1
|
Norup MV, Dransfield J, Chase MW, Barfod AS, Fernando ES, Baker WJ. Homoplasious character combinations and generic delimitation: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). AMERICAN JOURNAL OF BOTANY 2006; 93:1065-1080. [PMID: 21642171 DOI: 10.3732/ajb.93.7.1065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The complex distributions of morphological character states in the Indo-Pacific palm tribe Areceae (Arecaceae; Arecoideae) are potentially challenging for the delimitation of its genera. In the first exhaustive sampling of all 65 genera of the Areceae, we examined relationships of two of the tribe's most problematic genera, Heterospathe and Rhopaloblaste, using portions of the low-copy nuclear genes phosphoribulokinase (PRK) and RNA-polymerase II subunit B (RPB2). Both genera fell within a highly supported clade comprising all Areceae genera, but are clearly unrelated. Rhopaloblaste was strongly supported as monophyletic and is most closely related to Indian Ocean genera. Heterospathe was resolved with strong support within a clade of western Pacific genera, but with the monotypic Alsmithia nested within it. Ptychosperma micranthum, which has previously been included in both Heterospathe and Rhopaloblaste, is excluded from these and from Ptychosperma, supporting its recent placement in a new genus Dransfieldia. Morphological comparisons indicate that the crownshaft is putatively synapomorphic for the Areceae with numerous reversals within the clade and some independent origins elsewhere. The putative diagnostic characters of Heterospathe show high levels of homoplasy, and the genus can only be distinguished by a suite of characters, whereas Rhopaloblaste is more clearly defined. Our results have implications not only for the two genera in focus, but have also been influential for the new classification of the Areceae.
Collapse
Affiliation(s)
- Maria Vibe Norup
- Department of Systematic Botany, University of Aarhus, Ny Munkegade, Building 540, 8000 Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
2
|
Kimura M, Suzuki H, Ishihama A. Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II. Mol Cell Biol 2002; 22:1577-88. [PMID: 11839823 PMCID: PMC134712 DOI: 10.1128/mcb.22.5.1577-1588.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/13/2001] [Accepted: 11/30/2001] [Indexed: 11/20/2022] Open
Abstract
In transcriptional regulation, RNA polymerase II (pol II) interacts and forms complexes with a number of protein factors. To isolate and identify the pol II-associated proteins, we constructed a Schizosaccharomyces pombe strain carrying a FLAG tag sequence fused to the rpb3 gene encoding the pol II subunit Rpb3. By immunoaffinity purification with anti-FLAG antibody-resin, a pol II complex containing the Rpb1 subunit with a nonphosphorylated carboxyl-terminal domain (CTD) was isolated. In addition to the pol II subunits, the complex was found to contain three subunits of a transcription factor TFIIF (TFIIF alpha, TFIIF beta, and Tfg3) and TFIIF-interacting CTD-phosphatase Fcp1. The same type of pol II complex could also be purified from an Fcp1-tagged strain. The isolated Fcp1 showed CTD-phosphatase activity in vitro. The fcp1 gene is essential for cell viability. Fcp1 and pol II interacted directly in vitro. Furthermore, by chemical cross-linking, glutathione S-transferase pulldown, and affinity chromatography, the Fcp1-interacting subunit of pol II was identified as Rpb4, which plays regulatory roles in transcription. We also constructed an S. pombe thiamine-dependent rpb4 shut-off system. On repression of rpb4 expression, the cell produced more of the nonphosphorylated form of Rpb1, but the pol II complex isolated with the anti-FLAG antibody contained less Fcp1 and more of the phosphorylated form of Rpb1 with a concomitant reduction in Rpb4. This result indicates the importance of Fcp1-Rpb4 interaction for formation of the Fcp1/TFIIF/pol II complex in vivo.
Collapse
Affiliation(s)
- Makoto Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | |
Collapse
|
3
|
Kimura M, Sakurai H, Ishihama A. Intracellular contents and assembly states of all 12 subunits of the RNA polymerase II in the fission yeast Schizosaccharomyces pombe. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:612-9. [PMID: 11168400 DOI: 10.1046/j.1432-1327.2001.01911.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase II (Pol II) of the fission yeast Schizosaccharomyces pombe is composed of 12 different polypeptides, Rpb1 to Rpb12, of which five, Rpb5, Rpb6, Rpb8, Rpb10 and Rpb12, are shared among three forms of the RNA polymerase. To get an insight into the control of synthesis and assembly of individual subunits, we have measured the intracellular concentrations of all 12 subunits in S. pombe by quantitative immunoblotting. Results indicate that the levels are low for the three large subunits, Rpb1, Rpb2 and Rpb3, which are the homologues of beta', beta and alpha subunits, respectively, of prokaryotic RNA polymerase. On the other hand, the levels of small-sized subunits were between 2- to 15-fold higher than these three core subunits. The levels of the five common subunits shared among RNA polymerases I, II and III are about 10 times greater than those of the Pol II-specific core subunits. The assembly state of the Rpb proteins was analyzed by glycerol gradient centrifugation of S. pombe whole cell extracts. The three core subunits are mostly assembled in Pol II, but some of the small subunits were detected in the slowly sedimenting fractions, indicating that at least some of the excess Rpb proteins exist in unassembled forms. Based on the intracellular concentration of the least abundant Rpb3 subunit, the total number of Pol II in a growing S. pombe cell was estimated to be about 10,000 molecules. The intracellular distribution of some Pol II subunits was also analyzed by microscopic observation of the green fluorescent protein (GFP)-fused Rpb proteins. In agreement with the biochemical analysis, the GFP-Rpb1 and GFP-Rpb3 fusions were present in the nuclei but the GFP-Rpb4 was detected in the cytoplasm as well as the nuclei.
Collapse
Affiliation(s)
- M Kimura
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
4
|
Sakurai H, Ishihama A. Transcription organization and mRNA levels of the genes for all 12 subunits of the fission yeast RNA polymerase II. Genes Cells 2001; 6:25-36. [PMID: 11168594 DOI: 10.1046/j.1365-2443.2001.00394.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase II (Pol II) of eukaryotes is composed of 12 subunits, of which five are shared among Pol I, Pol II and Pol III. At present, however, little is known about the regulation of synthesis and assembly of the 12 Pol II subunits. To obtain an insight into the regulation of synthesis of these 12 Pol II subunits, Rpb1 to Rpb12, in the fission yeast Schizosaccharomyces pombe, we analysed the transcriptional organization of the rpb genes by use of the oligo capping method, and determined mRNA levels by quantitative competitive PCR assay. The intracellular concentrations of the 12 Rpb subunits in growing S. pombe cells are different, within a range of 15-fold difference between the least abundant Rpb3 and the most abundant Rpb12. The transcription of one group of genes including rpb3, rpb4, rpb5, rpb6, rpb7 and rpb10 is mainly initiated at a single site, while that of the other group of genes for rpb1, rpb2, rpb8, rpb9, rpb11 and rpb12 is initiated at multiple sites. The promoters of the first group of genes contain the TATA box sequence between -26 and -62, while the second group of genes carry TATA-less promoters. Several common sequence segments, tentatively designated 'Rpb motifs', were identified in the promoter regions of the rpb genes. Competitive PCR analysis indicated that mRNAs for Rpb1, Rpb3, Rpb7 and Rpb9 were among the group which had a low abundance, while the levels of Rpb6 and Rpb10 mRNAs were about fivefold, and that of Rpb2 mRNA was about 40-fold higher than the Rpb3 mRNA level. The levels of rpb mRNAs do not correlate with those of Rpb proteins. The protein-to-mRNA ratio or the translation efficiency is low for the rpb1, rpb2, rpb3 and rpb11 genes, encoding the homologues of subunits beta', beta, alpha and alpha, respectively, of the prokaryotic RNA polymerase core enzyme.
Collapse
Affiliation(s)
- H Sakurai
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
5
|
Oxelman B, Bremer B. Discovery of paralogous nuclear gene sequences coding for the second-largest subunit of RNA polymerase II (RPB2) and their phylogenetic utility in gentianales of the asterids. Mol Biol Evol 2000; 17:1131-45. [PMID: 10908634 DOI: 10.1093/oxfordjournals.molbev.a026396] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Paralogous sequences of the RPB2 gene are demonstrated in the angiosperm order Gentianales. Two different copies were found by using different PCR primer pairs targeting a region that corresponds to exons 22-24 in the Arabidopsis RPB2 gene. One of the copies (RPB2-d) lacks introns in this region, whereas the other has introns at locations corresponding to those of green plants previously investigated. When analyzed with other available RPB2 sequences from this region, all 28 RPB2-d sequences obtained from the Gentianales and the four sequences from the Lamiales form a monophyletic group, together with a previously published tomato cDNA sequence. The substitution patterns, relative rates of change, and nucleotide compositions of the two paralogous RPB2 exon regions are similar, and none of them shows any signs of being a pseudogene. Although multiple copies of similar, paralogous sequences can confound phylogenetic interpretations, the lack of introns in RPB2-d make a priori homology assessment easy. The phylogenetic utility of RPB2-d within the Gentianales is evaluated in comparison with the chloroplast genes ndhF and rbcL. The hierarchical information in the RPB2-d region sequenced is more incongruent with that of the plastid genes than the plastid genes are with each other as determined by incongruence length difference tests. In contrast to the plastid genes, parsimony-informative third codon positions of RPB2 have a significantly higher rate of change than first and second positions. Topologically, the trees from the three genes are similar, and the differences are usually only weakly supported. In terms of support, RPB2 gives the highest jackknife support per sequenced nucleotide, whereas ndhF gives the highest Bremer support per sequenced nucleotide. The RPB2-d locus has the potential to be a valuable nuclear marker for determination of phylogenetic relationships within the euasterid I group of plants.
Collapse
Affiliation(s)
- B Oxelman
- Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
6
|
Kimura M, Ishihama A. Involvement of multiple subunit-subunit contacts in the assembly of RNA polymerase II. Nucleic Acids Res 2000; 28:952-9. [PMID: 10648788 PMCID: PMC102587 DOI: 10.1093/nar/28.4.952] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA polymerase II from the fission yeast Schizo-saccharomyces pombe consists of 12 species of subunits, Rpb1-Rpb12. We expressed these subunits, except Rpb4, simultaneously in cultured insect cells with baculovirus expression vectors. For the isolation of subunit complexes formed in the virus-infected cells, a glutathione S -transferase (GST) sequence was fused to the rpb3 cDNA to produce GST-Rpb3 fusion protein and a decahistidine-tag sequence was inserted into the rpb1 cDNA to produce Rpb1H protein. After successive affinity chromatography on glutathione and Ni(2+)columns, complexes consisting of the seven subunits, Rpb1H, Rpb2, GST-Rpb3, Rpb5, Rpb7, Rpb8 and Rpb11, were identified. Omission of the GST-Rpb3 expression resulted in reduced assembly of the Rpb11 into the complex. Direct interaction between Rpb3 and the other six subunits was detected by pairwise coexpression experiments. Coexpression of various combinations of a few subunits revealed that Rpb11 enhances Rpb3-Rpb8 interaction and consequently Rpb8 enhances Rpb1-Rpb3 interaction to some extent. We propose a mechanism in which the assembly of RNA poly-merase II is stabilized through multiple subunit-subunit contacts.
Collapse
Affiliation(s)
- M Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | |
Collapse
|
7
|
Shpakovski GV, Gadal O, Labarre-Mariotte S, Lebedenko EN, Miklos I, Sakurai H, Proshkin SA, Van Mullem V, Ishihama A, Thuriaux P. Functional conservation of RNA polymerase II in fission and budding yeasts. J Mol Biol 2000; 295:1119-27. [PMID: 10653691 DOI: 10.1006/jmbi.1999.3399] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits.
Collapse
Affiliation(s)
- G V Shpakovski
- Service de Biochimie & Génétique Moléculaire, CEA-Saclay, Bât. 142, F-91191, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yasuhira S, Morimyo M, Yasui A. Transcription dependence and the roles of two excision repair pathways for UV damage in fission yeast Schizosaccharomyces pombe. J Biol Chem 1999; 274:26822-7. [PMID: 10480889 DOI: 10.1074/jbc.274.38.26822] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fission yeasts Schizosaccharomyces pombe possess two types of excision repair systems for UV-induced DNA damage, nucleotide excision repair (NER) and UV-damaged DNA endonuclease (UVDE)-dependent excision repair (UVER). Despite its high efficiency in damage removal, UVER defects have less effect on UV survival than NER defects. To understand the differential roles of two pathways, we examined strand-specific damage removal at the myo2 and rpb2 loci. Although NER removes cyclobutane pyrimidine dimers from the transcribed strand more rapidly than from the nontranscribed strand, UVER repairs cyclobutane pyrimidine dimers equally on both strands and at a much higher rate than NER. The low rate of damage removal from the nontranscribed strand in the absence of UVER indicates inefficient global genome repair (GGR) in this organism and a possible function of UVER as an alternative to GGR. Disruption of rhp26, the S. pombe homolog of CSB/RAD26, eliminated the strand bias of NER almost completely and resulted in a significant increase of UV sensitivity of cells in a uvdeDelta background. We suggest that the combination of transcription-coupled repair of NER and rapid UVER contributes to UV survival in growing S. pombe cells, which is accomplished by transcription-coupled repair and GGR in other organisms.
Collapse
Affiliation(s)
- S Yasuhira
- Institute of Development, Aging, and Cancer, Tohoku University, Seiryomachi 4-1, Aoba-Ku, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
9
|
Ishiguro A, Kimura M, Yasui K, Iwata A, Ueda S, Ishihama A. Two large subunits of the fission yeast RNA polymerase II provide platforms for the assembly of small subunits. J Mol Biol 1998; 279:703-12. [PMID: 9642054 DOI: 10.1006/jmbi.1998.1823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subunit-subunit contact network was analyzed for the Schizosaccharomyces pombe RNA polymerase II consisting of ten putative subunits. Previously we carried out far-Western blot analysis of bimolecular interaction with radio-labeled subunit 3 and 5 probes. Here we extended the analysis using another six small-sized subunits as probes. Taking the results together the subunit-subunit interaction was observed for a total 18 (or 19) combinations. All eight small-sized subunits exhibited binding activities to two large subunits, Rpb1 and Rpb2. In addition, bimolecular interaction was observed for the combinations of Rpb3-Rpb5, Rpb3-Rpb11 (and Rpb5-Rpb8/11). The subunit-subunit contact within the assembled RNA polymerase was then analyzed by protein-protein cross-linking using five species of bifunctional cross-linkers with different length and specificity. Cross-linking was observed for a total of 19 combinations, including five combinations between small subunits, Rpb3-Rpb10, Rpb3-Rpb11, Rpb5-Rpb6, Rpb6-Rpb7 and Rpb6-Rpb8. The results altogether indicate that two large subunits Rpb1 and Rpb2 provide the platform for assembly of small subunits and also small subunits interact with each other for limited combinations. Direct contact of the two large subunits, Rpb1 and Rpb2, was also demonstrated by cross-linking.
Collapse
Affiliation(s)
- A Ishiguro
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka 411, Mishima, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Kimura M, Ishiguro A, Ishihama A. RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. J Biol Chem 1997; 272:25851-5. [PMID: 9325316 DOI: 10.1074/jbc.272.41.25851] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA polymerase II purified from the fission yeast Schizosaccharomyces pombe consists of 10 species of subunit polypeptide. We introduced a histidine cluster tag sequence into the chromosomal rpb1 and rpb3 genes, which encode subunit 1 (Rpb1) and subunit 3 (Rpb3), respectively, and purified the RNA polymerase by Ni2+ affinity chromatography. After stepwise dissociation of the Rpb1- and Rpb3-tagged RNA polymerases fixed on Ni2+-resin by increasing concentrations of urea or guanidium hydrochloride, Rpb2-Rpb3-Rpb11 or Rpb2-Rpb3-Rpb11-Rpb10 complexes were obtained. Since the complex consisting of Rpb2, Rpb3, and Rpb11 cannot be dissociated even after treatment with 6 M urea buffer, we propose that this complex represents a core subassembly of the RNA polymerase II, analogous to the alpha2beta complex in the assembly of Escherichia coli RNA polymerase. Both the Rpb2-Rpb3-Rpb11 complex and the free Rpb1 protein showed DNA binding activity, although the affinity was weaker compared with the intact RNA polymerase.
Collapse
Affiliation(s)
- M Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411, Japan
| | | | | |
Collapse
|
11
|
Sakurai H, Ishihama A. Gene organization and protein sequence of the small subunits of Schizosaccharomyces pombe RNA polymerase II. Gene X 1997; 196:165-74. [PMID: 9322754 DOI: 10.1016/s0378-1119(97)00222-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA polymerase II purified from the fission yeast Schizosaccharomyces pombe contains 10 different species of polypeptides. Previously, we cloned and sequenced both cDNA and the genes encoding the four large subunits, Rpb1, Rpb2, Rpb3 and Rpb5. Later, other groups isolated the genes for Rpb6 and Rpb12 and cDNA for Rpb10. Here, we cloned both cDNA and the genes encoding four small subunits, Rpb7, Rpb8, Rpb10 and Rpb11. These genes were found to encode Rpb7, Rpb8, Rpb10 and Rpb11 consisting of 172 (19,103 Da), 125 (14,300 Da), 71 (8276 Da) and 123 (14,127 Da) amino acid residues, respectively. All these four subunits are homologous to the corresponding subunits of Saccharomyces cerevisiae RNA polymerase II. The rpb7 gene contains one intron, whereas the rpb8, rpb10 and rpb11 genes contain two introns. Taken altogether, the gene organization and the predicted protein sequence have been determined for all 10 subunits of the S. pombe RNA polymerase II.
Collapse
Affiliation(s)
- H Sakurai
- National Institute of Genetics, Department of Molecular Genetics, Shizuoka, Japan
| | | |
Collapse
|
12
|
Sakurai H, Miyao T, Ishihama A. Subunit composition of RNA polymerase II from the fission yeast Schizosaccharomyces pombe. Gene 1996; 180:63-7. [PMID: 8973348 DOI: 10.1016/s0378-1119(96)00406-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The subunit composition of RNA polymerase II (polII) was compared between the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. For this purpose, we partially purified the enzyme from S. pombe. Judging from the co-elution profiles in column chromatographies of both the RNA polymerase activity and the two large subunit polypeptides (subunit 1 (prokaryotic beta' homologue) and subunit 2 (beta homologue)), the minimum number of S. pombe polII-associated polypeptides was estimated to be ten, less than the proposed subunit number of the S. cerevisiae enzyme. These ten putative subunits of S. pombe polII correspond to subunits 1, 2, 3, 5, 6, 7, 8, 10, 11 and 12 of the S. cerevisiae counterparts.
Collapse
Affiliation(s)
- H Sakurai
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | |
Collapse
|
13
|
Kawagishi-Kobayashi M, Yamamoto M, Ishihama A. Mutational analysis of the RNase-like domain in subunit 2 of fission yeast RNA polymerase II. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:1-6. [PMID: 8569679 DOI: 10.1007/bf02191819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Local sequence similarity exists between the subunit 2 of eukaryotic RNA polymerases II and the barnase-type bacterial RNases. The RNase-like domain from the Rpb2 of Schizosaccharomyces pombe was expressed in Escherichia coli as a GST fusion protein and examined for its RNase activity. When the GST fusion protein was incubated in vitro with 32P-labeled RNA, the RNA degradation activity was less than 0.1%, if any, of the level of synthetic barnase. In order to check the in vivo function of this region, we constructed two mutant rpb2 alleles, rpb2E357A and rpb2H386L, each carrying a single amino acid substitution at the site corresponding to one of the three essential amino acid residues forming the catalytic site in barnase (mutation of barnase at the corresponding sites results in complete loss of RNase activity) and five other mutant rpb2 alleles, each carrying a single mutation at various positions within the RNase-like domain but outside the putative catalytic site for RNase activity. When these mutant rpb2 alleles were expressed in an rpb2-disrupted S. pombe strain, all the mutants grew as well as the wild-type parent and did not show any clear defective phenotypes. These results suggest either that the RNase-like domain in Rpb2 does not function as an RNase in vivo or that the RNase activity of this domain, if present at all, is not essential for cell growth.
Collapse
|
14
|
Warrilow D, Symons RH. Sequence analysis of the second largest subunit of tomato RNA polymerase II. PLANT MOLECULAR BIOLOGY 1996; 30:337-342. [PMID: 8616257 DOI: 10.1007/bf00020119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have cloned and sequenced the cDNA encoding the open reading frame of the mRNA of the second largest subunit of RNA polymerase II, or RPB2, of tomato. The mRNA is transcribed from a single-copy gene in the tomato genome and the transcript size of the gene was measured as 4.2 kb by northern analysis. From the deduced amino acid sequence of 1191 residues, a protein of M r 135 000 with an isoelectric point of pH 7.9 was predicted. Alignment of the tomato RPB2 protein sequence with those of the homologous subunits in Arabidopsis, man, Drosophila and yeast showed considerable sequence identity.
Collapse
Affiliation(s)
- D Warrilow
- Department of Plant Science, Waite Institute, University of Adelaide, Glen Osmond, Australia
| | | |
Collapse
|
15
|
Sipiczki M. Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie Van Leeuwenhoek 1995; 68:119-49. [PMID: 8546451 DOI: 10.1007/bf00873099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phylogenesis of fungi is controversial due to their simple morphology and poor fossilization. Traditional classification supported by morphological studies and physiological traits placed the fission yeasts in one group with ascomycetous yeasts. The rRNA sequence comparisons, however, revealed an enormous evolutionary gap between Saccharomyces and Schizosaccharomyces. As shown in this review, the protein sequences also show a large gap which is almost as large as that separating Schizosaccharomyces from higher animals. Since the two yeasts share features (both cytological and molecular) in common which are also characteristic of ascomycetous fungi, their separation must have taken place later than the sequence differences may suggest. Possible reasons for the paradox are discussed. The sequence data also suggest a slower evolutionary rate in the Schizosaccharomyces lineage than in the Saccharomyces branch. In the fission yeast lineage two ramifications can be supposed. First S. japonicus (Hasegawaea japonica) branched off, then S. octosporus (Octosporomyces octosporus) separated from S. pombe.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics, University of Debrecen, Hungary
| |
Collapse
|
16
|
Shpakovski GV. The fission yeast Schizosaccharomyces pombe rpb6 gene encodes the common phosphorylated subunit of RNA polymerase and complements a mutation in the corresponding gene of Saccharomyces cerevisiae. Gene X 1994; 147:63-9. [PMID: 8088549 DOI: 10.1016/0378-1119(94)90039-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A single-copy gene, homologous to the RPB6 gene from Saccharomyces cerevisiae, encoding a small phosphorylated subunit common to all three forms of nuclear DNA-dependent RNA polymerase was isolated from the fission yeast Schizosaccharomyces pombe. Its cDNA copy consists of an open reading frame of 142 codons and encodes an acidic protein (predicted pI 4.1) with a M(r) of 15,730. The genomic copy of Sz. pombe rpb6 contains an intron (219 nucleotides) located at codon 92, a position which does not correspond to the single intron of the S. cerevisiae gene. The sequencing of both genomic and cDNA copies of rpb6 allowed us to determine the probable positions of the start and stop of rpb6 transcription and to identify a putative TATA box. The primary structures of the Sz. pombe and S. cerevisiae Rpb6 proteins have 60.7% identity, with the same general organization: a highly acidic N-terminal region followed by a short basic region and a C terminus featuring a putative heptad Leu repeat. The C-terminal half of the sequence is particularly well conserved and, therefore, probably contains the most important functional domain. Moreover, a heterospecific complementation test showed that rpb6 from Sz. pombe fully complements a complete deletion of its S. cerevisiae homologue.
Collapse
Affiliation(s)
- G V Shpakovski
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
17
|
Azuma Y, Yamagishi M, Ishihama A. Subunits of the Schizosaccharomyces pombe RNA polymerase II: enzyme purification and structure of the subunit 3 gene. Nucleic Acids Res 1993; 21:3749-54. [PMID: 8367291 PMCID: PMC309882 DOI: 10.1093/nar/21.16.3749] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To improve our understanding of the structure and function of eukaryotic RNA polymerase II, we purified the enzyme from the fission yeast Schizosaccharomyces pombe. The highly purified RNA polymerase II contained more than eleven polypeptides. The sizes of the largest the second-, and the third-largest polypeptides as measured by SDS-polyacrylamide gel electrophoresis were about 210, 150, and 40 kilodaltons (kDa), respectively, and are similar to those of RPB1, 2, and 3 subunits of Saccharomyces cerevisiae RNA polymerase II. Using the degenerated primers designed after amino acid micro-sequencing of the 40 kDa third-largest polypeptide (subunit 3), we cloned the subunit 3 gene (rpb3) and determined its DNA sequence. Taken together with the sequence of parts of PCR-amplified cDNA, the predicted coding sequence of rpb3, interrupted by two introns, was found to encode a polypeptide of 297 amino acid residues in length with a molecular weight of 34 kDa. The S. pombe subunit 3 contains four structural domains conserved for the alpha-subunit family of RNA polymerase from both eukaryotes and prokaryotes. A putative leucine zipper motif was found to exist in the C-terminal proximal conserved region (domain D). Possible functions of the conserved domains are discussed.
Collapse
Affiliation(s)
- Y Azuma
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | |
Collapse
|