1
|
Zou T, Liu J, She L, Chen J, Zhu T, Yin J, Li X, Li X, Zhou H, Liu Z. A perspective profile of ADCY1 in cAMP signaling with drug-resistance in lung cancer. J Cancer 2019; 10:6848-6857. [PMID: 31839819 PMCID: PMC6909948 DOI: 10.7150/jca.36614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
Adenylate cyclase 1 (ADCY1 or AC1) is a member of ADCY superfamily and was primarily found to be expressed in the brain. ADCY1 is responsible for catalyzing ATP to cyclic AMP (cAMP). As a secondary messenger, cAMP can regulate plenty of cellular activities. cAMP can perform its regulation in cellular transport through the binding to cAMP dependent protein kinases (PKAs), cAMP-activated guanine exchange factors (EPACs) and cyclic nucleotide-gated channels functioning in transduction of sensory signals (CNGs). Lung cancer is one of the leading factors of cancer-related death worldwide. Platinum-based chemotherapy is the first-line treatment for advanced lung cancer patients. In addition, surgical treatment, radiation treatment, and molecular targeted therapy are also therapeutic options for lung cancer patients in clinical settings. However, drug resistance and toxicity are the major obstacles that affect chemotherapy outcome and prognosis of lung cancer patients. And the therapeutic efficiency and adverse effects are varying with each individual. In recent years, investigations based on genetic sequencing have revealed the emerging role of ADCY1 mutations in affecting drug efficiency in various cancers such as lung cancer, esophageal cancer and colorectal cancer. The potential function of ADCY1 in chemotherapy resistance is of great importance to be noticed and investigated.
Collapse
Affiliation(s)
- Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| | - Junyan Liu
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, P.R.China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province
| | - Juan Chen
- Changsha, Hunan, P.R.China. Department of pharmacy, Xiangya hospital, Central South University, Changsha, Hunan, P.R.China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| | - Xiangping Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| |
Collapse
|
2
|
Varley AW, Coulthard MG, Meidell RS, Gerard RD, Munford RS. Inflammation-induced recombinant protein expression in vivo using promoters from acute-phase protein genes. Proc Natl Acad Sci U S A 1995; 92:5346-50. [PMID: 7539915 PMCID: PMC41691 DOI: 10.1073/pnas.92.12.5346] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We report that promoters for two murine acute-phase protein (APP) genes, complement factor 3 (C3) and serum amyloid A3 (SAA3), can increase recombinant protein expression in response to inflammatory stimuli in vivo. To deliver APP promoter-luciferase reporter gene constructs to the liver, where most endogenous APP synthesis occurs, we introduced them into a nonreplicating adenovirus vector and injected the purified viruses intravenously into mice. When compared with the low levels of basal luciferase expression observed prior to inflammatory challenge, markedly increased expression from the C3 promoter was detected in liver in response to both lipopolysaccharide (LPS) and turpentine, and lower-level inducible expression was also found in lung. In contrast, expression from the SAA3 promoter was found only in liver and was much more responsive to LPS than to turpentine. After LPS challenge, hepatic luciferase expression increased rapidly and in proportion to the LPS dose. Use of cytokine-inducible promoters in gene transfer vectors may make it possible to produce antiinflammatory proteins in vivo in direct relationship to the intensity and duration of an individual's inflammatory response. By providing endogenously controlled production of recombinant antiinflammatory proteins, this approach might limit the severity of the inflammatory response without interfering with the beneficial components of host defense and immunity.
Collapse
Affiliation(s)
- A W Varley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | |
Collapse
|