irrespective of the nature of the ends (blunt, 5' or 3' overhangs), linearized full-length DNA molecules were, on average, more stable in tobacco than in Arabidopsis. The relative expression of a beta-glucuronidase gene encoded by the plasmid was similar in both plant species when the break was distant from the marker gene. However, if a DSB was introduced between the promoter and the open reading frame of the marker, transient expression was halved in Arabidopsis as compared to tobacco. These results indicate that free DNA ends are more stable in tobacco than in Arabidopsis, either due to lower DNA exonuclease activity or due to a better protection of DNA break ends or both. Exonucleolytic degradation of DNA ends might be a driving force in the evolution of genome size as the Arabidopsis genome is more than twenty times smaller than the tobacco genome.
Collapse
Affiliation(s)
- Nadiya Orel
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, 06466 Gatersleben, Germany
| | | |
Collapse
|
18
|
Reiss B. Homologous recombination and gene targeting in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:85-139. [PMID: 14667043 DOI: 10.1016/s0074-7696(03)28003-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene targeting has become an indispensable tool for functional genomics in yeast and mouse; however, this tool is still missing in plants. This review discusses the gene targeting problem in plants in the context of general knowledge on recombination and gene targeting. An overview on the history of gene targeting is followed by a general introduction to genetic recombination of bacteria, yeast, and vertebrates. This abridged discussion serves as a guide to the following sections, which cover plant-specific aspects of recombination assay systems, the mechanism of recombination, plant recombination genes, the relationship of recombination to the environment, approaches to stimulate homologous recombination and gene targeting, and a description of two plant systems, the moss Physcomitrella patens and the chloroplast, that naturally have high efficiencies of gene targeting. The review concludes with a discussion of alternatives to gene targeting.
Collapse
Affiliation(s)
- Bernd Reiss
- Max-Planck-Institut für Zuechtungsforschung, Carl-von-Linne-Weg 10, D-50829 Köln, Germany
| |
Collapse
|
19
|
Dubest S, Gallego ME, White CI. Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 2002; 3:1049-54. [PMID: 12393748 PMCID: PMC1307604 DOI: 10.1093/embo-reports/kvf211] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using a specific recombination assay, we show in the plant Arabidopsis thaliana that AtRad1 protein plays a role in the removal of non-homologous tails in homologous recombination. Recombination in the presence of non-homologous overhangs is reduced 11-fold in the atrad1 mutant compared with the wild-type plants. AtRad1p is the A. thaliana homologue of the human Xpf and Saccharomyces cerevisiae Rad1 proteins. Rad1p is a subunit of the Rad1p/Rad10p structure-specific endonuclease that acts in nucleotide excision repair and inter-strand crosslink repair. This endonuclease also plays a role in mitotic recombination to remove non-homologous, 3'-ended overhangs from recombination intermediates. The Arabidopsis atrad1 mutant (uvh1), unlike rad1 mutants known from other eukaryotes, is hypersensitive to ionizing radiation. This last observation may indicate a more important role for the Rad1/Rad10 endonuclease in recombination in plants. This is the first direct demonstration of the involvement of AtRad1p in homologous recombination in plants.
Collapse
Affiliation(s)
- Sandra Dubest
- UMR 6547 BIOMOVE, Université Blaise Pascal, 24 ave. des Landais, 63177 Aubière, France
| | - Maria E. Gallego
- UMR 6547 BIOMOVE, Université Blaise Pascal, 24 ave. des Landais, 63177 Aubière, France
| | - Charles I. White
- UMR 6547 BIOMOVE, Université Blaise Pascal, 24 ave. des Landais, 63177 Aubière, France
- Tel: +33 4 73 40 79 78; Fax: +33 4 73 40 77 77;
| |
Collapse
|
20
|
Kovalchuk I, Kovalchuk O, Hohn B. Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 2000; 19:4431-8. [PMID: 10970837 PMCID: PMC302052 DOI: 10.1093/emboj/19.17.4431] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to analyse the frequency of point mutations in whole plants, several constructs containing single nonsense mutations in the beta-glucuronidase (uidA) gene were used to generate transgenic Arabidopsis thaliana plants. Upon histochemical staining of transgenic plants, sectors indicative of transgene reactivation appeared. Reversion frequencies were in the range of 10(-7)-10(-8) events per base pair, exceeding the previous estimates for other eukaryotes at least 100-fold. The frequency was dependent on the position of the mutation substrate within the transgene and the position of the transgene within the Arabidopsis genome. An inverse relationship between the level of transgene transcription and mutation frequency was observed in single-copy lines. DNA-damaging factors induced the mutation frequency by a factor of up to 56 for UV-C, a factor of 3 for X-rays and a factor of 2 for methyl methanesulfonate. This novel plant mutation-monitoring system allowed us to measure the frequencies of point mutation in whole plants and may be used as an alternative or complement to study the mutagenicity of different environmental factors on the higher eukaryote's genome.
Collapse
Affiliation(s)
- I Kovalchuk
- Friedrich Miescher-Institut, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
21
|
Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 2000; 10:908-15. [PMID: 10899140 PMCID: PMC310930 DOI: 10.1101/gr.10.7.908] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Organisms with large genomes contain vast amounts of repetitive DNA sequences, much of which is composed of retrotransposons. Amplification of retrotransposons has been postulated to be a major mechanism increasing genome size and leading to "genomic obesity." To gain insights into the relation between retrotransposons and genome expansion in a large genome, we have studied a 66-kb contiguous sequence at the Rar1 locus of barley in detail. Three genes were identified in the 66-kb contig, clustered within an interval of 18 kb. Inspection of sequences flanking the gene space unveiled four novel retroelements, designated Nikita, Sukkula, Sabrina, and BAGY-2 and several units of the known BARE-1 element. The retroelements identified are responsible for at least 15 integration events, predominantly arranged as multiple nested insertions. Strikingly, most of the retroelements exist as solo LTRs (Long Terminal Repeats), indicating that unequal crossing over and/or intrachromosomal recombination between LTRs is a common feature in barley. Our data suggest that intraelement recombination events deleted most of the original retrotransposon sequences, thereby providing a possible mechanism to counteract retroelement-driven genome expansion.
Collapse
Affiliation(s)
- K Shirasu
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | | | | | | |
Collapse
|
22
|
Zubko E, Scutt C, Meyer P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 2000; 18:442-5. [PMID: 10748528 DOI: 10.1038/74515] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant genes conferring resistance to antibiotics or herbicides are widely used as selectable markers in plant transformation. Once transgenic material has been selected, the marker gene is dispensable. We report a novel strategy to remove undesirable parts of a transgene after integration into the tobacco genome. This approach is based on the transfer of a vector containing a NPTII gene flanked by two 352 bp attachment P (attP) regions of bacteriophage lambda, and the identification of somatic tissue with deletion events following intrachromosomal recombination between the attP regions. This system was used to delete a 5.9 kb region from a recombinant vector that had been inserted into two different genomic regions. As the attP system does not require the expression of helper proteins to induce deletion events, or a genetic segregation step to remove recombinase genes, it should provide a useful tool to remove undesirable transgene regions, especially in vegetatively propagated species.
Collapse
Affiliation(s)
- E Zubko
- Leeds Institute for Plant Biotechnology and Agriculture (LIBA), Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
23
|
Jelesko JG, Harper R, Furuya M, Gruissem W. Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1999; 96:10302-7. [PMID: 10468603 PMCID: PMC17883 DOI: 10.1073/pnas.96.18.10302] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small, multigene families organized in a tandem array can facilitate the rapid evolution of the gene cluster by a process of meiotic unequal crossing-over. To study this process in a multicellular organism, we created a synthetic RBCSB gene cluster in Arabidopsis thaliana and used this to measure directly the frequency of meiotic, intergenic unequal crossing-over between sister chromatids. The synthetic RBCSB gene cluster was composed of a silent DeltaRBCS1B::LUC chimeric gene fusion, lacking all 5' transcription and translation signals, followed by RBCS2B and RBC3B genomic DNA. Expression of luciferase activity (luc(+)) required a homologous recombination event between the DeltaRBCS1B::LUC and the RBCS3B genes, yielding a novel recombinant RBCS3B/ 1B::LUC chimeric gene whose expression was driven by RBCS3B 5' transcription and translation signals. Using sensitive, single-photon-imaging equipment, three luc(+) seedlings were identified in more than 1 million F2 seedlings derived from self-fertilized F1 plants hemizygous for the synthetic RBCSB gene cluster. The F2 luc(+) seedlings were isolated, and molecular and genetic analysis indicated that the luc(+) trait was caused by the formation of a recombinant chimeric RBCS3B/1B::LUC gene. A predicted duplication of the RBCS2B gene also was present. The recombination resolution break points mapped adjacent to a region of intron I at which a disjunction in sequence similarity between RBCS1B and RBCS3B occurs; this provided evidence supporting models of gene cluster evolution by exon-shuffling processes. In contrast to most measures of meiotic unequal crossing-over that require the deletion of a gene in a gene cluster, these results directly measured the frequency of meiotic unequal crossing-over (approximately 3 x 10(-6)), leading to the expansion of the gene cluster and the formation of a novel recombinant gene.
Collapse
Affiliation(s)
- J G Jelesko
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
24
|
Tinland B, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B. The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 1995; 14:3585-95. [PMID: 7628458 PMCID: PMC394426 DOI: 10.1002/j.1460-2075.1995.tb07364.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The VirD2 protein of Agrobacterium tumefaciens was shown to pilot T-DNA during its transfer to the plant cell nucleus. We analyze here its participation in the integration of T-DNA by using a virD2 mutant. This mutation reduces the efficiency of T-DNA transfer, but the efficiency of integration of T-DNA per se is unaffected. Southern and sequence analyses of integration events obtained with the mutated VirD2 protein revealed an aberrant pattern of integration. These results indicate that the wild-type VirD2 protein participates in ligation of the 5'-end of the T-strand to plant DNA and that this ligation step is not rate limiting for T-DNA integration.
Collapse
Affiliation(s)
- B Tinland
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Puchta H, Swoboda P, Gal S, Blot M, Hohn B. Somatic intrachromosomal homologous recombination events in populations of plant siblings. PLANT MOLECULAR BIOLOGY 1995; 28:281-92. [PMID: 7599313 DOI: 10.1007/bf00020247] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Intrachromosomal homologous recombination in whole tobacco plants was analyzed using beta-glucuronidase as non-selectable marker. We found that recombination frequencies were additive for transgenes in allelic positions and could be enhanced by treatment of plants with DNA-damaging agents. We compared the patterns of distribution of recombination events of different transgenic lines of tobacco and Arabidopsis with the respective Poisson distributions. Some lines showed Poisson-like distributions, indicating that recombination at the transgene locus was occurring in a random fashion in the plant population. In other cases, however, the distributions deviated significantly from Poisson distributions indicating that for specific transgene loci and/or configurations recombination events are not randomly distributed in the population. This was due to overrepresentation of plants with especially many as well as especially few recombination events. Analysis of one tobacco line indicated furthermore that the distribution of recombination events could be influenced by treating the seedlings with external factors. Our results suggest that different plant individuals, or parts of them, might exhibit different transient 'states' of recombination competence. A possible model relating 'recombination silencing' and transcription silencing to heterochromatization of the transgene locus is discussed.
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Tinland B, Hohn B, Puchta H. Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci U S A 1994; 91:8000-4. [PMID: 11607492 PMCID: PMC44532 DOI: 10.1073/pnas.91.17.8000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transferred DNA (T-DNA) is transferred as a single-stranded derivative from Agrobacterium to the plant cell nucleus. This conclusion is drawn from experiments exploiting the different properties of single- and double-stranded DNA to perform extrachromosomal homologous recombination in plant cells. After transfer from Agrobacterium to plant cells, T-DNA molecules recombined much more efficiently if the homologous sequences were of opposite polarity than if they were of the same polarity. This observation reflects the properties of single-stranded DNA; single-stranded DNA molecules of opposite polarity can anneal directly, whereas single-stranded DNA molecules of the same polarity first have to become double stranded to anneal. Judging from the relative amounts of single- to double-stranded T-DNA derivatives undergoing recombination, we infer that the T-DNA derivatives enter the plant nucleus in their single-stranded form.
Collapse
Affiliation(s)
- B Tinland
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | |
Collapse
|
27
|
Chédin F, Dervyn E, Dervyn R, Ehrlich SD, Noirot P. Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol 1994; 12:561-9. [PMID: 7934879 DOI: 10.1111/j.1365-2958.1994.tb01042.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of distance between 18 bp direct repeats on deletion formation has been examined in Bacillus subtilis. The deletion frequency decreased exponentially by more than 1000-fold as the distance increased from 33 to 2313 bp. This decrease occurred in two distinct phases, which may be determined by DNA-duplex flexibility. A similar relationship between deletion formation and distance was observed in a theta-replicating plasmid and in the chromosome, indicating that this relationship might have a general validity.
Collapse
Affiliation(s)
- F Chédin
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | | | | | |
Collapse
|
28
|
Hrouda M, Paszkowski J. High fidelity extrachromosomal recombination and gene targeting in plants. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:106-11. [PMID: 8190063 DOI: 10.1007/bf00283882] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The precision of extrachromosomal homologous recombination and gene targeting in plant cells was investigated. Recombination was directed to introns of selectable marker genes where potential changes could persist without affecting the function and therefore the selectability of the genes. Approximately 9 kb of crossover regions was rescued and sequenced. Changes were detected at a frequency below one point mutation per 1000 bp, indicating that extrachromosomal recombination and gene targeting both appear to occur with high fidelity.
Collapse
Affiliation(s)
- M Hrouda
- Research Institute for Corp Production, Praha, Czech Republic
| | | |
Collapse
|
29
|
|
30
|
Puchta H, Dujon B, Hohn B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 1993; 21:5034-40. [PMID: 8255757 PMCID: PMC310614 DOI: 10.1093/nar/21.22.5034] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Induction of double strand breaks (DSBs) is coupled to meiotic and mitotic recombination in yeast. We show that also in a higher eukaryote induction of DSBs is directly correlated with a strong enhancement of recombination frequencies. We cotransfected Nicotiana plumbaginifolia protoplasts with a plasmid carrying a synthetic I-SceI gene, coding for a highly sequence specific endonuclease, together with recombination substrates carrying an I-SceI-site adjacent to their homologous sequences. We measured efficiencies of extrachromosomal recombination, using a well established transient beta-glucuronidase (GUS) assay. GUS enzyme activities were strongly increased when a plasmid carrying the I-SceI gene in sense but not in antisense orientation with respect to the promoter was included in the transfections. The in vivo induced DSBs were detected in the recombination substrates by Southern blotting, demonstrating that the yeast enzyme is functional in plant cells. At high ratios of transfected I-SceI-genes to I-SceI-sites the majority of the I-SceI-sites in the recombination substrates are cleaved, indicating that the induction of the DSBs is the rate limiting step in the described recombination reaction. These results imply that in vivo induction of transient breaks at specific sites in the plant genome could allow foreign DNA to be targeted to these sites via homologous recombination.
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
31
|
Rossi L, Hohn B, Tinland B. The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:345-53. [PMID: 8391110 DOI: 10.1007/bf00276932] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Agrobacterium tumefaciens is able to transfer a piece of DNA, the T-DNA, to the nucleus of the plant cell. The VirD2 protein is required for the production of the T-DNA, it is tightly linked to the T-DNA and it is thought to direct it to the plant genome. Two nuclear localization signals (NLS), one in the N-terminal part and one in the C-terminal part of the VirD2 protein, have been shown to be able to target marker proteins to the plant nucleus. Here we analyze nuclear entry of the T-DNA complex using a new and very sensitive assay for T-DNA transfer. We show that optimal T-DNA transfer requires the VirD2 NLS located in the C-terminal part of the protein, whereas mutations in the N-terminal NLS coding sequence seem to have no effect on T-DNA transfer.
Collapse
Affiliation(s)
- L Rossi
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
32
|
Abstract
Cauliflower mosaic virus 35S RNA contains a 600 nt leader with several small open reading frames that by themselves inhibit translation of downstream coding regions. In the context of the whole leader and in certain plant cells, however, translation of downstream coding regions is allowed. This translation is dependent on the RNA 5' terminus and other elements of the leader. However, its central portion is dispensable or can be modified by insertion of an energy-rich stem-loop structure or long coding region with many internal AUG codons. We conclude that this region can be by-passed (shunted) by the scanning complex. Shunting was also observed in trans between two separate RNA molecules.
Collapse
Affiliation(s)
- J Fütterer
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | |
Collapse
|
33
|
Lichtenstein C, Barrena E. Prospects for reverse genetics in plants using recombination. PLANT MOLECULAR BIOLOGY 1993; 21:v-xii. [PMID: 8490123 DOI: 10.1007/bf00023619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
34
|
Shen WH, Escudero J, Schläppi M, Ramos C, Hohn B, Koukolíková-Nicola Z. T-DNA transfer to maize cells: histochemical investigation of beta-glucuronidase activity in maize tissues. Proc Natl Acad Sci U S A 1993; 90:1488-92. [PMID: 11607370 PMCID: PMC45899 DOI: 10.1073/pnas.90.4.1488] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens is routinely used to engineer desirable genes into dicotyledonous plants. However, the economically important graminaceous plant maize is refractory to tumor induction by inoculation with virulent strains of A. tumefaciens. Currently, the only clearcut evidence for transferred DNA (T-DNA) transport from Agrobacterium to maize comes from agroinfection. To study T-DNA transfer from Agrobacterium to maize cells in a virus-free system, we used here the beta-glucuronidase (GUS; EC 3.2.1.31) gene as a marker. GUS expression was observed with high efficiency on shoots of young maize seedlings after cocultivation with Agrobacterium carrying the GUS gene. Agrobacterium virulence mutants, incapable of transferring T-DNA to dicot tissue, were shown to be deficient in eliciting GUS expression in maize. Hence, expression of the T-DNA-located GUS gene in maize cells is strictly dependent on Agrobacterium-mediated DNA transfer. Histochemical staining of maize shoots revealed GUS expression located mainly in the leaves and the coleoptile.
Collapse
|
35
|
Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol Cell Biol 1992. [PMID: 1630452 DOI: 10.1128/mcb.12.8.3372] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared.
Collapse
|
36
|
Puchta H, Kocher S, Hohn B. Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol Cell Biol 1992; 12:3372-9. [PMID: 1630452 PMCID: PMC364585 DOI: 10.1128/mcb.12.8.3372-3379.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared.
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
37
|
de Groot MJ, Offringa R, Does MP, Hooykaas PJ, van den Elzen PJ. Mechanisms of intermolecular homologous recombination in plants as studied with single- and double-stranded DNA molecules. Nucleic Acids Res 1992; 20:2785-94. [PMID: 1319574 PMCID: PMC336923 DOI: 10.1093/nar/20.11.2785] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To elucidate the mechanism for intermolecular homologous recombination in plants we cotransformed Nicotiana tabacum cv Petit Havana SR1 protoplasts with constructs carrying different defective derivatives of the NPTII gene. The resulting kanamycin resistant clones were screened for possible recombination products by PCR, which proved to be a valuable technique for this analysis. Our results show that the double-stranded circular DNA molecules used in this study recombine predominantly via a pathway consistent with the single-strand annealing (SSA) model as proposed for extrachromosomal recombination in mammalian cells. In the remaining cases recombination occurred via a single reciprocal recombination, gene conversion and possibly double reciprocal recombination. Since single-stranded DNA is considered to be an important intermediate in homologous recombination we also established the recombination ability of single-stranded DNA in intermolecular recombination. We found that single-stranded DNA enters in recombination processes more efficiently than the corresponding double-stranded DNA. This was also reflected in the recombination mechanisms that generated the functional NPTII gene. Recombination between a single-stranded DNA and the complementing DNA duplex occurred at similar rates via a single reciprocal recombination and the SSA pathway.
Collapse
|
38
|
Puchta H, Hohn B. The mechanism of extrachromosomal homologous DNA recombination in plant cells. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:1-7. [PMID: 1745222 DOI: 10.1007/bf00290641] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
By cotransfecting plasmids carrying particular mutations in the beta-glucuronidase (GUS) gene into Nicotiana plumbaginifolia protoplasts and by monitoring the recombination rates using a recently developed transient assay, we were able to obtain insights into the mechanism of extrachromosomal recombination operating in plant cells. An exchange of flanking markers takes place in over 90% of the recombination events. In most of the remaining cases two consecutive, independent single crossover events occur. These events involve the same DNA substrate and lead to two successive exchanges of flanking markers, thus mimicking a presumed double crossover intermediate. A comparison of the outcome of our experiments with the predictions of two recombination models originally proposed for mammalian cells indicates that extrachromosomal recombination in plant cells is best described by the single strand annealing model. According to this model all recombination events result in an exchange of flanking markers. Our results rule out the double strand break repair model which predicts that flanking markers are exchanged in only half of all events.
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|