1
|
Torres-Escobar A, Juárez-Rodríguez MD, Demuth DR. Integration host factor is required for replication of pYGK-derived plasmids in Aggregatibacter actinomycetemcomitans. FEMS Microbiol Lett 2014; 357:184-94. [PMID: 24965736 DOI: 10.1111/1574-6968.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/28/2014] [Accepted: 06/17/2014] [Indexed: 11/27/2022] Open
Abstract
In this study, we show that integration host factor protein (IHF) is required for replication of pYGK plasmids in Aggregatibacter actinomycetemcomitans. YGK plasmids were not replicated in A. actinomycetemcomitans strains lacking either the α- or β- subunit of IHF. However, the deletion mutants were complemented, and plasmid replication was restored when the promoter region and gene for either ihfA or ihfB was cloned into pYGK. We also identified two motifs that resemble the consensus IHF-binding site in a 813-bp fragment containing the pYGK origin of replication. Using electrophoretic mobility shift assays, purified IHFα-IHFβ protein complex was shown to bind to probes containing either of these motifs. To our knowledge, this is the first report showing that plasmid replication is IHF-dependent in the family Pasteurellaceae. In addition, using site-direct mutagenesis, the XbaI and KpnI restriction sites in the suicide vector pJT1 were modified to generate plasmid pJT10. The introduction of these new unique sites in pJT10 facilitates the transfer of transcriptional or translational lacZ fusion constructs for the generation of single-copy chromosomal insertion of the reporter construct. Plasmid pJT10 and its derivatives will be useful for genetic studies in Aggregatibacter (Actinobacillus) and probably other genera of Pasteurellaceae, including Haemophilus, Pasteurella, and Mannheimia.
Collapse
Affiliation(s)
- Ascención Torres-Escobar
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | | | | |
Collapse
|
2
|
Differential transcriptional regulation of Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons by integration host factor protein. J Bacteriol 2014; 196:1597-607. [PMID: 24532769 DOI: 10.1128/jb.00006-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We previously showed that the Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons are regulated by LsrR and cyclic AMP receptor protein (CRP) and that proper regulation of the lsr locus is required for optimal biofilm growth by A. actinomycetemcomitans. Here, we identified sequences that reside immediately upstream from both the lsrA and lsrR start codons that closely resemble the consensus recognition sequence of Escherichia coli integration host factor (IHF) protein. A. actinomycetemcomitans IHFα and IHFβ were expressed and purified as hexahistidine fusion proteins, and using electrophoretic mobility shift assays (EMSAs), the IHFα-IHFβ protein complex was shown to bind to probes containing the putative IHF recognition sequences. In addition, single-copy chromosomal insertions of lsrR promoter-lacZ and lsrA promoter-lacZ transcriptional fusions in wild-type A. actinomycetemcomitans and ΔihfA and ΔihfB mutant strains showed that IHF differentially regulates the lsr locus and functions as a negative regulator of lsrRK and a positive regulator of lsrACDBFG. Deletion of ihfA or ihfB also reduced biofilm formation and altered biofilm architecture relative to the wild-type strain, and these phenotypes were partially complemented by a plasmid-borne copy of ihfA or ihfB. Finally, using 5' rapid amplification of cDNA ends (RACE), two transcriptional start sites (TSSs) and two putative promoters were identified for lsrRK and three TSSs and putative promoters were identified for lsrACDBFG. The function of the two lsrRK promoters and the positive regulatory role of IHF in regulating lsrACDBFG expression were confirmed with a series of lacZ transcriptional fusion constructs. Together, our results highlight the complex transcriptional regulation of the lsrACDBFG and lsrRK operons and suggest that multiple promoters and the architecture of the lsrACDBFG-lsrRK intergenic region may control the expression of these operons.
Collapse
|
3
|
Wilde C, Mazel D, Hochhut B, Middendorf B, Le Roux F, Carniel E, Dobrindt U, Hacker J. Delineation of the recombination sites necessary for integration of pathogenicity islands II and III into the Escherichia coli 536 chromosome. Mol Microbiol 2008; 68:139-51. [DOI: 10.1111/j.1365-2958.2008.06145.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Abstract
The ability of bacterial pathogens to bind to the host mucosa is a critical step in the pathogenesis of many bacterial infections and, for Escherichia coli, a large number of different fimbrial adhesins have been implicated as virulence factors. In this chapter, our current understanding of the regulatory mechanisms that control the expression of two of the best characterized fimbrial adhesins, pyelonephritis-associated pilus (encoded by pap) and the type 1 fimbria (encoded by fim), will be described. The expression of both fimbrial adhesins is controlled by phase variation (the reversible and apparently random switching between expressing ('on') and non-expressing ('off') states), and is regulated in response to environmental conditions. The phase variation of pap (and of some other fimbriae in Escherichia coli) is determined by the formation of alternative nucleoprotein complexes that either activate (phase 'on') or suppress (phase 'off') transcription of the fimbria genes. Formation of each complex protects a single Dam methylation site (5' GATC) from modification (GATCdist in phase 'on' cells and GATCprox in phase 'off' cells). Furthermore, complex formation is inhibited by methylation of the two 5' GATC sites. Both the phase variation of pap and the transcription of the pap genes in phase 'on' cells, are regulated and expression is subject to both positive and negative feedback control. In contrast to pap, the phase variation of fim is determined by the site-specific inversion of a short element of DNA (the fim switch). In phase 'on' cells, a promoter within the invertible element directs the transcription of the fim structural genes, whereas in phase 'off' cells transcription of the fimbrial genes is silenced. Despite the very different molecular mechanisms controlling the expression of pap and fim, the two systems share many features in common and have probably evolved to fulfill the same function. In addition to details about the molecular mechanisms that control pap and fim, the possible physiological significance of the observed regulation will be discussed.
Collapse
Affiliation(s)
- I C Blomfield
- Research School of Biosciences, University of Kent at Canterbury, Canterbury, Kent, CT2 7NJ, UK.
| |
Collapse
|
5
|
Zhong J, Douglas AL, Hatch TP. Characterization of integration host factor (IHF) binding upstream of the cysteine-rich protein operon (omcAB) promoter of Chlamydia trachomatis LGV serovar L2. Mol Microbiol 2001; 41:451-62. [PMID: 11489130 DOI: 10.1046/j.1365-2958.2001.02531.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydiae are bacterial parasites that carry out a distinct developmental cycle within host cells; however, the mechanisms by which these organisms regulate stage-specific gene expression are not known. We identified a DNA element located between nucleotide (nt) -135 and -90 upstream from the transcription start point of the late stage-specific CRP operon (omcAB) of Chlamydia trachomatis, to which a protein in extracts of chlamydiae harvested at 23 h after infection binds. A recombinant protein of C. trachomatis open reading frame (ORF) CT267, which is homologous to bacterial integration host factor (IHF) and the heat-unstable nucleoid protein (HU), bound to the same element and produced the same DNase I footprint as the protein in chlamydial extracts. Recombinant ORF CT267 protein bound with high affinity to the DNA element and induced a sharp bend in a DNA fragment containing the binding site, suggesting that ORF CT267 encodes a protein with IHF-like activity, and recombinant protein had a positive effect on in vitro transcription of the CRP operon. IHF-binding activity and IHF protein were detected in extracts of C. trachomatis during the early to intermediate phases of the late stage of the developmental cycle (between 17 and 30 h after infection), but were absent in the extreme late phase of the cycle and in the infectious form of chlamydiae. The presence of an IHF binding site upstream of the CRP operon and the presence of chlamydial IHF-like protein when late stage genes are transcribed suggests that the chlamydial IHF may play a role in stage-specific gene expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Chlamydia trachomatis/classification
- Chlamydia trachomatis/genetics
- DNA Footprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Bacterial
- Integration Host Factors
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Operon/genetics
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Response Elements/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- J Zhong
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA
| | | | | |
Collapse
|
6
|
Burian J, Stuchlík S, Kay WW. Replication control of a small cryptic plasmid of Escherichia coli. J Mol Biol 1999; 294:49-65. [PMID: 10556028 DOI: 10.1006/jmbi.1999.3266] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the RepA initiator protein in replication and copy-number control of pKL1, a small cryptic plasmid of Escherichia coli, was elucidated. The identified ori region encompasses a copy-number control element (cop) and an active single-strand initiation signal (ssi), n'-pasH, which were essential for efficient plasmid replication. The cop region also harbors a region of plasmid incompatibility, inc, encompassing a stem-loop structure, the repA promoter, Prep, as well as two distinct RepA binding sites, BD-1 and BD-2. RepA was shown to bind to these sites quite differently, binding primarily as a monomer or dimer to BD-1 to initiate RepA transcription and plasmid replication, and as higher oligomers to BD-2 to autoregulate repA transcription, the balance being reflected in plasmid copy number. An active integration host factor (IHF) binding sequence was located in the cop region and plasmid replication was shown to be dependent on host IHF encoding genes himA and himD. Low concentrations of IHF predisposed the cop region to RepA binding, although when highly expressed in trans RepA effectively displaced bound IHF and it overcame IHF dependency. Incompatibility was shown to be due to the titration of RepA at the cop locus but could be easily overridden by excess RepA. Both RepA binding sites were required to maintain incompatibility and effective pKL1 replication. Neither antisense RNA nor iterons were found to be involved in pKL1 regulation, thus pKL1 is a novel example of autoregulation of DNA replication. When produced in excess from a helper plasmid, RepA induced pKL1 replication to unusually high levels (>2500 copies/cell). In addition, pKL1 replication could be artificially modulated and a wide range of copy numbers maintained.
Collapse
Affiliation(s)
- J Burian
- Department of Biochemistry, the Canadian Bacterial Diseases Network, University of Victoria, Petch Building, Victoria, British Columbia, V8W 3P6, Canada
| | | | | |
Collapse
|
7
|
Engelhorn M, Geiselmann J. Maximal transcriptional activation by the IHF protein of Escherichia coli depends on optimal DNA bending by the activator. Mol Microbiol 1998; 30:431-41. [PMID: 9791186 DOI: 10.1046/j.1365-2958.1998.01078.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activation in prokaryotes can be mediated by at least two different mechanisms: direct contacts between the activator and RNA polymerase or modulation of the overall geometry of DNA. In the latter case, an activator protein that bends DNA favours contacts between the DNA upstream of the activator binding site and the back of RNA polymerase. The architectural protein integration host factor (IHF) of Escherichia coli bends DNA and activates transcription at several promoters. We have isolated mutants of IHF that maximize transcriptional activation by adjusting the bending angle of the DNA. The amino acid residues of IHF that adjust the bending angle are close to the DNA and probably make electrostatic interactions with the DNA. We show that transcriptional activation is maintained when the IHF binding site is moved further upstream or when its orientation is inverted, and we conclude from these data that direct interactions between IHF and RNA polymerase do not participate in activation. IHF acts merely by bending DNA; weaker bending leading to stronger activation. We propose that wild-type IHF induces too strong a DNA bend (180 degrees) for optimal interactions between DNA upstream of the IHF binding site and the back of RNA polymerase.
Collapse
Affiliation(s)
- M Engelhorn
- Department of Molecular Biology, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
8
|
Desmet L, Gama MJ, Laachouch JE, Petrescu I, Rousseau P, Toussaint A. In vivo mutational analysis of bacteriophage Mu operators. Res Microbiol 1997; 148:101-8. [PMID: 9765791 DOI: 10.1016/s0923-2508(97)87641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In bacteria lysogenic for bacteriophage Mu, the phage repressor binds to a tripartite operator region, O1,O2,O3, to repress the lytic promoter pE, located in O2, and negatively autoregulate its own synthesis at the pCM promoter located in O3. We isolated and characterized operator mutations which lead to derepression of pE. Their location in the first and third repressor-consensus-binding sequences in O2 confirms the importance of these sites for repressor/operator interactions.
Collapse
Affiliation(s)
- L Desmet
- Laboratoire de Génétique des Procaryotes, Université Libre de Bruxelles, Rhode St Genèse Belgium
| | | | | | | | | | | |
Collapse
|
9
|
van Ulsen P, Hillebrand M, Zulianello L, van de Putte P, Goosen N. Integration host factor alleviates the H-NS-mediated repression of the early promoter of bacteriophage Mu. Mol Microbiol 1996; 21:567-78. [PMID: 9082117 DOI: 10.1111/j.1365-2958.1996.tb02565.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Integration host factor (IHF), which is a histone-like protein, has been shown to positively regulate transcription in two different ways. It can either help the formation of a complex between a transcription factor and RNA polymerase or it can itself activate RNA polymerase without the involvement of other transcription factors. In this study, we present a third mechanism for IHF-stimulated gene expression, by counteracting the repression by another histone-like protein, H-NS. The early (Pe) promoter of bacteriophage Mu is specifically inhibited by H-NS, both in vivo and in vitro. For this inhibition, H-NS binds to a large DNA region overlapping the Pe promoter. Binding of IHF to a binding site just upstream of Pe alleviates the H-NS-mediated repression of transcription. This same ihf site is also involved in the direct activation of Pe by IHF. In contrast to the direct activation by IHF, however, the alleviating effect of IHF appears not to be dependent on the relevant position of the ihf site on the DNA helix, and it also does not require the presence of the C-terminal domain of the alpha subunit of RNA polymerase. Footprint analysis shows that binding of IHF to the ihf site destabilizes the interaction of H-NS with the DNA, not only in the IHF-binding region but also in the DNA regions flanking the ihf site. These results suggest that IHF disrupts a higher-order nucleoprotein complex that is formed by H-NS and the DNA.
Collapse
Affiliation(s)
- P van Ulsen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Hales LM, Gumport RI, Gardner JF. Examining the contribution of a dA+dT element to the conformation of Escherichia coli integration host factor-DNA complexes. Nucleic Acids Res 1996; 24:1780-6. [PMID: 8650000 PMCID: PMC145845 DOI: 10.1093/nar/24.9.1780] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA binding proteins that induce structural changes in DNA are common in both prokaryotes and eukaryotes. Integration host factor (IHF) is a multi-functional DNA binding and bending protein of Escherichia coli that can mediate protein-protein and protein-DNA interactions by bending DNA. Previously we have shown that the presence of a dA+dT element 5'-proximal to an IHF consensus sequence can affect the binding of IHF to a particular site. In this study the contribution of various sequence elements to the formation of IHF-DNA complexes was examined. We show that IHF bends DNA more when it binds to a site containing a dA+dT element upstream of its core consensus element than to a site lacking a dA+dT element. We demonstrate that IHF can be specifically crosslinked to DNA with binding sites either containing or lacking this dA+dT element. These results indicate the importance of flanking DNA and a dA+dT element in the binding and bending of a site by IHF.
Collapse
Affiliation(s)
- L M Hales
- Department of Microbiology, University of Illinois, Urbana, 61801, USA
| | | | | |
Collapse
|
11
|
Rousseau P, Bétermier M, Chandler M, Alazard R. Interactions between the repressor and the early operator region of bacteriophage Mu. J Biol Chem 1996; 271:9739-45. [PMID: 8621652 DOI: 10.1074/jbc.271.16.9739] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The repressor of bacteriophage Mu, c, binds to three operator sites, O1, O2, and O3, overlapping two divergent promoters, which regulate the lytic and lysogenic pathways. Its binding to this operator region generates several complexes, which were analyzed by DNase I protection experiments. We demonstrate that c first binds to two 11-base pair partially repeated sequences in O2 that could represent "core" binding sites for the repressor. This initial interaction serves as an organizer of a more complex nucleoprotein structure in which O2, O1, and O3 become successively occupied. The quaternary structure of the repressor was also investigated. Size exclusion chromatography and protein-protein crosslinking experiments with chemicals that possess linking arms of various lengths indicate that the repressor oligomerizes in solution. A model is proposed describing the successive interactions of c with the operator sites O2, O1, and O3 leading to the elaboration of a higher order structure in which the early lytic functions are repressed.
Collapse
Affiliation(s)
- P Rousseau
- Laboratoire de Microbiologie et Genetique Moleculaires, CNRS, Toulouse, France
| | | | | | | |
Collapse
|
12
|
Betermier M, Rousseau P, Alazard R, Chandler M. Mutual stabilisation of bacteriophage Mu repressor and histone-like proteins in a nucleoprotein structure. J Mol Biol 1995; 249:332-41. [PMID: 7783197 DOI: 10.1006/jmbi.1995.0300] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Integration host factor (IHF) binds in a sequence-specific manner to the bacteriophage Mu early operator. It participates with bound Mu repressor, c, in building stable, large molecular mass nucleoprotein complexes in vitro and enhances repression of early transcription in vivo. We demonstrate that, when the specific IHF binding site with the operator is mutated, the appearance of large molecular mass complexes still depends on IHF and c, but the efficiency of their formation is reduced. Moreover, the IHF-like HU protein, which binds DNA in a non-sequence-specific way, can substitute for IHF and participate in complex formation. Since the complexes require both c and a host factor (IHF or HU), the results imply that these proteins stabilise each other within the nucleoprotein structures. These results suggest that IHF and HU are directed to the repressor-operator complexes, even in the absence of detectable sequence-specific binding. This could be a consequence of their preferential recognition of DNA containing a distortion such as that introduced by repressor binding to the operator. The histone-like proteins could then stabilise the nucleoprotein complexes simply by their capacity to maintain a bend in DNA rather than by specific protein-protein interactions with c. This model is supported by the observation that the unrelated eukaryotic HMG-1 protein, which exhibits a similar marked preference for structurally deformed DNA, is also able to participate in the formation of higher-order complexes with c and the operator DNA.
Collapse
Affiliation(s)
- M Betermier
- Laboratory of Molecular Genetics and Microbiology, C.N.R.S., Toulouse, France
| | | | | | | |
Collapse
|
13
|
Abstract
Integration host factor (IHF) of Escherichia coli is an asymmetric histone-like protein that binds and bends the DNA at specific sequences. IHF functions as an accessory factor in a wide variety of processes including replication, site-specific recombination and transcription. In many of these processes IHF was shown to act as an architectural element which helps the formation of nucleo-protein complexes by bending of the DNA at specific sites. This MicroReview shows how such a structural role of IHF can influence the initiation of transcription. In addition, it summarizes the evidence indicating that IHF can stimulate transcription via a direct interaction with RNA polymerase and explores the possibility that the asymmetry of the IHF protein might reflect such an interaction.
Collapse
Affiliation(s)
- N Goosen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | |
Collapse
|
14
|
Ditto MD, Roberts D, Weisberg RA. Growth phase variation of integration host factor level in Escherichia coli. J Bacteriol 1994; 176:3738-48. [PMID: 8206852 PMCID: PMC205563 DOI: 10.1128/jb.176.12.3738-3748.1994] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have measured the intracellular abundance of integration host factor (IHF), a site-specific, heterodimeric DNA-binding protein, in exponential- and stationary-phase cultures of Escherichia coli K-12. Western immunoblot analysis showed that cultures that had been growing exponentially for several generations contained 0.5 to 1.0 ng of IHF subunits per microgram of total protein and that this increased to 5 to 6 ng/microgram in late-stationary-phase cultures. IHF is about one-third to one-half as abundant in exponentially growing cells as HU, a structurally related protein that binds DNA with little or no site specificity. Wild-type IHF is metabolically stable, but deletion mutations that eliminated one subunit reduced the abundance of the other when cells enter stationary phase. We attribute this reduction to the loss of stabilizing interactions between subunits. A mutation that inactivates IHF function but not subunit interaction increased IHF abundance, consistent with results of previous work showing that IHF synthesis is negatively autoregulated. We estimate that steady-state exponential-phase cultures contain about 8,500 to 17,000 IHF dimers per cell, a surprisingly large number for a site-specific DNA-binding protein with a limited number of specific sites. Nevertheless, small reductions in IHF abundance had significant effects on several IHF-dependent functions, suggesting that the wild-type exponential phase level is not in large excess of the minimum required for occupancy of physiologically important IHF-binding sites.
Collapse
Affiliation(s)
- M D Ditto
- Section on Microbial Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|
15
|
Bétermier M, Poquet I, Alazard R, Chandler M. Involvement of Escherichia coli FIS protein in maintenance of bacteriophage mu lysogeny by the repressor: control of early transcription and inhibition of transposition. J Bacteriol 1993; 175:3798-811. [PMID: 8389742 PMCID: PMC204797 DOI: 10.1128/jb.175.12.3798-3811.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Escherichia coli FIS (factor for inversion stimulation) protein has been implicated in assisting bacteriophage Mu repressor, c, in maintaining the lysogenic state under certain conditions. In a fis strain, a temperature-inducible Mucts62 prophage is induced at lower temperatures than in a wild-type host (M. Bétermier, V. Lefrère, C. Koch, R. Alazard, and M. Chandler, Mol. Microbiol. 3:459-468, 1989). Increasing the prophage copy number rendered Mucts62 less sensitive to this effect of the fis mutation, which thus seems to depend critically on the level of repressor activity. The present study also provides evidence that FIS affects the control of Mu gene expression and transposition. As judged by the use of lac transcriptional fusions, repression of early transcription was reduced three- to fourfold in a fis background, and this could be compensated by an increase in cts62 gene copy number. c was also shown to inhibit Mu transposition two- to fourfold less strongly in a fis host. These modulatory effects, however, could not be correlated to sequence-specific binding of FIS to the Mu genome, in particular to the strong site previously identified on the left end. We therefore speculate that a more general function of FIS is responsible for the observed modulation of Mu lysogeny.
Collapse
Affiliation(s)
- M Bétermier
- Molecular Genetics and Microbiology Laboratory, Centre National de la Recherche Scientifique UPR 9007, Toulouse, France
| | | | | | | |
Collapse
|
16
|
Charlier D, Roovers M, Gigot D, Huysveld N, Piérard A, Glansdorff N. Integration host factor (IHF) modulates the expression of the pyrimidine-specific promoter of the carAB operons of Escherichia coli K12 and Salmonella typhimurium LT2. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:273-86. [PMID: 8455562 DOI: 10.1007/bf00282809] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report the identification of Integration Host Factor (IHF) as a new element involved in modulation of P1, the upstream pyrimidine-specific promoter of the Escherichia coli K12 and Salmonella typhimurium carAB operons. Band-shift assays, performed with S-30 extracts of the wild type and a himA, hip double mutant or with purified IHF demonstrate that, in vitro, this factor binds to a region 300 bp upstream of the transcription initiation site of P1 in both organisms. This was confirmed by deletion analysis of the target site. DNase I, hydroxyl radical and dimethylsulphate footprinting experiments allowed us to allocate the IHF binding site to a 38 bp, highly A+T-rich stretch, centred around nucleotide -305 upstream of the transcription initiation site. Protein-DNA contacts are apparently spread over a large number of bases and are mainly located in the minor groove of the helix. Measurements of carbamoyl-phosphate synthetase (CPSase) and beta-galactosidase specific activities from car-lacZ fusion constructs of wild type or IHF target site mutants introduced into several genetic backgrounds affected in the himA gene or in the pyrimidine-mediated control of P1 (carP6 or pyrH+/-), or in both, indicate that, in vivo, IHF influences P1 activity as well as its control by pyrimidines. IHF stimulates P1 promoter activity in minimal medium, but increases the repressibility of this promoter by pyrimidines. These antagonistic effects result in a two- to threefold reduction in the repressibility of promoter P1 by pyrimidines in the absence of IHF binding. IHF thus appears to be required for maximal expression as well as for establishment of full repression. IHF could exert this function by modulating the binding of a pyrimidine-specific regulatory molecule.
Collapse
Affiliation(s)
- D Charlier
- Research Institute, CERIA-COOVI, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Giladi H, Igarashi K, Ishihama A, Oppenheim AB. Stimulation of the phage lambda pL promoter by integration host factor requires the carboxy terminus of the alpha-subunit of RNA polymerase. J Mol Biol 1992; 227:985-90. [PMID: 1433303 DOI: 10.1016/0022-2836(92)90514-k] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Escherichia coli integration host factor (IHF) binds with high affinity to two tandem IHF consensus sequences located upstream from the pL promoter of bacteriophage lambda. IHF was shown to stimulate transcription initiation from the pL promoter by increasing close complex formation (KB). We show here, by the use of reconstituted mutant RNA polymerases, that the C-terminal portion of the alpha subunit of RNA polymerase plays an essential role in the stimulation of transcription by IHF. Our results are in agreement with the hypothesis that IHF, like the cAMP-CRP activator, increases the affinity of RNA polymerase to the promoter by protein-protein interaction.
Collapse
Affiliation(s)
- H Giladi
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
18
|
Alazard R, Bétermier M, Chandler M. Escherichia coli integration host factor stabilizes bacteriophage Mu repressor interactions with operator DNA in vitro. Mol Microbiol 1992; 6:1707-14. [PMID: 1386645 DOI: 10.1111/j.1365-2958.1992.tb00895.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using gel retardation and DNase I protection techniques, we have demonstrated that the Escherichia coli integration host factor (IHF) stabilizes the interaction between Mu repressor and its cognate operator-binding sites in vitro. These results are discussed in terms of a model in which IHF may commit the phage to the lytic or lysogenic pathway depending on the occupancy of the operator sites by the repressor.
Collapse
Affiliation(s)
- R Alazard
- Centre de Recherches en Biochimie et Génétique Cellulaires, Toulouse, France
| | | | | |
Collapse
|
19
|
Gama MJ, Toussaint A, Higgins NP. Stabilization of bacteriophage Mu repressor-operator complexes by the Escherichia coli integration host factor protein. Mol Microbiol 1992; 6:1715-22. [PMID: 1386646 DOI: 10.1111/j.1365-2958.1992.tb00896.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All of the previously described effects of integration host factor (IHF) on bacteriophage Mu development have supported the view that IHF favours transposition-replication over the alternative state of lysogenic phage growth. In this report we show that, consistent with a model in which Mu repressor binding to its operators requires a particular topology of the operator DNA, IHF stimulates repressor binding to the O1 and O2 operators and enhances Mu repression. IHF would thus be one of the keys, besides supercoiling and the H-NS protein, that lock the operator region into the appropriate topological conformation for high-affinity binding not only of the phage transposase but also of the phage repressor.
Collapse
Affiliation(s)
- M J Gama
- Unité Transposition Bactérienne, Université Libre de Bruxelles, Rhode Saint Genèse, Belgium
| | | | | |
Collapse
|