1
|
Kara H, Axer A, Muskett FW, Bueno-Alejo CJ, Paschalis V, Taladriz-Sender A, Tubasum S, Vega MS, Zhao Z, Clark AW, Hudson AJ, Eperon IC, Burley GA, Dominguez C. 2'- 19F labelling of ribose in RNAs: a tool to analyse RNA/protein interactions by NMR in physiological conditions. Front Mol Biosci 2024; 11:1325041. [PMID: 38419689 PMCID: PMC10899400 DOI: 10.3389/fmolb.2024.1325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Protein-RNA interactions are central to numerous cellular processes. In this work, we present an easy and straightforward NMR-based approach to determine the RNA binding site of RNA binding proteins and to evaluate the binding of pairs of proteins to a single-stranded RNA (ssRNA) under physiological conditions, in this case in nuclear extracts. By incorporation of a 19F atom on the ribose of different nucleotides along the ssRNA sequence, we show that, upon addition of an RNA binding protein, the intensity of the 19F NMR signal changes when the 19F atom is located near the protein binding site. Furthermore, we show that the addition of pairs of proteins to a ssRNA containing two 19F atoms at two different locations informs on their concurrent binding or competition. We demonstrate that such studies can be done in a nuclear extract that mimics the physiological environment in which these protein-ssRNA interactions occur. Finally, we demonstrate that a trifluoromethoxy group (-OCF3) incorporated in the 2'ribose position of ssRNA sequences increases the sensitivity of the NMR signal, leading to decreased measurement times, and reduces the issue of RNA degradation in cellular extracts.
Collapse
Affiliation(s)
- Hesna Kara
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Alexander Axer
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Frederick W Muskett
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Carlos J Bueno-Alejo
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Vasileios Paschalis
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Sumera Tubasum
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Marina Santana Vega
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zhengyun Zhao
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Hudson
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Ian C Eperon
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Glenn A Burley
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Cyril Dominguez
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Dagenais P, Desjardins G, Legault P. An integrative NMR-SAXS approach for structural determination of large RNAs defines the substrate-free state of a trans-cleaving Neurospora Varkud Satellite ribozyme. Nucleic Acids Res 2021; 49:11959-11973. [PMID: 34718697 PMCID: PMC8599749 DOI: 10.1093/nar/gkab963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
The divide-and-conquer strategy is commonly used for protein structure determination, but its applications to high-resolution structure determination of RNAs have been limited. Here, we introduce an integrative approach based on the divide-and-conquer strategy that was undertaken to determine the solution structure of an RNA model system, the Neurospora VS ribozyme. NMR and SAXS studies were conducted on a minimal trans VS ribozyme as well as several isolated subdomains. A multi-step procedure was used for structure determination that first involved pairing refined NMR structures with SAXS data to obtain structural subensembles of the various subdomains. These subdomain structures were then assembled to build a large set of structural models of the ribozyme, which was subsequently filtered using SAXS data. The resulting NMR-SAXS structural ensemble shares several similarities with the reported crystal structures of the VS ribozyme. However, a local structural difference is observed that affects the global fold by shifting the relative orientation of the two three-way junctions. Thus, this finding highlights a global conformational change associated with substrate binding in the VS ribozyme that is likely critical for its enzymatic activity. Structural studies of other large RNAs should benefit from similar integrative approaches that allow conformational sampling of assembled fragments.
Collapse
Affiliation(s)
- Pierre Dagenais
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| | - Geneviève Desjardins
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| |
Collapse
|
4
|
Riad M, Hopkins N, Baronti L, Karlsson H, Schlagnitweit J, Petzold K. Mutate-and-chemical-shift-fingerprint (MCSF) to characterize excited states in RNA using NMR spectroscopy. Nat Protoc 2021; 16:5146-5170. [PMID: 34608336 DOI: 10.1038/s41596-021-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
It is important to understand the dynamics and higher energy structures of RNA, called excited states, to achieve better understanding of RNA function. R1ρ relaxation dispersion NMR spectroscopy (RD) determines chemical shift differences between the most stable, ground state and the short-lived, low-populated excited states. We describe a procedure for deducing the excited state structure from these chemical shift differences using the mutate-and-chemical-shift-fingerprint (MCSF) method, which requires ~2-6 weeks and moderate understanding of NMR and RNA structure. We recently applied the MCSF methodology to elucidate the excited state of microRNA 34a targeting the SIRT1 mRNA and use this example to demonstrate the analysis. The protocol comprises the following steps: (i) determination of the secondary structure of the excited state from RD chemical shift data, (ii) design of trapped excited state RNA, (iii) validation of the excited state structure by NMR, and (iv) MCSF analysis comparing the chemical shifts of the trapped excited state with the RD-derived chemical shift differences. MCSF enables observation of the short-lived RNA structures, which can be functionally and structurally characterized by entrapment.
Collapse
Affiliation(s)
- Magdalena Riad
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Noah Hopkins
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
5
|
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021; 26:5581. [PMID: 34577051 PMCID: PMC8466439 DOI: 10.3390/molecules26185581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
RNA structural research lags behind that of proteins, preventing a robust understanding of RNA functions. NMR spectroscopy is an apt technique for probing the structures and dynamics of RNA molecules in solution at atomic resolution. Still, RNA analysis by NMR suffers from spectral overlap and line broadening, both of which worsen for larger RNAs. Incorporation of stable isotope labels into RNA has provided several solutions to these challenges. In this review, we summarize the benefits and limitations of various methods used to obtain isotope-labeled RNA building blocks and how they are used to prepare isotope-labeled RNA for NMR structure and dynamics studies.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Kehinde M. Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| |
Collapse
|
6
|
Structural Biology for the Molecular Insight between Aptamers and Target Proteins. Int J Mol Sci 2021; 22:ijms22084093. [PMID: 33920991 PMCID: PMC8071422 DOI: 10.3390/ijms22084093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are promising therapeutic and diagnostic agents for various diseases due to their high affinity and specificity against target proteins. Structural determination in combination with multiple biochemical and biophysical methods could help to explore the interacting mechanism between aptamers and their targets. Regrettably, structural studies for aptamer–target interactions are still the bottleneck in this field, which are facing various difficulties. In this review, we first reviewed the methods for resolving structures of aptamer–protein complexes and for analyzing the interactions between aptamers and target proteins. We summarized the general features of the interacting nucleotides and residues involved in the interactions between aptamers and proteins. Challenges and perspectives in current methodologies were discussed. Approaches for determining the binding affinity between aptamers and target proteins as well as modification strategies for stabilizing the binding affinity of aptamers to target proteins were also reviewed. The review could help to understand how aptamers interact with their targets and how alterations such as chemical modifications in the structures affect the affinity and function of aptamers, which could facilitate the optimization and translation of aptamers-based theranostics.
Collapse
|
7
|
Schnieders R, Knezic B, Zetzsche H, Sudakov A, Matzel T, Richter C, Hengesbach M, Schwalbe H, Fürtig B. NMR Spectroscopy of Large Functional RNAs: From Sample Preparation to Low-Gamma Detection. ACTA ACUST UNITED AC 2020; 82:e116. [PMID: 32960489 DOI: 10.1002/cpnc.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NMR spectroscopy is a potent method for the structural and biophysical characterization of RNAs. The application of NMR spectroscopy is restricted in RNA size and most often requires isotope-labeled or even selectively labeled RNAs. Additionally, new NMR pulse sequences, such as the heteronuclear-detected NMR experiments, are introduced. We herein provide detailed protocols for the preparation of isotope-labeled RNA for NMR spectroscopy via in vitro transcription. This protocol covers all steps, from the preparation of DNA template to the transcription of milligram RNA quantities. Moreover, we present a protocol for a chemo-enzymatic approach to introduce a single modified nucleotide at any position of any RNA. Regarding NMR methodology, we share protocols for the implementation of a suite of heteronuclear-detected NMR experiments including 13 C-detected experiments for ribose assignment and amino groups, the CN-spin filter heteronuclear single quantum coherence (HSQC) for imino groups and the 15 N-detected band-selective excitation short transient transverse-relaxation-optimized spectroscopy (BEST-TROSY) experiment. © 2020 The Authors. Basic Protocol 1: Preparation of isotope-labeled RNA samples with in vitro transcription using T7 RNAP, DEAE chromatography, and RP-HPLC purification Alternate Protocol 1: Purification of isotope-labeled RNA from in vitro transcription with preparative PAGE Alternate Protocol 2: Purification of isotope-labeled RNA samples from in vitro transcription via centrifugal concentration Support Protocol 1: Preparation of DNA template from plasmid Support Protocol 2: Preparation of PCR DNA as template Support Protocol 3: Preparation of T7 RNA Polymerase (T7 RNAP) Support Protocol 4: Preparation of yeast inorganic pyrophosphatase (YIPP) Basic Protocol 2: Preparation of site-specific labeled RNAs using a chemo-enzymatic synthesis Support Protocol 5: Synthesis of modified nucleoside 3',5'-bisphosphates Support Protocol 6: Preparation of T4 RNA Ligase 2 Support Protocol 7: Setup of NMR spectrometer for heteronuclear-detected NMR experiments Support Protocol 8: IPAP and DIPAP for homonuclear decoupling Basic Protocol 3: 13 C-detected 3D (H)CC-TOCSY, (H)CPC, and (H)CPC-CCH-TOCSY experiments for ribose assignment Basic Protocol 4: 13 C-detected 2D CN-spin filter HSQC experiment Basic Protocol 5: 13 C-detected C(N)H-HDQC experiment for the detection of amino groups Support Protocol 9: 13 C-detected CN-HSQC experiment for amino groups Basic Protocol 6: 13 C-detected "amino"-NOESY experiment Basic Protocol 7: 15 N-detected BEST-TROSY experiment.
Collapse
Affiliation(s)
- Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| | - Heidi Zetzsche
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| | - Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| | - Tobias Matzel
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Germany
| |
Collapse
|
8
|
Chang AT, Chen L, Song L, Zhang S, Nikonowicz EP. 2-Amino-1,3-benzothiazole-6-carboxamide Preferentially Binds the Tandem Mismatch Motif r(UY:GA). Biochemistry 2020; 59:3225-3234. [PMID: 32786414 DOI: 10.1021/acs.biochem.0c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA helices are often punctuated with non-Watson-Crick features that may be targeted by chemical compounds, but progress toward identifying such compounds has been slow. We embedded a tandem UU:GA mismatch motif (5'-UG-3':5'-AU-3') within an RNA hairpin stem to identify compounds that bind the motif specifically. The three-dimensional structure of the RNA hairpin and its interaction with a small molecule identified through virtual screening are presented. The G-A mismatch forms a sheared pair upon which the U-U base pair stacks. The hydrogen bond configuration of the U-U pair involves O2 of the U adjacent to the G and O4 of the U adjacent to the A. The G-A and U-U pairs are flanked by A-U and G-C base pairs, respectively, and the stability of the mismatch is greater than when the motif is within the context of other flanking base pairs or when the 5'-3' orientation of the G-A and U-U pairs is swapped. Residual dipolar coupling constants were used to generate an ensemble of structures against which a virtual screen of 64480 small molecules was performed. The tandem mismatch was found to be specific for one compound, 2-amino-1,3-benzothiazole-6-carboxamide, which binds with moderate affinity but extends the motif to include the flanking A-U and G-C base pairs. The finding that the affinity for the UU:GA mismatch is dependent on flanking sequence emphasizes the importance of the motif context and potentially increases the number of small noncanonical features within RNA that can be specifically targeted by small molecules.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States.,Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford Medicine, Stanford, California 94305-5103, United States
| | - Lu Chen
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, M. D. Anderson Cancer Center, 1901 East Road, Houston, Texas 77054, United States
| | - Luo Song
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, M. D. Anderson Cancer Center, 1901 East Road, Houston, Texas 77054, United States
| | - Shuxing Zhang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, M. D. Anderson Cancer Center, 1901 East Road, Houston, Texas 77054, United States
| | - Edward P Nikonowicz
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States
| |
Collapse
|
9
|
Chemo-enzymatic synthesis of [2-13C, 7-15 N]-ATP for facile NMR analysis of RNA. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02667-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Solid-state NMR spectroscopy for characterization of RNA and RNP complexes. Biochem Soc Trans 2020; 48:1077-1087. [PMID: 32573690 DOI: 10.1042/bst20191080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
Ribonucleic acids are driving a multitude of biological processes where they act alone or in complex with proteins (ribonucleoproteins, RNP). To understand these processes both structural and mechanistic information about RNA is necessary. Due to their conformational plasticity RNA pose a challenge for mainstream structural biology methods. Solid-state NMR (ssNMR) spectroscopy is an emerging technique that can be applied to biomolecular complexes of any size in close-to-native conditions. This review outlines recent methodological developments in ssNMR for structural characterization of RNA and protein-RNA complexes and provides relevant examples.
Collapse
|
11
|
Asadi-Atoi P, Barraud P, Tisne C, Kellner S. Benefits of stable isotope labeling in RNA analysis. Biol Chem 2020; 400:847-865. [PMID: 30893050 DOI: 10.1515/hsz-2018-0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
RNAs are key players in life as they connect the genetic code (DNA) with all cellular processes dominated by proteins. They contain a variety of chemical modifications and many RNAs fold into complex structures. Here, we review recent progress in the analysis of RNA modification and structure on the basis of stable isotope labeling techniques. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the key tools and many breakthrough developments were made possible by the analysis of stable isotope labeled RNA. Therefore, we discuss current stable isotope labeling techniques such as metabolic labeling, enzymatic labeling and chemical synthesis. RNA structure analysis by NMR is challenging due to two major problems that become even more salient when the size of the RNA increases, namely chemical shift overlaps and line broadening leading to complete signal loss. Several isotope labeling strategies have been developed to provide solutions to these major issues, such as deuteration, segmental isotope labeling or site-specific labeling. Quantification of modified nucleosides in RNA by MS is only possible through the application of stable isotope labeled internal standards. With nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS), it is now possible to analyze the dynamic processes of post-transcriptional RNA modification and demodification. The trend, in both NMR and MS RNA analytics, is without doubt shifting from the analysis of snapshot moments towards the development and application of tools capable of analyzing the dynamics of RNA structure and modification profiles.
Collapse
Affiliation(s)
- Paria Asadi-Atoi
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Pierre Barraud
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Carine Tisne
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
12
|
Solid-Phase Chemical Synthesis of Stable Isotope-Labeled RNA to Aid Structure and Dynamics Studies by NMR Spectroscopy. Molecules 2019; 24:molecules24193476. [PMID: 31557861 PMCID: PMC6804060 DOI: 10.3390/molecules24193476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift overlap and line broadening, both of which become worse as RNA size increases. Incorporation of stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless, the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of RNA structure and dynamic studies using labeled phosphoramidites are highlighted.
Collapse
|
13
|
Zhang H, Keane SC. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1541. [PMID: 31025514 PMCID: PMC7169810 DOI: 10.1002/wrna.1541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/18/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The characterization of functional yet nonprotein coding (nc) RNAs has expanded the role of RNA in the cell from a passive player in the central dogma of molecular biology to an active regulator of gene expression. The misregulation of ncRNA function has been linked with a variety of diseases and disorders ranging from cancers to neurodegeneration. However, a detailed molecular understanding of how ncRNAs function has been limited; due, in part, to the difficulties associated with obtaining high-resolution structures of large RNAs. Tertiary structure determination of RNA as a whole is hampered by various technical challenges, all of which are exacerbated as the size of the RNA increases. Namely, RNAs tend to be highly flexible and dynamic molecules, which are difficult to crystallize. Biomolecular nuclear magnetic resonance (NMR) spectroscopy offers a viable alternative to determining the structure of large RNA molecules that do not readily crystallize, but is itself hindered by some technical limitations. Recently, a series of advancements have allowed the biomolecular NMR field to overcome, at least in part, some of these limitations. These advances include improvements in sample preparation strategies as well as methodological improvements. Together, these innovations pave the way for the study of ever larger RNA molecules that have important biological function. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Huaqun Zhang
- Biophysics Program, University of Michigan, Ann Arbor, Michigan
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
|
15
|
Marchanka A, Kreutz C, Carlomagno T. Isotope labeling for studying RNA by solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 71:151-164. [PMID: 29651587 DOI: 10.1007/s10858-018-0180-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Alexander Marchanka
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hanover, Germany
| | - Christoph Kreutz
- Organic Chemistry, University of Innsbruck (CCB), Innrain 80/82, 6020, Innsbruck, Austria
| | - Teresa Carlomagno
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hanover, Germany.
- Helmholtz Centre for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstraße 7, 38124, Brunswick, Germany.
| |
Collapse
|
16
|
Zhang W, Turney T, Surjancev I, Serianni AS. Enzymatic synthesis of ribo- and 2'-deoxyribonucleosides from glycofuranosyl phosphates: An approach to facilitate isotopic labeling. Carbohydr Res 2017; 449:125-133. [PMID: 28780317 DOI: 10.1016/j.carres.2017.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/25/2023]
Abstract
Milligram quantities of α-D-ribofuranosyl 1-phosphate (sodium salt) (αR1P) were prepared by the phosphorolysis of inosine, catalyzed by purine nucleoside phosphorylase (PNPase). The αR1P was isolated by chromatography in >95% purity and characterized by 1H and 13C NMR spectroscopy. Aqueous solutions of αR1P were stable at pH 6.4 and 4 °C for several months. The isolated αR1P was N-glycosylated with different nitrogen bases (adenine, guanine and uracil) using PNPase or uridine phosphorylase (UPase) to give the corresponding ribonucleosides in high yield based on the glycosyl phosphate. This methodology is attractive for the preparation of stable isotopically labeled ribo- and 2'-deoxyribonucleosides because of the ease of product purification and convenient use and recycling of nitrogen bases. The approach eliminates the need for separate reactions to prepare individual furanose-labeled ribonucleosides, since only one ribonucleoside (inosine) needs to be labeled, if desired, in the furanose ring, the latter achieved by a high-yield chemical N-glycosylation. 2'-Deoxyribonucleosides were prepared from 2'-deoxyinosine using the same methodology with minor modifications.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA.
| | - Toby Turney
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA
| | - Ivana Surjancev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670 USA.
| |
Collapse
|
17
|
Fang X, Michnicka M, Zhang Y, Wang YX, Nikonowicz EP. Capture and Release of tRNA by the T-Loop Receptor in the Function of the T-Box Riboswitch. Biochemistry 2017; 56:3549-3558. [PMID: 28621923 PMCID: PMC5813812 DOI: 10.1021/acs.biochem.7b00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Gram-positive bacteria, the tRNA-dependent T-box riboswitch system regulates expression of amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. Binding of uncharged tRNA "closes" the switch, allowing transcription read-through. Structural studies of the 100-nucleotide stem I domain reveal tRNA utilizes base pairing and stacking interactions to bind the stem, but little is known structurally about the 180-nucleotide riboswitch core (stem I, stem III, and antiterminator stem) in complex with tRNA or the mechanism of coupling of the intermolecular binding domains crucial to T-box function. Here we utilize solution structural and biophysical methods to characterize the interplay of the different riboswitch-tRNA contact points using Bacillus subtilis and Oceanobacillus iheyensis glycyl T-box and T-box:tRNA constructs. The data reveal that tRNA:riboswitch core binding at equilibrium involves only Specifier-anticodon and antiterminator-acceptor stem pairing. The elbow:platform stacking interaction observed in studies of the T-box stem I domain is released after pairing between the acceptor stem and the bulge in the antiterminator helix. The results are consistent with the model of T-box riboswitch:tRNA function in which tRNA is captured by stem I of the nascent mRNA followed by stabilization of the antiterminator helix and the paused transcription complex.
Collapse
Affiliation(s)
- Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China, 100084
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD 21702
| | | | - Yikan Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD 21702
| | | |
Collapse
|
18
|
Chang AT, Tran M, Nikonowicz EP. Structure and Dynamics of the Tetra-A Loop and (A-A)-U Sequence Motif within the Coliphage GA Replicase RNA Operator. Biochemistry 2017; 56:2690-2700. [PMID: 28488852 DOI: 10.1021/acs.biochem.7b00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The three-dimensional structure of a RNA hairpin containing the RNA operator binding site for bacteriophage GA coat protein is presented. The phage GA operator contains the asymmetric (A-A)-U sequence motif and is capped by a four-adenine (tetra-A) loop. The uridine of the (A-A)-U motif preferentially pairs with the 5'-proximal cross-strand adenine, and the 3'-proximal adenine stacks into the helix. The tetra-A loop is well-ordered with adenine residues 2-4 forming a 3' stack. This loop conformation stands in contrast to the structure of the 5'-AUUA loop of the related phage MS2 operator in which residues 1 and 2 form a 5' stack. The context dependence of the (A-A)-U sequence motif conformation was examined using structures of 76 unique occurrences from the Protein Data Bank. The motif almost always has one adenine bulged and the other adenine adopting an A-U base pair. In the case in which the (A-A)-U motif is flanked by only one Watson-Crick base pair, the adenine adjacent to the flanking base pair tends to bulge; 80% of motifs with a 3' flanking pair have a 3' bulged adenine, and 84% of motifs with a 5' flanking pair have a 5' bulged adenine. The frequencies of 3'- and 5'-proximal adenines bulging are 33 and 67%, respectively, when the (A-A)-U motif is flanked by base pairs on both sides. Although a 3' flanking cytidine correlates (88%) with bulging of the 5'-proximal adenine, no strict dependence on flanking nucleotide identity was identified for the 5' side.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of BioSciences, Rice University , Houston, Texas 77251-1892, United States
| | - Michelle Tran
- Department of BioSciences, Rice University , Houston, Texas 77251-1892, United States
| | - Edward P Nikonowicz
- Department of BioSciences, Rice University , Houston, Texas 77251-1892, United States
| |
Collapse
|
19
|
Dallmann A, Beribisky AV, Gnerlich F, Rübbelke M, Schiesser S, Carell T, Sattler M. Site-Specific Isotope-Labeling of Inosine Phosphoramidites and NMR Analysis of an Inosine-Containing RNA Duplex. Chemistry 2016; 22:15350-15359. [DOI: 10.1002/chem.201602784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Andre Dallmann
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstraße 1 85764 Neuherberg Germany
- Center for Integrated Protein Science Munich at Chair Biomolecular NMR; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Germany
- Department of Chemistry; Humboldt Universität zu Berlin; 12489 Berlin Germany
| | - Alexander V. Beribisky
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstraße 1 85764 Neuherberg Germany
- Center for Integrated Protein Science Munich at Chair Biomolecular NMR; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Germany
| | - Felix Gnerlich
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 Munich Germany
| | - Martin Rübbelke
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstraße 1 85764 Neuherberg Germany
- Center for Integrated Protein Science Munich at Chair Biomolecular NMR; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Germany
| | - Stefan Schiesser
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 Munich Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 Munich Germany
| | - Michael Sattler
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstraße 1 85764 Neuherberg Germany
- Center for Integrated Protein Science Munich at Chair Biomolecular NMR; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
20
|
Nelissen FHT, Tessari M, Wijmenga SS, Heus HA. Stable isotope labeling methods for DNA. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:89-108. [PMID: 27573183 DOI: 10.1016/j.pnmrs.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis.
Collapse
Affiliation(s)
- Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Sybren S Wijmenga
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Kadeřávek P, Zapletal V, Fiala R, Srb P, Padrta P, Přecechtělová JP, Šoltésová M, Kowalewski J, Widmalm G, Chmelík J, Sklenář V, Žídek L. Spectral density mapping at multiple magnetic fields suitable for (13)C NMR relaxation studies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 266:23-40. [PMID: 27003380 DOI: 10.1016/j.jmr.2016.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Standard spectral density mapping protocols, well suited for the analysis of (15)N relaxation rates, introduce significant systematic errors when applied to (13)C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and (13)C frequencies can be obtained from data acquired at three magnetic fields for uniformly (13)C-labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.
Collapse
Affiliation(s)
- Pavel Kadeřávek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Institute of Biophysics of Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | - Vojtěch Zapletal
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Radovan Fiala
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Pavel Srb
- Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Petr Padrta
- Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | | | - Mária Šoltésová
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-180 00 Prague, Czech Republic.
| | - Jozef Kowalewski
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Josef Chmelík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 00 Prague 4 - Krč, Czech Republic.
| | - Vladimír Sklenář
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Lukáš Žídek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| |
Collapse
|
22
|
Cromsigt JA, Schleucher J, Kidd-Ljunggren K, Wijmenga SS. Synthesis of specifically deuterated nucleotides for NMR studies on RNA. J Biomol Struct Dyn 2016; 17 Suppl 1:211-9. [PMID: 22607427 DOI: 10.1080/07391102.2000.10506624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract We propose a strategy for NMR structure determination of RNA based on deuteration and use of specific labeling patterns. This strategy involves the use of NTPs that are deuterated in the ribose ring except for specific positions, e.g. H2', and that are either unlabeled or uniformly labeled in (13)C and (15)N in either the ribose or the base or both. Incorporation of these NTPs into an RNA sequence reduces both resonance line-width and spectral overlap. A limited number of combinations of these differently labeled NTPs in an RNA sequence suffices to obtain all relevant proton resonance assignments and structure parameters necessary for structure determination of larger systems (≫ 50 nucleotides). We describe the in vitro synthesis of the deuterated and/or (13)C/(15)N-labeled NTPs from glucose via separate enzymatic reactions. First, enzymes from the pentose-phosphate pathway efficiently convert glucose into ribose and enzymes from nucleotide biosynthesis and salvage pathways subsequently convert the ribose into nucleosides triphosphates (NTPs). The enzymes from the pentosephosphate pathway are all commercially available; the remaining enzymes have been purified from over-expressing strains. Separate enzymatic reactions were used to convert (2)H(7)- (13)C(6)-glucose into [1',3',4',5',5″-(2)H(5)-1',2',3',4',5',2,4,5,6-(13)C(9)-1,3-(15)N(2)]UTP and (2)H(7)-glucose into [1',3',4',5',5″-(2)H(5)]ATP, [1',3',4',5',5″-(2)H(5)]GTP, and [1',3',4',5',5″-(2)H(5)] CTP. The synthesis yields up to 1 gram of NTPs from 1 gram of glucose, which is about 5 to 10 times as efficient extraction for E. Coli grown on glucose. The synthesis presented here, is a modification of the method described by Tolbert & Williamson (1,2). (1)D and (2)D NMR spectra were acquired to demonstrate the utility of the new labeling patterns. The enzymatically synthesized NTPs were used in the synthesis of a 31-nucleotide RNA derived from the primer binding site of Hepatitis B virus genomic RNA to asses their efficiency in transcription.
Collapse
Affiliation(s)
- J A Cromsigt
- a Department of Medical Biosciences , Medical Biophysics, Umeå University , S 901 87 , Umeå , Sweden
| | | | | | | |
Collapse
|
23
|
Chemo-enzymatic labeling for rapid assignment of RNA molecules. Methods 2016; 103:11-7. [PMID: 27090003 DOI: 10.1016/j.ymeth.2016.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
Even though Nuclear Magnetic Resonance (NMR) spectroscopy is one of the few techniques capable of determining atomic resolution structures of RNA, it is constrained by two major problems of chemical shift overlap of resonances and rapid signal loss due to line broadening. Emerging tools to tackle these problems include synthesis of atom specifically labeled or chemically modified nucleotides. Herein we review the synthesis of these nucleotides, the design and production of appropriate RNA samples, and the application and analysis of the NMR experiments that take advantage of these labels.
Collapse
|
24
|
Sochor F, Silvers R, Müller D, Richter C, Fürtig B, Schwalbe H. (19)F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2016; 64:63-74. [PMID: 26704707 DOI: 10.1007/s10858-015-0006-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/20/2015] [Indexed: 05/24/2023]
Abstract
In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus (19)F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5'-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the (19)F isotope. The thermal stability of the (19)F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a (1)H,(15)N-HSQC allow the identification of Watson-Crick base paired uridine signals and the (19)F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of (19)F-labeling even for sizeable RNAs in the range of 70 nucleotides.
Collapse
Affiliation(s)
- F Sochor
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - R Silvers
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - D Müller
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - C Richter
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - B Fürtig
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| | - H Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| |
Collapse
|
25
|
Longhini AP, LeBlanc RM, Becette O, Salguero C, Wunderlich CH, Johnson BA, D'Souza VM, Kreutz C, Dayie TK. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations. Nucleic Acids Res 2015; 44:e52. [PMID: 26657632 PMCID: PMC4824079 DOI: 10.1093/nar/gkv1333] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/16/2015] [Indexed: 11/12/2022] Open
Abstract
Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis (48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.
Collapse
Affiliation(s)
- Andrew P Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Regan M LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Owen Becette
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Carolina Salguero
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christoph H Wunderlich
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA One Moon Scientific, Inc., 839 Grant Avenue, Westfield, NJ 07090-2322, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - T Kwaku Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| |
Collapse
|
26
|
Rennella E, Huang R, Velyvis A, Kay LE. (13)CHD2-CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins. JOURNAL OF BIOMOLECULAR NMR 2015; 63:187-99. [PMID: 26271302 DOI: 10.1007/s10858-015-9974-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/31/2015] [Indexed: 05/25/2023]
Abstract
An NMR experiment for quantifying slow (millisecond) time-scale exchange processes involving the interconversion between visible ground state and invisible, conformationally excited state conformers is presented. The approach exploits chemical exchange saturation transfer (CEST) and makes use of (13)CHD2 methyl group probes that can be readily incorporated into otherwise highly deuterated proteins. The methodology is validated with an application to a G48A Fyn SH3 domain that exchanges between a folded conformation and a sparsely populated and transiently formed unfolded ensemble. Experiments on a number of different protein systems, including a 360 kDa half-proteasome, establish that the sensitivity of this (13)CHD2 (13)C-CEST technique can be upwards of a factor of 5 times higher than for a previously published (13)CH3 (13)C-CEST approach (Bouvignies and Kay in J Biomol NMR 53:303-310, 2012), suggesting that the methodology will be powerful for studies of conformational exchange in high molecular weight proteins.
Collapse
Affiliation(s)
- Enrico Rennella
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rui Huang
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Algirdas Velyvis
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
27
|
Neuner S, Santner T, Kreutz C, Micura R. The "Speedy" Synthesis of Atom-Specific (15)N Imino/Amido-Labeled RNA. Chemistry 2015; 21:11634-11643. [PMID: 26237536 PMCID: PMC4946632 DOI: 10.1002/chem.201501275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although numerous reports on the synthesis of atom-specific (15)N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of (15)N(1) adenosine and (15)N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve (15)N(3) uridine and (15)N(3) cytidine amidites in order to tap full potential of (1)H/(15)N/(15)N-COSY experiments for directly monitoring individual Watson-Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered.
Collapse
Affiliation(s)
- Sandro Neuner
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Tobias Santner
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| |
Collapse
|
28
|
Okui S, Kawai G. In NMR tube transcription for rapid screening of RNA conformation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:103-13. [PMID: 25621704 DOI: 10.1080/15257770.2014.964412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A simple method for rapid structure screening for RNA by NMR is proposed. Target RNA is transcribed in a NMR tube and its spectra are measured without purification. The proposed method, in NMR tube transcription or INTT, was applied for three RNAs for which NMR spectra have been measured by using the conventionally purified samples. By the real-time measuring, increase of imino proton signals and decrease of NTP signals can be observed. It was confirmed that INTT spectra are in general similar to those obtained by the conventional method. INTT can be used for the first-step screening of RNA folding.
Collapse
Affiliation(s)
- Saya Okui
- a Department of Life and Environmental Sciences, Faculty of Engineering , Chiba Institute of Technology , Narashino , Chiba , Japan
| | | |
Collapse
|
29
|
Alvarado LJ, Longhini AP, LeBlanc RM, Chen B, Kreutz C, Dayie TK. Chemo-enzymatic synthesis of selectively ¹³C/¹⁵N-labeled RNA for NMR structural and dynamics studies. Methods Enzymol 2015; 549:133-62. [PMID: 25432748 DOI: 10.1016/b978-0-12-801122-5.00007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RNAs are an important class of cellular regulatory elements, and they are well characterized by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy in their folded or bound states. However, the apo or unfolded states are more difficult to characterize by either method. Particularly, effective NMR spectroscopy studies of RNAs in the past were hampered by chemical shift overlap of resonances and associated rapid signal loss due to line broadening for RNAs larger than the median size found in the PDB (~25 nt); most functional riboswitches are bigger than this median size. Incorporation of selective site-specific (13)C/(15)N-labeled nucleotides into RNAs promises to overcome this NMR size limitation. Unlike previous isotopic enrichment methods such as phosphoramidite, de novo, uniform-labeling, and selective-biomass approaches, this newer chemical-enzymatic selective method presents a number of advantages for producing labeled nucleotides over these other methods. For example, total chemical synthesis of nucleotides, followed by solid-phase synthesis of RNA using phosphoramidite chemistry, while versatile in incorporating isotope labels into RNA at any desired position, faces problems of low yields (<10%) that drop precipitously for oligonucleotides larger than 50 nt. The alternative method of de novo pyrimidine biosynthesis of NTPs is also a robust technique, with modest yields of up to 45%, but it comes at the cost of using 16 enzymes, expensive substrates, and difficulty in making some needed labeling patterns such as selective labeling of the ribose C1' and C5' and the pyrimidine nucleobase C2, C4, C5, or C6. Biomass-produced, uniformly or selectively labeled NTPs offer a third method, but suffer from low overall yield per labeled input metabolite and isotopic scrambling with only modest suppression of (13)C-(13)C couplings. In contrast to these four methods, our current chemo-enzymatic approach overcomes most of these shortcomings and allows for the synthesis of gram quantities of nucleotides with >80% yields while using a limited number of enzymes, six at most. The unavailability of selectively labeled ribose and base precursors had prevented the effective use of this versatile method until now. Recently, we combined an improved organic synthetic approach that selectively places (13)C/(15)N labels in the pyrimidine nucleobase (either (15)N1, (15)N3, (13)C2, (13)C4, (13)C5, or (13)C6 or any combination) with a very efficient enzymatic method to couple ribose with uracil to produce previously unattainable labeling patterns (Alvarado et al., 2014). Herein we provide detailed steps of both our chemo-enzymatic synthesis of custom nucleotides and their incorporation into RNAs with sizes ranging from 29 to 155 nt and showcase the dramatic improvement in spectral quality of reduced crowding and narrow linewidths. Applications of this selective labeling technology should prove valuable in overcoming two major obstacles, chemical shift overlap of resonances and associated rapid signal loss due to line broadening, that have impeded studying the structure and dynamics of large RNAs such as full-length riboswitches larger than the ~25 nt median size of RNA NMR structures found in the PDB.
Collapse
Affiliation(s)
- Luigi J Alvarado
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA
| | - Andrew P Longhini
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA
| | - Regan M LeBlanc
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain, Innsbruck, Austria
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
30
|
Fürtig B, Reining A, Sochor F, Oberhauser EM, Heckel A, Schwalbe H. Characterization of conformational dynamics of bistable RNA by equilibrium and non-equilibrium NMR. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2014; 55:11.13.1-16. [PMID: 25631532 DOI: 10.1002/0471142700.nc1113s55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Unlike proteins, a given RNA sequence can adopt more than a single conformation. The two (or more) conformations are long-lived and have similar stabilities, but interconvert only slowly. Such bi- or multistability is often linked to the biological functions of the RNA. This unit describes how nuclear magnetic resonance (NMR) spectroscopy can be used to characterize the conformational dynamics of bistable RNAs.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Frankfurt, Germany; Institute of Organic Chemistry and Chemical Biology, Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Bonneau E, Legault P. Nuclear magnetic resonance structure of the III-IV-V three-way junction from the Varkud satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement. Biochemistry 2014; 53:6264-75. [PMID: 25238589 DOI: 10.1021/bi500826n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The VS ribozyme is a catalytic RNA found within some natural isolates of Neurospora that is being used as a model system to improve our understanding of RNA structure, catalysis, and engineering. The catalytic domain contains five helical domains (SLII-SLVI) that are organized by two three-way junctions. The III-IV-V junction is required for high-affinity binding of the substrate domain (SLI) through formation of a kissing loop interaction with SLV. Here, we determine the high-resolution nuclear magnetic resonance (NMR) structure of a 47-nucleotide RNA containing the III-IV-V junction (J345). The J345 RNA adopts a Y-shaped fold typical of the family C three-way junctions, with coaxial stacking between stems III and IV and an acute angle between stems III and V. The NMR structure reveals that the core of the III-IV-V junction contains four stacked base triples, a U-turn motif, a cross-strand stacking interaction, an A-minor interaction, and a ribose zipper. In addition, the NMR structure shows that the cCUUGg tetraloop used to stabilize stem IV adopts a novel RNA tetraloop fold, different from the known gCUUGc tetraloop structure. Using Mn(2+)-induced paramagnetic relaxation enhancement, we identify six Mg(2+)-binding sites within J345, including one associated with the cCUUGg tetraloop and two with the junction core. The NMR structure of J345 likely represents the conformation of the III-IV-V junction in the context of the active VS ribozyme and suggests that this junction functions as a dynamic hinge that contributes to substrate recognition and catalysis. Moreover, this study highlights a new role for family C three-way junctions in long-range tertiary interactions.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
| | | |
Collapse
|
32
|
Davlieva M, Donarski J, Wang J, Shamoo Y, Nikonowicz EP. Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis. Nucleic Acids Res 2014; 42:10795-808. [PMID: 25140011 PMCID: PMC4176348 DOI: 10.1093/nar/gku743] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several protein-targeted RNA aptamers have been identified for a variety of applications and although the affinities of numerous protein-aptamer complexes have been determined, the structural details of these complexes have not been widely explored. We examined the structural accommodation of an RNA aptamer that binds bacterial r-protein S8. The core of the primary binding site for S8 on helix 21 of 16S rRNA contains a pair of conserved base triples that mold the sugar-phosphate backbone to S8. The aptamer, which does not contain the conserved sequence motif, is specific for the rRNA binding site of S8. The protein-free RNA aptamer adopts a helical structure with multiple non-canonical base pairs. Surprisingly, binding of S8 leads to a dramatic change in the RNA conformation that restores the signature S8 recognition fold through a novel combination of nucleobase interactions. Nucleotides within the non-canonical core rearrange to create a G-(G-C) triple and a U-(A-U)-U quartet. Although native-like S8-RNA interactions are present in the aptamer-S8 complex, the topology of the aptamer RNA differs from that of the helix 21-S8 complex. This is the first example of an RNA aptamer that adopts substantially different secondary structures in the free and protein-bound states and highlights the remarkable plasticity of RNA secondary structure.
Collapse
Affiliation(s)
- Milya Davlieva
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | - James Donarski
- Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Jiachen Wang
- Department of Physics, East China Normal University, 200062 Shanghai, P. R. China
| | - Yousif Shamoo
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | - Edward P Nikonowicz
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| |
Collapse
|
33
|
Alvarado LJ, LeBlanc RM, Longhini AP, Keane SC, Jain N, Yildiz ZF, Tolbert BS, D'Souza VM, Summers MF, Kreutz C, Dayie TK. Regio-selective chemical-enzymatic synthesis of pyrimidine nucleotides facilitates RNA structure and dynamics studies. Chembiochem 2014; 15:1573-7. [PMID: 24954297 DOI: 10.1002/cbic.201402130] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 12/16/2022]
Abstract
Isotope labeling has revolutionized NMR studies of small nucleic acids, but to extend this technology to larger RNAs, site-specific labeling tools to expedite NMR structural and dynamics studies are required. Using enzymes from the pentose phosphate pathway, we coupled chemically synthesized uracil nucleobase with specifically (13) C-labeled ribose to synthesize both UTP and CTP in nearly quantitative yields. This chemoenzymatic method affords a cost-effective preparation of labels that are unattainable by current methods. The methodology generates versatile (13) C and (15) N labeling patterns which, when employed with relaxation-optimized NMR spectroscopy, effectively mitigate problems of rapid relaxation that result in low resolution and sensitivity. The methodology is demonstrated with RNAs of various sizes, complexity, and function: the exon splicing silencer 3 (27 nt), iron responsive element (29 nt), Pro-tRNA (76 nt), and HIV-1 core encapsidation signal (155 nt).
Collapse
Affiliation(s)
- Luigi J Alvarado
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, 1115 Biomolecular Sciences Building, College Park, MD 20782 (USA)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Micura R, Kreutz C, Breuker K. A personal perspective on chemistry-driven RNA research. Biopolymers 2013; 99:1114-23. [PMID: 23754524 PMCID: PMC4477180 DOI: 10.1002/bip.22299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/27/2013] [Indexed: 12/14/2022]
Abstract
In this mini review, we discuss how our understanding of ribonucleic acid (RNA) properties becomes significantly deepened when a broad range of modern chemical and biophysical methods is applied. We span our perspective from RNA solid-phase synthesis and site-specific labeling to single-molecule fluorescence-resonance-energy-transfer imaging and NMR spectroscopy approaches to explore the dynamics of RNA over a broad timescale. We then move on to Fourier-transform-ion-cyclotron-resonance mass spectrometry (FT-ICR-MS) as a powerful technique for RNA sequencing and modification analysis. The novel methodological developments are discussed for selected biological systems that include the thiamine-pyrophosphate riboswitch, HIV and ribosomal A-site RNA, and transfer RNA.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI), Center for Chemistry and Biomedicine (CCB), University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | | | | |
Collapse
|
35
|
Chang AT, Nikonowicz EP. Solution NMR determination of hydrogen bonding and base pairing between the glyQS T box riboswitch Specifier domain and the anticodon loop of tRNA(Gly). FEBS Lett 2013; 587:3495-9. [PMID: 24036450 DOI: 10.1016/j.febslet.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
In Gram-positive bacteria the tRNA-dependent T box riboswitch regulates the expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. The Specifier domain of the T box riboswitch contains the Specifier sequence that is complementary to the tRNA anticodon and is flanked by a highly conserved purine nucleotide that could result in a fourth base pair involving the invariant U33 of tRNA. We show that the interaction between the T box Specifier domain and tRNA consists of three Watson-Crick base pairs and that U33 confers stability to the complex through intramolecular hydrogen bonding. Enhanced packing within the Specifier domain loop E motif may stabilize the complex and contribute to cognate tRNA selection.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, United States
| | | |
Collapse
|
36
|
Dagenais P, Legault P. Preparative separation of ribonucleoside monophosphates by ion-pair reverse-phase HPLC. Methods Mol Biol 2013; 941:247-56. [PMID: 23065566 DOI: 10.1007/978-1-62703-113-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Structural and dynamic investigations of RNA by nuclear magnetic resonance (NMR) spectroscopy strongly benefit from isotopic-labeling strategies. Among these, nucleotide-specific and site-specific labeling methods can help tremendously in simplifying complex NMR data, while providing unique opportunities for structural investigation of larger RNAs. Such methods generally require separation of individual isotopically labeled ribonucleoside monophosphates prior to their conversion into nucleoside triphosphates and selective incorporation of these nucleoside triphosphates into the RNA. This chapter provides the experimental details for preparative separation of ribonucleoside monophosphates by ion-pair reverse-phase HPLC. It also describes a quick procedure for clean-up and quality control of the individual ribonucleoside monophosphates.
Collapse
Affiliation(s)
- Pierre Dagenais
- Département de Biochimie, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
37
|
Barton S, Heng X, Johnson BA, Summers MF. Database proton NMR chemical shifts for RNA signal assignment and validation. JOURNAL OF BIOMOLECULAR NMR 2013; 55. [PMID: 23180050 PMCID: PMC3555346 DOI: 10.1007/s10858-012-9683-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4(3) possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA (1)H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.
Collapse
Affiliation(s)
- Shawn Barton
- Howard Hughes Medical Institute, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Xiao Heng
- Howard Hughes Medical Institute, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Bruce A. Johnson
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
- One Moon Scientific, Inc., 839 Grant Ave., Westfield, NJ 07090 USA
| | - Michael F. Summers
- Howard Hughes Medical Institute, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| |
Collapse
|
38
|
Biosynthetic preparation of 13C/15N-labeled rNTPs for high-resolution NMR studies of RNAs. Methods Mol Biol 2013; 941:227-45. [PMID: 23065565 DOI: 10.1007/978-1-62703-113-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
High-resolution investigations of the structure and dynamics of RNA molecules by nuclear magnetic resonance (NMR) methodologies require the production of (13)C/(15)N-isotopically labeled samples. A common strategy entails the preparation of (13)C/(15)N-enriched ribonucleoside 5'-triphosphates (rNTPs) to be incorporated into RNA oligomers by in vitro transcription. Here, we describe the methods to obtain isotopically labeled rNTP in a uniform or selective fashion from bacterial cultures, using common and versatile E. coli strains. This chapter also covers procedures for extraction and digestion of the total RNA from bacterial cells, purification of the ribonucleoside 5'-monophosphates and their enzymatic phosphorylation to rNTPs.
Collapse
|
39
|
Atreya HS, Sathyamoorthy B, Jaipuria G, Beaumont V, Varani G, Szyperski T. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2012. [PMID: 23192291 DOI: 10.1007/s10858-012-9687-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.
Collapse
|
40
|
Noncanonical G recognition mediates KSRP regulation of let-7 biogenesis. Nat Struct Mol Biol 2012; 19:1282-6. [PMID: 23142982 PMCID: PMC3605776 DOI: 10.1038/nsmb.2427] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 09/24/2012] [Indexed: 01/18/2023]
Abstract
Let-7 is an important tumor-suppressive microRNA that acts as an on-off switch for cellular differentiation and regulates the expression of a set of human oncogenes. Binding of the human KSRP protein to Let-7 miRNA precursors positively regulates their processing to mature Let-7, thereby contributing to control cell proliferation, apoptosis and differentiation. Here we analyze the molecular basis for KSRP-pre-Let-7 selectivity and show how the third KH domain of the protein recognizes a G-rich sequence in the pre-let-7 terminal loop and dominates the interaction. The structure of the KH3-RNA complex explains the protein recognition of this non-canonical KH target sequence and we demonstrate that the specificity of this binding is crucial for the functional interaction between the protein and the miRNA precursor.
Collapse
|
41
|
Chang AT, Nikonowicz EP. Solution nuclear magnetic resonance analyses of the anticodon arms of proteinogenic and nonproteinogenic tRNA(Gly). Biochemistry 2012; 51:3662-74. [PMID: 22468768 DOI: 10.1021/bi201900j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although the fate of most tRNA molecules in the cell is aminoacylation and delivery to the ribosome, some tRNAs are destined to fulfill other functional roles. In addition to their central role in translation, tRNA molecules participate in processes such as regulation of gene expression, bacterial cell wall biosynthesis, viral replication, antibiotic biosynthesis, and suppression of alternative splicing. In bacteria, glycyl-tRNA molecules with anticodon sequences GCC and UCC exhibit multiple extratranslational functions, including transcriptional regulation and cell wall biosynthesis. We have determined the high-resolution structures of three glycyl-tRNA anticodon arms with anticodon sequences GCC and UCC. Two of the tRNA molecules are proteinogenic (tRNA(Gly,GCC) and tRNA(Gly,UCC)), and the third is nonproteinogenic (np-tRNA(Gly,UCC)) and participates in cell wall biosynthesis. The UV-monitored thermal melting curves show that the anticodon arm of tRNA(Gly,UCC) with a loop-closing C-A(+) base pair melts at a temperature 10 °C lower than those of tRNA(Gly,GCC) and np-tRNA(Gly,UCC). U-A and C-G pairs close the loops of the latter two molecules and enhance stem stability. Mg(2+) stabilizes the tRNA(Gly,UCC) anticodon arm and reduces the T(m) differential. The structures of the three tRNA(Gly) anticodon arms exhibit small differences among one another, but none of them form the classical U-turn motif. The anticodon loop of tRNA(Gly,GCC) becomes more dynamic and disordered in the presence of multivalent cations, whereas metal ion coordination in the anticodon loops of tRNA(Gly,UCC) and np-tRNA(Gly,UCC) establishes conformational homogeneity. The conformational similarity of the molecules is greater than their functional differences might suggest. Because aminoacylation of full-length tRNA molecules is accomplished by one tRNA synthetase, the similar structural context of the loop may facilitate efficient recognition of each of the anticodon sequences.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892, United States
| | | |
Collapse
|
42
|
Thakur CS, Luo Y, Chen B, Eldho NV, Dayie TK. Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR. JOURNAL OF BIOMOLECULAR NMR 2012; 52:103-14. [PMID: 22124680 PMCID: PMC3277826 DOI: 10.1007/s10858-011-9586-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 05/25/2023]
Abstract
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1' and C5' with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg(2+) ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly (13)C/(15)N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive (13)C-(13)C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Yiling Luo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Nadukkudy V. Eldho
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
43
|
Duss O, Lukavsky PJ, Allain FHT. Isotope labeling and segmental labeling of larger RNAs for NMR structural studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:121-44. [PMID: 23076582 DOI: 10.1007/978-94-007-4954-2_7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NMR spectroscopy has become substantial in the elucidation of RNA structures and their complexes with other nucleic acids, proteins or small molecules. Almost half of the RNA structures deposited in the Protein Data Bank were determined by NMR spectroscopy, whereas NMR accounts for only 11% for proteins. Recent improvements in isotope labeling of RNA have strongly contributed to the high impact of NMR in RNA structure determination. In this book chapter, we review the advances in isotope labeling of RNA focusing on larger RNAs. We start by discussing several ways for the production and purification of large quantities of pure isotope labeled RNA. We continue by reviewing different strategies for selective deuteration of nucleotides. Finally, we present a comparison of several approaches for segmental isotope labeling of RNA. Selective deuteration of nucleotides in combination with segmental isotope labeling is paving the path for studying RNAs of ever increasing size.
Collapse
Affiliation(s)
- Olivier Duss
- Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
44
|
Kawahara I, Haruta K, Ashihara Y, Yamanaka D, Kuriyama M, Toki N, Kondo Y, Teruya K, Ishikawa J, Furuta H, Ikawa Y, Kojima C, Tanaka Y. Site-specific isotope labeling of long RNA for structural and mechanistic studies. Nucleic Acids Res 2011; 40:e7. [PMID: 22080547 PMCID: PMC3245953 DOI: 10.1093/nar/gkr951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A site-specific isotope labeling technique of long RNA molecules was established. This technique is comprised of two simple enzymatic reactions, namely a guanosine transfer reaction of group I self-splicing introns and a ligation with T4 DNA ligase. The trans-acting group I self-splicing intron with its external cofactor, ‘isotopically labeled guanosine 5′-monophosphate’ (5′-GMP), steadily gave a 5′-residue-labeled RNA fragment. This key reaction, in combination with a ligation of 5′-remainder non-labeled sequence, allowed us to prepare a site-specifically labeled RNA molecule in a high yield, and its production was confirmed with 15N NMR spectroscopy. Such a site-specifically labeled RNA molecule can be used to detect a molecular interaction and to probe chemical features of catalytically/structurally important residues with NMR spectroscopy and possibly Raman spectroscopy and mass spectrometry.
Collapse
Affiliation(s)
- Ikumi Kawahara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Denmon AP, Wang J, Nikonowicz EP. Conformation effects of base modification on the anticodon stem-loop of Bacillus subtilis tRNA(Tyr). J Mol Biol 2011; 412:285-303. [PMID: 21782828 DOI: 10.1016/j.jmb.2011.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNA(Tyr) anticodon arms containing the natural base modifications N(6)-dimethylallyl adenine (i(6)A(37)) and pseudouridine (ψ(39)). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i(6)A(37) modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C(32)-A(38)(+) base pair and an A(37)-U(33) base-base interaction. Although the i(6)A(37) modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i(6)A(37) modification and Mg(2+) are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNA(Phe), but these elements do not result in this signature feature of the anticodon loop in tRNA(Tyr).
Collapse
Affiliation(s)
- Andria P Denmon
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
46
|
Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA. J Mol Biol 2011; 408:99-117. [PMID: 21333656 DOI: 10.1016/j.jmb.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/28/2023]
Abstract
In Gram-positive bacteria, the RNA transcripts of many amino acid biosynthetic and aminoacyl tRNA synthetase genes contain 5' untranslated regions, or leader RNAs, that function as riboswitches. These T-box riboswitches bind cognate tRNA molecules and regulate gene expression by a transcription attenuation mechanism. The Specifier Loop domain of the leader RNA contains nucleotides that pair with nucleotides in the tRNA anticodon loop and is flanked on one side by a kink-turn (K-turn), or GA, sequence motif. We have determined the solution NMR structure of the K-turn sequence element within the context of the Specifier Loop domain. The K-turn sequence motif has several noncanonical base pairs typical of K-turn structures but adopts an extended conformation. The Specifier Loop domain contains a loop E structural motif, and the single-strand Specifier nucleotides stack with their Watson-Crick edges displaced toward the minor groove. Mg(2+) leads to a significant bending of the helix axis at the base of the Specifier Loop domain, but does not alter the K-turn. Isothermal titration calorimetry indicates that the K-turn sequence causes a small enhancement of the interaction between the tRNA anticodon arm and the Specifier Loop domain. One possibility is that the K-turn structure is formed and stabilized when tRNA binds the T-box riboswitch and interacts with Stem I and the antiterminator helix. This motif in turn anchors the orientation of Stem I relative to the 3' half of the leader RNA, further stabilizing the tRNA-T box complex.
Collapse
|
47
|
Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FHT. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:1-61. [PMID: 21241883 DOI: 10.1016/j.pnmrs.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Cyril Dominguez
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR. Enzymatic de novo pyrimidine nucleotide synthesis. J Am Chem Soc 2011; 133:297-304. [PMID: 21166398 PMCID: PMC3134529 DOI: 10.1021/ja1059685] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of stable isotope labeling has revolutionized NMR studies of nucleic acids, and there is a need for methods of incorporation of specific isotope labels to facilitate specific NMR experiments and applications. Enzymatic synthesis offers an efficient and flexible means to synthesize nucleoside triphosphates from a variety of commercially available specifically labeled precursors, permitting isotope labeling of RNAs prepared by in vitro transcription. Here, we recapitulate de novo pyrimidine biosynthesis in vitro, using recombinantly expressed enzymes to perform efficient single-pot syntheses of UTP and CTP that bear a variety of stable isotope labeling patterns. Filtered NMR experiments on (13)C, (15)N, (2)H-labeled HIV-2 TAR RNA demonstrate the utility and value of this approach. This flexible enzymatic synthesis will make implementing detailed and informative RNA stable isotope labeling schemes substantially more cost-effective and efficient, providing advanced tools for the study of structure and dynamics of RNA molecules.
Collapse
Affiliation(s)
- Heather L Schultheisz
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB33, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
49
|
Nozinovic S, Richter C, Rinnenthal J, Fürtig B, Duchardt-Ferner E, Weigand JE, Schwalbe H. Quantitative 2D and 3D Gamma-HCP experiments for the determination of the angles alpha and zeta in the phosphodiester backbone of oligonucleotides. J Am Chem Soc 2010; 132:10318-29. [PMID: 20614918 DOI: 10.1021/ja910015n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The quantitative Gamma-(HCP) experiment, a novel heteronuclear NMR pulse sequence for the determination of the RNA backbone angles alpha(O3'(i-1)-P(i)-O5'(i)-C5'(i)) and zeta(C3'(i)-O3'(i)-P(i+1)-O5'(i+1)) in (13)C-labeled RNA, is introduced. The experiment relies on the interaction between the CH bond vector dipole and the (31)P chemical shift anisotropy (CSA), which affects the relaxation of the (13)C,(31)P double- and zero-quantum coherence and thus the intensity of the detectable magnetization. With the new pulse sequence, five different cross-correlated relaxation rates along the phosphodiester backbone can be measured in a quantitative manner, allowing projection-angle and torsion-angle restraints for the two backbone angles alpha and zeta to be extracted. Two versions of the pulse sequence optimized for the CH and CH(2) groups are introduced and demonstrated for a 14-mer cUUCGg tetraloop RNA model system and for a 27-mer RNA with a previously unknown structure. The restraints were incorporated into the calculation of a very high resolution structure of the RNA model system (Nozinovic, S.; et al. Nucleic Acids Res. 2010, 38, 683). Comparison with the X-ray structure of the cUUCGg tetraloop confirmed the high quality of the data, suggesting that the method can significantly improve the quality of RNA structure determination.
Collapse
Affiliation(s)
- Senada Nozinovic
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Di Tomasso G, Lampron P, Dagenais P, Omichinski JG, Legault P. The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions. Nucleic Acids Res 2010; 39:e18. [PMID: 21071425 PMCID: PMC3035436 DOI: 10.1093/nar/gkq1084] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although RNA-based biological processes and therapeutics have gained increasing interest, purification of in vitro transcribed RNA generally relies on gel-based methods that are time-consuming, tedious and denature the RNA. Here, we present a reliable procedure for affinity batch purification of RNA, which exploits the high-affinity interaction between the boxB RNA and the N-peptide from bacteriophage λ. The RNA of interest is synthesized with an ARiBo tag, which consists of an activatable ribozyme (the glmS ribozyme) and the λBoxB RNA. This ARiBo-fusion RNA is initially captured on Glutathione-Sepharose resin via a GST/λN-fusion protein, and the RNA of interest is subsequently eluted by ribozyme self-cleavage using glucosamine-6-phosphate. Several GST/λN-fusion proteins and ARiBo tags were tested to optimize RNA yield and purity. The optimized procedure enables one to quickly obtain (3 h) highly pure RNA (>99%) under native conditions and with yields comparable to standard denaturing gel-based protocols. It is widely applicable to a variety of RNAs, including riboswitches, ribozymes and microRNAs. In addition, it can be easily adapted to a wide range of applications that require RNA purification and/or immobilization, including isolation of RNA-associated complexes from living cells and high-throughput applications.
Collapse
Affiliation(s)
- Geneviève Di Tomasso
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7 Canada
| | | | | | | | | |
Collapse
|