1
|
Üstüntanır Dede AF, Arslanyolu M. Recombinant production of hormonally active human insulin from pre-proinsulin by Tetrahymena thermophila. Enzyme Microb Technol 2023; 170:110303. [PMID: 37562115 DOI: 10.1016/j.enzmictec.2023.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Alternative cell factories, such as the unicellular ciliate eukaryotic Tetrahymena thermophila, may be required for the production of protein therapeutics that are challenging to produce in conventional expression systems. T. thermophila (Tt) can secrete proteins with the post-translational modifications necessary for their function in humans. In this study, we tested if T. thermophila could process the human pre-proinsulin to produce hormonally active human insulin (hINS) with correct modifications. Flask and bioreactor culture of T. thermophila were used to produce the recombinant Tt-hINS either with or without an affinity tag from a codon-adapted pre-proinsulin sequence. Our results indicate that T. thermophila can produce a 6 kDa Tt-hINS monomer with the appropriate disulfide bonds after removal of the human insulin signal sequence or endogenous phospholipase A signal sequence, and the C-peptide of the human insulin. Additionally, Tt-hINS can form 12 kDa dimeric, 24 kDa tetrameric, and 36 kDa hexameric complexes. Tt-hINS-sfGFP fusion protein was localized to the vesicles within the cytoplasm and was secreted extracellularly. Assessing the affinity-purified Tt-hINS activity using the in vivo T. thermophila extracellular glucose drop assay, we observed that Tt-hINS induced a significant reduction (approximately 21 %) in extracellular glucose levels, indicative of its functional insulin activity. Our results demonstrate that T. thermophila is a promising candidate for the pharmaceutical and biotechnology industries as a host organism for the production of human protein drugs.
Collapse
Affiliation(s)
- Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey,.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey.
| |
Collapse
|
2
|
Ghanaeian A, Majhi S, McCafferty CL, Nami B, Black CS, Yang SK, Legal T, Papoulas O, Janowska M, Valente-Paterno M, Marcotte EM, Wloga D, Bui KH. Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. Nat Commun 2023; 14:5741. [PMID: 37714832 PMCID: PMC10504270 DOI: 10.1038/s41467-023-41480-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, using cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localize 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila. We also find that the CCDC96/113 complex is in close contact with the DRC9/10 in the linker region. In addition, we reveal that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.
Collapse
Affiliation(s)
- Avrin Ghanaeian
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Sumita Majhi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Babak Nami
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Corbin S Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Shun Kai Yang
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Martyna Janowska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Institute of Experimental and Clinical Medicine, Polish Academy of Science, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada.
| |
Collapse
|
3
|
Ghanaeian A, Majhi S, McCaffrey CL, Nami B, Black CS, Yang SK, Legal T, Papoulas O, Janowska M, Valente-Paterno M, Marcotte EM, Wloga D, Bui KH. Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543107. [PMID: 37398254 PMCID: PMC10312493 DOI: 10.1101/2023.05.31.543107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, utilizing cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localized 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila . We also found that the CCDC96/113 complex is in close contact with the N-DRC. In addition, we revealed that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.
Collapse
Affiliation(s)
- Avrin Ghanaeian
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Sumita Majhi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Caitie L McCaffrey
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Babak Nami
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Corbin S Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Shun Kai Yang
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Martyna Janowska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
- current address: Laboratory of Immunology, Mossakowski Institute of Experimental and Clinical Medicine, Polish Academy of Science, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
4
|
Identification and utilization of a mutated 60S ribosomal subunit coding gene as an effective and cost-efficient selection marker for Tetrahymena genetic manipulation. Int J Biol Macromol 2022; 204:1-8. [PMID: 35122796 DOI: 10.1016/j.ijbiomac.2022.01.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Since the onset of molecular biology, the ciliate Tetrahymena thermophila has been one of the most convenient single-celled model eukaryotes for genetics, biochemistry, and cell biology. Particularly, thanks to the availability of several different selection markers, it is possible to knock out or knock in genes at multiple genetic loci simultaneously in Tetrahymena, which makes it an excellent model ciliate for tackling complex regulatory mechanisms. Despite these selection markers are efficient for genetic manipulation, the costly drugs used for selection have highlighted the urgent demand for an additional cost-efficient and effective selection marker. Here, we found that a mutated 60S ribosomal subunit component, RPL36A, confers T. thermophila with cycloheximide resistance. On top of that, we developed a cycloheximide cassette and explored suitable transformation and selection conditions. Using the new cassette, we obtained both knockout and knock-in strains successfully at a relatively low cost. This study also provided the first evidence that a cycloheximide resistance gene can be engineered as a selection marker to completely delete a gene from the highly-polyploid somatic nucleus in Tetrahymena.
Collapse
|
5
|
Using a Hand-Held Gene Gun for Genetic Transformation of Tetrahymena thermophila. Methods Mol Biol 2021. [PMID: 34542863 DOI: 10.1007/978-1-0716-1661-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Biolistic bombardment is widely used as a means of delivering vector-coated microparticles into microorganisms, cultured cells, and tissues. The first particle delivery system contained a helium propulsion unit (the gun) mounted in a vacuum-controlled chamber. In contrast, the hand-held gene gun does not operate within a chamber. It is completely hand-held, easy, and efficient to use, and it requires minimal space on the laboratory bench top. This chapter describes protocols for using a hand-held gene gun to deliver transformation vectors for overexpression of genes or gene replacement into the macronucleus of Tetrahymena thermophila. The protocols provide helpful information for preparing Tetrahymena for biolistic bombardment, preparation of vector-coated microcarriers, and basic gene gun operating procedures.
Collapse
|
6
|
Composition and function of the C1b/C1f region in the ciliary central apparatus. Sci Rep 2021; 11:11760. [PMID: 34083607 PMCID: PMC8175508 DOI: 10.1038/s41598-021-90996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.
Collapse
|
7
|
Çalıseki M, Üstüntanır Dede AF, Arslanyolu M. Characterization and use of Tetrahymena thermophila artificial chromosome 2 (TtAC2) constructed by biomimetic of macronuclear rDNA minichromosome. Microbiol Res 2021; 248:126764. [PMID: 33887535 DOI: 10.1016/j.micres.2021.126764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022]
Abstract
Efficient expression vectors for unicellular ciliate eukaryotic Tetrahymena thermophila are still needed in recombinant biology and biotechnology applications. Previously, the construction of the T. thermophila Macronuclear Artificial Chromosome 1 (TtAC1) vector revealed additional needs for structural improvements such as better in vivo stability and maintenance as a recombinant protein expression platform. In this study, we designed an efficiently maintained artificial chromosome by biomimetic of the native macronuclear rDNA minichromosome. TtAC2 was constructed by sequential cloning of subtelomeric 3'NTS region (1.8 kb), an antibiotic resistance gene cassette (2 kb neo4), a gene expression cassette (2 kb TtsfGFP), rDNA coding regions plus a dominant C3 origin sequence (10.3 kb), and telomeres (2.4 kb) in a pUC19 backbone plasmid (2.6 kb). The 21 kb TtAC2 was characterized using fluorescence microscopy, qPCR, western blot and Southern blot after its transformation to vegetative T. thermophila CU428.2 strain, which has a recessive B origin allele. All experimental data show that circular or linear forms of novel TtAC2 were maintained as free replicons in T. thermophila macronucleus with or without antibiotic treatment. Notably, TtAC2 carrying strains expressed a TtsfGFP marker protein, demonstrating the efficacy and functionality of the protein expression platform. We show that TtAC2 is functionally maintained for more than two months, and can be efficiently used in recombinant DNA, and protein production applications.
Collapse
Affiliation(s)
- Mehmet Çalıseki
- Department of Advanced Technologies, Graduate School of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| | - Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| |
Collapse
|
8
|
Üstüntanır Dede AF, Arslanyolu M. Construction and dynamic characterization of a Tetrahymena thermophila macronuclear artificial chromosome. Gene 2020; 748:144697. [PMID: 32325092 DOI: 10.1016/j.gene.2020.144697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/18/2022]
Abstract
Artificial chromosomes were previously generated for use in bacteria, protists, yeast and human cells. A Tetrahymena thermophila artificial chromosome could serve as a versatile platform to study diverse aspects of Tetrahymena biology and beyond. Here, we placed a C3-type rDNA replication origin and telomere sequences from T. thermophila into a pNeo4 vector, producing the first T. thermophila macronuclear artificial chromosome (TtAC1). Circular or linear forms of TtAC1 can be stably transformed into both vegetative and conjugative T. thermophila cells. Linear TtAC1 was stably double in copy number under antibiotic selection, but its copy number was dropping without antibiotic selection pressure. Southern blot, Real-Time PCR and E. coli retransformation analyses together showed that TtAC1 vector did not integrate into the macronuclear genome, and was maintained as a linear or a circular chromosome in T. thermophila macronucleus under antibiotic selection. The use of TtAC1 for recombinant protein production was demonstrated by western blot analysis of a secreted 27 kDa TtsfGFP-12XHis protein. We present the first macronuclear artificial chromosome with species-specific chromosomal elements for use in T. thermophila studies and to aid broad recombinant biotechnology applications.
Collapse
Affiliation(s)
- Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunusemre Campus, Eskisehir 26470, Turkey
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir 26470, Turkey.
| |
Collapse
|
9
|
Heydeck W, Bayless BA, Stemm-Wolf AJ, O'Toole ET, Fabritius AS, Ozzello C, Nguyen M, Winey M. Tetrahymena Poc5 is a transient basal body component that is important for basal body maturation. J Cell Sci 2020; 133:jcs.240838. [PMID: 32350068 DOI: 10.1242/jcs.240838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/06/2020] [Indexed: 01/26/2023] Open
Abstract
Basal bodies (BBs) are microtubule-based organelles that act as a template for and stabilize cilia at the cell surface. Centrins ubiquitously associate with BBs and function in BB assembly, maturation and stability. Human POC5 (hPOC5) is a highly conserved centrin-binding protein that binds centrins through Sfi1p-like repeats and is required for building full-length, mature centrioles. Here, we use the BB-rich cytoskeleton of Tetrahymena thermophila to characterize Poc5 BB functions. Tetrahymena Poc5 (TtPoc5) uniquely incorporates into assembling BBs and is then removed from mature BBs prior to ciliogenesis. Complete genomic knockout of TtPOC5 leads to a significantly increased production of BBs, yet a markedly reduced ciliary density, both of which are rescued by reintroduction of TtPoc5. A second Tetrahymena POC5-like gene, SFR1, is similarly implicated in modulating BB production. When TtPOC5 and SFR1 are co-deleted, cell viability is compromised and BB overproduction is exacerbated. Overproduced BBs display defective transition zone formation and a diminished capacity for ciliogenesis. This study uncovers a requirement for Poc5 in building mature BBs, providing a possible functional link between hPOC5 mutations and impaired cilia.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Westley Heydeck
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Brian A Bayless
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Alexander J Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eileen T O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Amy S Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Courtney Ozzello
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Marina Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
10
|
Urbanska P, Joachimiak E, Bazan R, Fu G, Poprzeczko M, Fabczak H, Nicastro D, Wloga D. Ciliary proteins Fap43 and Fap44 interact with each other and are essential for proper cilia and flagella beating. Cell Mol Life Sci 2018; 75:4479-4493. [PMID: 29687140 PMCID: PMC6208767 DOI: 10.1007/s00018-018-2819-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 11/08/2022]
Abstract
Cilia beating is powered by the inner and outer dynein arms (IDAs and ODAs). These multi-subunit macrocomplexes are arranged in two rows on each outer doublet along the entire cilium length, except its distal end. To generate cilia beating, the activity of ODAs and IDAs must be strictly regulated locally by interactions with the dynein arm-associated structures within each ciliary unit and coordinated globally in time and space between doublets and along the axoneme. Here, we provide evidence of a novel ciliary complex composed of two conserved WD-repeat proteins, Fap43p and Fap44p. This complex is adjacent to another WD-repeat protein, Fap57p, and most likely the two-headed inner dynein arm, IDA I1. Loss of either protein results in altered waveform, beat stroke and reduced swimming speed. The ciliary localization of Fap43p and Fap44p is interdependent in the ciliate Tetrahymena thermophila.
Collapse
Affiliation(s)
- Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, USA
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
11
|
Affiliation(s)
- María E. Elguero
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara B. Nudel
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro D. Nusblat
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Zhu C, Liu X, Chi H, Chen C, Chen Z, Fu G, Gong H, Huang Y. System for the heterologous expression of NS1 protein of H9N2 avian influenza virus in the ciliate Tetrahymena thermophila. J Vet Med Sci 2018; 80:1610-1618. [PMID: 30210069 PMCID: PMC6207525 DOI: 10.1292/jvms.18-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tetrahymena is commonly used as an alternative eukaryotic system for
efficiently expressing heterologous genes. In this study, we inserted the non-structural
(NS) 1 gene of avian influenza virus (AIV) into the shuttle vector
pD5H8 and transformed conjugating T. thermophila with the recombinant
plasmid pD5H8-NS1 by particle bombardment. Positive transformants were selected with
paromomycin. We demonstrated that the NS1 protein could be expressed steadily following
induction with cadmium in this Tetrahymena system. An enzyme-linked
immunosorbent assay detection method was preliminary established using the expressed
protein as coating antigens for serodiagnosis. This is the first study in which a
Tetrahymena expression system was employed for the expression of the
AIV NS1 protein, and it provides a good basis for the development of differential
diagnostic kits and vaccines for the prevention and control of avian influenza.
Collapse
Affiliation(s)
- Chunhua Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Xiaodong Liu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Hongshu Chi
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Hui Gong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| |
Collapse
|
13
|
Pillai AN, Shukla S, Gautam S, Rahaman A. Small phosphatidate phosphatase (TtPAH2) of Tetrahymena complements respiratory function and not membrane biogenesis function of yeast PAH1. J Biosci 2018; 42:613-621. [PMID: 29229879 DOI: 10.1007/s12038-017-9712-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1Δ yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1Δ yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.
Collapse
Affiliation(s)
- Anoop Narayana Pillai
- National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Khurda 752 050, India
| | | | | | | |
Collapse
|
14
|
Resistance to 6-Methylpurine is Conferred by Defective Adenine Phosphoribosyltransferase in Tetrahymena. Genes (Basel) 2018; 9:genes9040179. [PMID: 29570682 PMCID: PMC5924521 DOI: 10.3390/genes9040179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023] Open
Abstract
6-methylpurine (6mp) is a toxic analog of adenine that inhibits RNA and protein synthesis and interferes with adenine salvage mediated by adenine phosphoribosyltransferase (APRTase). Mutants of the ciliated protist Tetrahymena thermophila that are resistant to 6mp were isolated in 1974, but the mechanism of resistance has remained unknown. To investigate 6mp resistance in T. thermophila, we created 6mp-resistant strains and identified a mutation in the APRTase genomic locus (APRT1) that is responsible for 6mp resistance. While overexpression of the mutated APRT1 allele in 6mp-sensitive cells did not confer resistance to 6mp, reduced wild-type APRT1 expression resulted in a significant decrease in sensitivity to 6mp. Knocking out or reducing the expression of APRT1 by RNA interference (RNAi) did not affect robust cell growth, which indicates that adenine salvage is redundant or that de novo synthesis pathways provide sufficient adenosine monophosphate for viability. We also explored whether 6mp resistance could be used as a novel inducible selection marker by generating 6mp- and paromomycin-resistant double mutants. While 6mp- and paromomycin-resistant double mutants did express fluorescent proteins in an RNAi-based system, the system requires optimization before 6mp resistance can be used as an effective inducible selection marker.
Collapse
|
15
|
Pillai AN, Shukla S, Rahaman A. An evolutionarily conserved phosphatidate phosphatase maintains lipid droplet number and endoplasmic reticulum morphology but not nuclear morphology. Biol Open 2017; 6:1629-1643. [PMID: 28954739 PMCID: PMC5703613 DOI: 10.1242/bio.028233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphatidic acid phosphatases are involved in the biosynthesis of phospholipids and triacylglycerol, and also act as transcriptional regulators. Studies to ascertain their role in lipid metabolism and membrane biogenesis are restricted to Opisthokonta and Archaeplastida. Here, we report the role of phosphatidate phosphatase (PAH) in Tetrahymena thermophila, belonging to the Alveolata clade. We identified two PAH homologs in Tetrahymena, TtPAH1 and TtPAH2 Loss of function of TtPAH1 results in reduced lipid droplet number and an increase in endoplasmic reticulum (ER) content. It also results in more ER sheet structure as compared to wild-type Tetrahymena Surprisingly, we did not observe a visible defect in the nuclear morphology of the ΔTtpah1 mutant. TtPAH1 rescued all known defects in the yeast pah1Δ strain and is conserved functionally between Tetrahymena and yeast. The homologous gene derived from Trypanosoma also rescued the defects of the yeast pah1Δ strain. Our results indicate that PAH, previously known to be conserved among Opisthokonts, is also present in a set of distant lineages. Thus, a phosphatase cascade is evolutionarily conserved and is functionally interchangeable across eukaryotic lineages.
Collapse
Affiliation(s)
- Anoop Narayana Pillai
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, HBNI, P.O. Jatni, Khurda 752050, Odisha, India
| | - Sushmita Shukla
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, HBNI, P.O. Jatni, Khurda 752050, Odisha, India
| | - Abdur Rahaman
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, HBNI, P.O. Jatni, Khurda 752050, Odisha, India
| |
Collapse
|
16
|
Wiley EA, Horrell S, Yoshino A, Schornak CC, Bagnani C, Chalker DL. Diversification of HP1-like Chromo Domain Proteins in Tetrahymena thermophila. J Eukaryot Microbiol 2017; 65:104-116. [PMID: 28692189 PMCID: PMC5762428 DOI: 10.1111/jeu.12443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022]
Abstract
Proteins that possess a chromo domain are well-known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy-terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi-directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates.
Collapse
Affiliation(s)
- Emily A Wiley
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Scott Horrell
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Alyssa Yoshino
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Cara C Schornak
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Claire Bagnani
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| |
Collapse
|
17
|
Behavioral Effects of a Chemorepellent Receptor Knockout Mutation in Tetrahymena thermophila. mSphere 2017; 2:mSphere00182-17. [PMID: 28685161 PMCID: PMC5497023 DOI: 10.1128/msphere.00182-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
Although many single-cell eukaryotes have served as classical model systems for chemosensory studies for decades, the major emphasis has been on chemoattraction and no chemorepellent receptor gene has been identified in any unicellular eukaryote. This is the first description of a gene that codes for a chemorepellent receptor in any protozoan. Integration of both depolarizing chemorepellent pathways and hyperpolarizing chemoattractant pathways is as important to chemoresponses of motile unicells as excitatory and inhibitory neurotransmitter pathways are to neurons. Therefore, both chemoattractant and chemorepellent pathways should be represented in a useful unicellular model system. Tetrahymena cells provide such a model system because simple behavioral bioassays, gene knockouts, biochemical analysis, and other approaches can be used with these eukaryotic model cells. This work can contribute to the basic understanding of unicellular sensory responses and provide insights into the evolution of chemoreceptors and possible chemorepellent approaches for preventing infections by some pathogenic protozoa. A conditioned supernatant from Tetrahymena thermophila contains a powerful chemorepellent for wild-type cells, and a gene called G37 is required for this response. This is the first genomic identification of a chemorepellent receptor in any eukaryotic unicellular organism. This conditioned supernatant factor (CSF) is small (<1 kDa), and its repellent effect is resistant to boiling, protease treatment, and nuclease digestion. External BAPTA eliminated the CSF response, suggesting that Ca2+ entry is required for the classical avoiding reactions (AR) used for chemorepulsion. A macronuclear G37 gene knockout (G37-KO) mutant is both nonresponsive to the CSF and overresponsive to other repellents such as quinine, lysozyme, GTP, and high potassium concentrations. All of these mutant phenotypes were reversed by overexpression of the wild-type G37 gene in a G37 overexpression mutant. Overexpression of G37 in the wild type caused increased responsiveness to the CSF and underresponsiveness to high K+ concentrations. Behavioral adaptation (by prolonged exposure to the CSF) caused decreases in responsiveness to all of the stimuli used in the wild type and the overexpression mutant but not in the G37-KO mutant. We propose that the constant presence of the CSF causes a decreased basal excitability of the wild type due to chemosensory adaptation through G37 and that all of the G37-KO phenotypes are due to an inability to detect the CSF. Therefore, the G37 protein may be the CSF receptor. The physiological role of these G37-mediated responses may be to both moderate basal excitability and detect the CSF as an indicator of high cell density growth. IMPORTANCE Although many single-cell eukaryotes have served as classical model systems for chemosensory studies for decades, the major emphasis has been on chemoattraction and no chemorepellent receptor gene has been identified in any unicellular eukaryote. This is the first description of a gene that codes for a chemorepellent receptor in any protozoan. Integration of both depolarizing chemorepellent pathways and hyperpolarizing chemoattractant pathways is as important to chemoresponses of motile unicells as excitatory and inhibitory neurotransmitter pathways are to neurons. Therefore, both chemoattractant and chemorepellent pathways should be represented in a useful unicellular model system. Tetrahymena cells provide such a model system because simple behavioral bioassays, gene knockouts, biochemical analysis, and other approaches can be used with these eukaryotic model cells. This work can contribute to the basic understanding of unicellular sensory responses and provide insights into the evolution of chemoreceptors and possible chemorepellent approaches for preventing infections by some pathogenic protozoa.
Collapse
|
18
|
Cheng CY, Young JM, Lin CYG, Chao JL, Malik HS, Yao MC. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev 2017; 30:2724-2736. [PMID: 28087716 PMCID: PMC5238731 DOI: 10.1101/gad.290460.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022]
Abstract
Here, Cheng et al. present data from Tetrahymena that highlight a division of labor among ciliate piggyBac-derived genes, which carry out mutually exclusive categories of excision events mediated by either transposon-like features or RNA-directed heterochromatin. Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during development. The model ciliate Tetrahymena thermophila removes 34% of its germline micronuclear genome from somatic macronuclei by excising thousands of internal eliminated sequences (IESs), a process that shares features with transposon excision. Indeed, piggyBac transposon-derived genes are necessary for genome-wide IES excision in both Tetrahymena (TPB2 [Tetrahymena piggyBac-like 2] and LIA5) and Paramecium tetraurelia (PiggyMac). T. thermophila has at least three other piggyBac-derived genes: TPB1, TPB6, and TPB7. Here, we show that TPB1 and TPB6 excise a small, distinct set of 12 unusual IESs that disrupt exons. TPB1-deficient cells complete mating, but their progeny exhibit slow growth, giant vacuoles, and osmotic shock sensitivity due to retention of an IES in the vacuolar gene DOP1 (Dopey domain-containing protein). Unlike most IESs, TPB1-dependent IESs have piggyBac-like terminal inverted motifs that are necessary for excision. Transposon-like excision mediated by TPB1 and TPB6 provides direct evidence for a transposon origin of not only IES excision machinery but also IESs themselves. Our study highlights a division of labor among ciliate piggyBac-derived genes, which carry out mutually exclusive categories of excision events mediated by either transposon-like features or RNA-directed heterochromatin.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Chih-Yi Gabriela Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
19
|
McDaniel SL, Zweifel E, Harris PKW, Yao MC, Cole ES, Chalker DL. DRH1, a p68-related RNA helicase gene, is required for chromosome breakage in Tetrahymena. Biol Open 2016; 5:1790-1798. [PMID: 27793833 PMCID: PMC5200911 DOI: 10.1242/bio.021576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The p68 DEAD box helicases comprise a widely conserved protein family involved in a large range of biological processes including transcription, splicing and translation. The genome of the ciliate Tetrahymena thermophile encodes two p68-like helicases, Drh1p and Lia2p. We show that DRH1 is essential for growth and completion of development. In growing cells, Drh1p is excluded from the nucleus and accumulates near cortical basal bodies. In contrast, during sexual reproduction, this protein localizes to meiotic micronuclei, initially in punctate foci in regions where centromeres and telomeres are known to reside and later in post-zygotic differentiating somatic macronuclei. Differentiation of the macronuclear genome involves extensive DNA rearrangements including fragmentation of the five pairs of germline-derived chromosomes into 180 chromosomal sub-fragments that are stabilized by de novo telomere deletion. In addition, thousands of internal eliminated sequences (IESs) are excised from loci dispersed throughout the genome. Strains with DRH1 deleted from the germline nuclei, which do not express the protein during post-zygotic development, fail to fragment the developing macronuclear chromosomes. IES excision still occurs in the absence of DRH1 zygotic expression; thus, Drh1p is the first protein found to be specifically required for chromosome breakage but not DNA elimination. Summary: The p68-related Drh1protein is essential for both growth and development of the ciliate Tetrahymena thermophila. It localizes to meiotic nuclei and is required for chromosome breakage of developing somatic chromosomes.
Collapse
Affiliation(s)
- Stephen L McDaniel
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Erica Zweifel
- Biology Department, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Peter K W Harris
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Eric S Cole
- Biology Department, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Douglas L Chalker
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
20
|
Subramanian A, Kabi A, Gray SF, Pennock D. p28 dynein light chains and ciliary motility in Tetrahymena thermophila. Cytoskeleton (Hoboken) 2016; 73:197-208. [PMID: 26994403 DOI: 10.1002/cm.21295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/10/2022]
Abstract
Dynein light chains are required for the assembly of axonemal dyneins into cilia and flagella. Most organisms express a single p28 dynein light chain and four to nine one-headed inner arm dynein heavy chains. In contrast, Tetrahymena encodes three p28 dynein light chain genes (p28A, p28B, and p28C) and 18 one-headed inner arm dynein heavy chains. In this article it is shown that mutations in p28A and p28B affected both beat frequency and waveform of cilia, while mutations in p28C affected only ciliary beat frequency. A similar set of dynein heavy chains were affected in both p28AKO and p28BKO, but a distinct set of heavy chains was affected in p28CKO. The results suggested that the p28s have non-redundant functions in Tetrahymena and that p28C was associated with a different set of dynein heavy chains than were p28A and p28B.
Collapse
Affiliation(s)
| | - Amrita Kabi
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Sean F Gray
- Department of Biology, Miami University, Oxford, Ohio, 45056
| | - David Pennock
- Department of Biology, Miami University, Oxford, Ohio, 45056
| |
Collapse
|
21
|
Sfr1, a Tetrahymena thermophila Sfi1 Repeat Protein, Modulates the Production of Cortical Row Basal Bodies. mSphere 2016; 1:mSphere00257-16. [PMID: 27904881 PMCID: PMC5112337 DOI: 10.1128/msphere.00257-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively. Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively.
Collapse
|
22
|
Bayless BA, Galati DF, Junker AD, Backer CB, Gaertig J, Pearson CG. Asymmetrically localized proteins stabilize basal bodies against ciliary beating forces. J Cell Biol 2016; 215:457-466. [PMID: 27807131 PMCID: PMC5119938 DOI: 10.1083/jcb.201604135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/24/2016] [Accepted: 10/04/2016] [Indexed: 11/26/2022] Open
Abstract
Basal bodies (BBs) organize and anchor motile cilia. This study uncovers components that asymmetrically localize to the rotationally symmetric BBs, where they fortify specific BB domains. Asymmetrically localized BB components are necessary to resist asymmetric ciliary forces. Basal bodies are radially symmetric, microtubule-rich structures that nucleate and anchor motile cilia. Ciliary beating produces asymmetric mechanical forces that are resisted by basal bodies. To resist these forces, distinct regions within the basal body ultrastructure and the microtubules themselves must be stable. However, the molecular components that stabilize basal bodies remain poorly defined. Here, we determine that Fop1 functionally interacts with the established basal body stability components Bld10 and Poc1. We find that Fop1 and microtubule glutamylation incorporate into basal bodies at distinct stages of assembly, culminating in their asymmetric enrichment at specific triplet microtubule regions that are predicted to experience the greatest mechanical force from ciliary beating. Both Fop1 and microtubule glutamylation are required to stabilize basal bodies against ciliary beating forces. Our studies reveal that microtubule glutamylation and Bld10, Poc1, and Fop1 stabilize basal bodies against the forces produced by ciliary beating via distinct yet interdependent mechanisms.
Collapse
Affiliation(s)
- Brian A Bayless
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Anthony D Junker
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Chelsea B Backer
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
23
|
Abstract
AIM AND OBJECTIVES Exocrine pancreatic insufficiency caused by inflammation or pancreatic tumors results in nutrient malfunction by a lack of digestive enzymes and neutralization compounds. Despite satisfactory clinical results with current enzyme therapies, a normalization of fat absorption in patients is rare. An individualized therapy is required that includes high dosage of enzymatic units, usage of enteric coating, and addition of gastric proton pump inhibitors. The key goal to improve this therapy is to identify digestive enzymes with high activity and stability in the gastrointestinal tract. METHODS We cloned and analyzed three novel ciliate lipases derived from Tetrahymena thermophila. Using highly precise pH-STAT-titration and colorimetric methods, we determined stability and lipolytic activity under physiological conditions in comparison with commercially available porcine and fungal digestive enzyme preparations. We measured from pH 2.0 to 9.0, with different bile salts concentrations, and substrates such as olive oil and fat derived from pig diet. RESULTS Ciliate lipases CL-120, CL-130, and CL-230 showed activities up to 220-fold higher than Creon, pancreatin standard, and rizolipase Nortase within a pH range from pH 2.0 to 9.0. They are highly active in the presence of bile salts and complex pig diet substrate, and more stable after incubation in human gastric juice compared with porcine pancreatic lipase and rizolipase. CONCLUSIONS The newly cloned and characterized lipases fulfilled all requirements for high activity under physiological conditions. These novel enzymes are therefore promising candidates for an improved enzyme replacement therapy for exocrine pancreatic insufficiency.
Collapse
|
24
|
Waclawek E, Joachimiak E, Hall MH, Fabczak H, Wloga D. Regulation of katanin activity in the ciliate Tetrahymena thermophila. Mol Microbiol 2016; 103:134-150. [PMID: 27726198 DOI: 10.1111/mmi.13547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 01/10/2023]
Abstract
Katanin is a microtubule severing protein that functions as a heterodimer composed of an AAA domain catalytic subunit, p60, and a regulatory subunit, a WD40 repeat protein, p80. Katanin-dependent severing of microtubules is important for proper execution of key cellular activities including cell division, migration, and differentiation. Published data obtained in Caenorhabditis elegans, Xenopus and mammals indicate that katanin is regulated at multiple levels including transcription, posttranslational modifications (of both katanin and microtubules) and degradation. Little is known about how katanin is regulated in unicellular organisms. Here we show that in the ciliated protist Tetrahymena thermophila, as in Metazoa, the localization and activity of katanin requires specific domains of both p60 and p80, and that the localization of p60, but not p80, is sensitive to the levels of microtubule glutamylation. A prolonged overexpression of either a full length, or a fragment of p80 containing WD40 repeats, partly phenocopies a knockout of p60, indicating that in addition to its activating role, p80 could also contribute to the inhibition of p60. We also show that the level of p80 depends on the 26S proteasome activity.
Collapse
Affiliation(s)
- Ewa Waclawek
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Malgorzata Hanna Hall
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
25
|
Carle CM, Zaher HS, Chalker DL. A Parallel G Quadruplex-Binding Protein Regulates the Boundaries of DNA Elimination Events of Tetrahymena thermophila. PLoS Genet 2016; 12:e1005842. [PMID: 26950070 PMCID: PMC4780704 DOI: 10.1371/journal.pgen.1005842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
Guanine (G)-rich DNA readily forms four-stranded quadruplexes in vitro, but evidence for their participation in genome regulation is limited. We have identified a quadruplex-binding protein, Lia3, that controls the boundaries of germline-limited, internal eliminated sequences (IESs) of Tetrahymena thermophila. Differentiation of this ciliate's somatic genome requires excision of thousands of IESs, targeted for removal by small-RNA-directed heterochromatin formation. In cells lacking LIA3 (ΔLIA3), the excision of IESs bounded by specific G-rich polypurine tracts was impaired and imprecise, whereas the removal of IESs without such controlling sequences was unaffected. We found that oligonucleotides containing these polypurine tracts formed parallel G-quadruplex structures that are specifically bound by Lia3. The discovery that Lia3 binds G-quadruplex DNA and controls the accuracy of DNA elimination at loci with specific G-tracts uncovers an unrecognized potential of quadruplex structures to regulate chromosome organization.
Collapse
Affiliation(s)
- Christine M. Carle
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Douglas L. Chalker
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
26
|
Gotesman M, Williams SA. Using a Handheld Gene Gun for Genetic Transformation of Tetrahymena thermophila. Methods Mol Biol 2016; 1365:373-383. [PMID: 26498798 DOI: 10.1007/978-1-4939-3124-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter describes protocols for using a handheld gene gun to deliver transformation vectors for overexpression of genes or gene replacement in the macronucleus of Tetrahymena thermophila. The protocols provide helpful information for preparing Tetrahymena for biolistic bombardment, preparation of vector-coated microcarriers, and basic gene gun operating procedures.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, Technion - Israel Institute of Technology, Technion, Haifa, 3200003, Israel.
| | | |
Collapse
|
27
|
Depletion of UBC9 Causes Nuclear Defects during the Vegetative and Sexual Life Cycles in Tetrahymena thermophila. EUKARYOTIC CELL 2015; 14:1240-52. [PMID: 26453653 DOI: 10.1128/ec.00115-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022]
Abstract
Ubc9p is the sole E2-conjugating enzyme for SUMOylation, and its proper function is required for regulating key nuclear events such as transcription, DNA repair, and mitosis. In Tetrahymena thermophila, the genome is separated into a diploid germ line micronucleus (MIC) that divides by mitosis and a polyploid somatic macronucleus (MAC) that divides amitotically. This unusual nuclear organization provides novel opportunities for the study of SUMOylation and Ubc9p function. We identified the UBC9 gene and demonstrated that its complete deletion from both MIC and MAC genomes is lethal. Rescue of the lethal phenotype with a GFP-UBC9 fusion gene driven by a metallothionein promoter generated a cell line with CdCl2-dependent expression of green fluorescent protein (GFP)-Ubc9p. Depletion of Ubc9p in vegetative cells resulted in the loss of MICs, but MACs continued to divide. In contrast, expression of catalytically inactive Ubc9p resulted in the accumulation of multiple MICs. Critical roles for Ubc9p were also identified during the sexual life cycle of Tetrahymena. Cell lines that were depleted for Ubc9p did not form mating pairs and therefore could not complete any of the subsequent stages of conjugation, including meiosis and macronuclear development. Mating between cells expressing catalytically inactive Ubc9p resulted in arrest during macronuclear development, consistent with our observation that Ubc9p accumulates in the developing macronucleus.
Collapse
|
28
|
Yilmaz G, Arslanyolu M. Efficient expression of codon-adapted affinity tagged super folder green fluorescent protein for synchronous protein localization and affinity purification studies in Tetrahymena thermophila. BMC Biotechnol 2015; 15:22. [PMID: 25887423 PMCID: PMC4432788 DOI: 10.1186/s12896-015-0137-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 03/18/2015] [Indexed: 11/20/2022] Open
Abstract
Background A superior Green Fluorescent Protein (GFP) mutant, known as superfolder GFP (sfGFP), is more soluble, faster folding, and is the brightest of the known GFP mutants. This study aimed to create a codon-adapted sfGFP tag (TtsfGFP) for simultaneous protein localization and affinity purification in Tetrahymena thermophila. Results In vivo fluorescence spectroscopic analyses of clones carrying a codon-adapted and 6 × His tagged TtsfGFP cassette showed approximately 2–4-fold increased fluorescence emission compared with the control groups at 3 h. Fluorescence microscopy also revealed that TtsfGFP reached its emission maxima at 100 min, which was much earlier than controls expressing EGFP and sfGFP (240 min). A T. thermophila ATP-dependent DNA ligase domain containing hypothetical gene (H) was cloned into the 3' end of 6 × His-TtsfGFP to assess the affinity/localization dual tag feature. Fluorescence microscopy of the 6 × His-TtsfGFP-H clone confirmed its localization in the macro- and micronucleus of vegetative T. thermophila. Simultaneous affinity purification of TtsfGFP and TtsfGFP-H with Ni-NTA beads was feasible, as shown by Ni-NTA purified proteins analysis by SDS-PAGE and western blotting. Conclusions We successfully codon adapted the N-terminal 6 × His-TtsfGFP tag and showed that it could be used for protein localization and affinity purification simultaneously in T. thermophila. We believe that this dual tag will advance T. thermophila studies by providing strong visual traceability of the target protein in vivo and in vitro during recombinant production of heterologous and homologous proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0137-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gürkan Yilmaz
- Graduate School of Science, Department of Advance Technologies, Biotechnology Program, Anadolu University, Yunusemre Campus, Eskisehir, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Science, Anadolu University, Yunusemre Campus, Eskisehir, Turkey.
| |
Collapse
|
29
|
Fukuda Y, Akematsu T, Attiq R, Tada C, Nakai Y, Pearlman RE. Role of the Cytosolic Heat Shock Protein 70 Ssa5 in the Ciliate Protozoan Tetrahymena thermophila. J Eukaryot Microbiol 2015; 62:481-93. [DOI: 10.1111/jeu.12203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Yasuhiro Fukuda
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | | - Rizwan Attiq
- Department of Biology; York University; Toronto Ontario Canada
| | - Chika Tada
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | - Yutaka Nakai
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | |
Collapse
|
30
|
The functional expression and motile properties of recombinant outer arm dynein from Tetrahymena. Biochem Biophys Res Commun 2014; 447:596-601. [PMID: 24747078 DOI: 10.1016/j.bbrc.2014.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.
Collapse
|
31
|
Cowan GJM, Bockau U, Eleni-Muus J, Aldag I, Samuel K, Creasey AM, Hartmann MWW, Cavanagh DR. A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila. PLoS One 2014; 9:e87198. [PMID: 24489871 PMCID: PMC3906136 DOI: 10.1371/journal.pone.0087198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/20/2013] [Indexed: 01/15/2023] Open
Abstract
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens.
Collapse
Affiliation(s)
- Graeme J. M. Cowan
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Kay Samuel
- Cell Therapy Group, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Alison M. Creasey
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David R. Cavanagh
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Iwamoto M, Mori C, Hiraoka Y, Haraguchi T. Puromycin resistance gene as an effective selection marker for ciliate Tetrahymena. Gene 2014; 534:249-55. [DOI: 10.1016/j.gene.2013.10.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
|
33
|
Mutations in Pdd1 reveal distinct requirements for its chromodomain and chromoshadow domain in directing histone methylation and heterochromatin elimination. EUKARYOTIC CELL 2013; 13:190-201. [PMID: 24297443 DOI: 10.1128/ec.00219-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pdd1, a specialized HP1-like protein, is required for genome-wide DNA rearrangements that restructure a previously silent germ line genome into an active somatic genome during macronuclear differentiation of Tetrahymena thermophila. We deleted or otherwise mutated conserved regions of the protein to investigate how its different domains promote the excision of thousands of internal eliminated sequences (IESs). Previous studies revealed that Pdd1 contributes to recognition of IES loci after they are targeted by small-RNA-guided methylation of histone H3 on lysine 27 (H3K27), subsequently aids the establishment of H3K9 methylation, and recruits proteins that lead to excision. The phenotypes we observed for different Pdd1 alleles showed that each of the two chromodomains and the chromoshadow domain (CSD) have distinct contributions during somatic genome differentiation. Chromodomain 1 (CD1) is essential for conjugation as either its deletion or the substitution of two key aromatic amino acid residues (the W97A W100A mutant) is lethal. These mutations caused mislocalization of a cyan fluorescent protein (CFP)-tagged protein, prevented the establishment of histone H3 dimethylated on K9 (H3K9me2), and abolished IES excision. Nevertheless, the requirement for CD1 could be bypassed by recruiting Pdd1 directly to an IES by addition of a specific DNA binding domain. Chromodomain 2 (CD2) was necessary for producing viable progeny, but low levels of H3K9me2 and IES excision still occurred. A mutation in the chromoshadow domain (CSD) prevented Pdd1 focus formation but still permitted ∼17% of conjugants to produce viable progeny. However, this mutant was unable to stimulate excision when recruited to an ectopic IES, indicating that this domain is important for recruitment of excision factors.
Collapse
|
34
|
Shieh AWY, Chalker DL. LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation. PLoS One 2013; 8:e75337. [PMID: 24069402 PMCID: PMC3775806 DOI: 10.1371/journal.pone.0075337] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/13/2013] [Indexed: 01/24/2023] Open
Abstract
During macronuclear differentiation of the ciliate Tetrahymena thermophila, genome-wide DNA rearrangements eliminate nearly 50 Mbp of germline derived DNA, creating a streamlined somatic genome. The transposon-like and other repetitive sequences to be eliminated are identified using a piRNA pathway and packaged as heterochromatin prior to their removal. In this study, we show that LIA5, which encodes a zinc-finger protein likely of transposon origin, is required for both chromosome fragmentation and DNA elimination events. Lia5p acts after the establishment of RNAi-directed heterochromatin modifications, but prior to the excision of the modified sequences. In ∆LIA5 cells, DNA elimination foci, large nuclear sub-structures containing the sequences to be eliminated and the essential chromodomain protein Pdd1p, do not form. Lia5p, unlike Pdd1p, is not stably associated with these structures, but is required for their formation. In the absence of Lia5p, we could recover foci formation by ectopically inducing DNA damage by UV treatment. Foci in both wild-type or UV-treated ∆LIA5 cells contain dephosphorylated Pdd1p. These studies of LIA5 reveal that DNA elimination foci form after the excision of germ-line limited sequences occurs and indicate that Pdd1p reorganization is likely mediated through a DNA damage response.
Collapse
Affiliation(s)
- Annie Wan Yi Shieh
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Douglas L. Chalker
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ross I, Clarissa C, Giddings TH, Winey M. ε-tubulin is essential in Tetrahymena thermophila for the assembly and stability of basal bodies. J Cell Sci 2013; 126:3441-51. [PMID: 23704354 DOI: 10.1242/jcs.128694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Basal bodies and centrioles are conserved microtubule-based organelles the improper assembly of which leads to a number of diseases, including ciliopathies and cancer. Tubulin family members are conserved components of these structures that are integral to their proper formation and function. We have identified the ε-tubulin gene in Tetrahymena thermophila and detected the protein, through fluorescence of a tagged allele, to basal bodies. Immunoelectron microscopy has shown that ε-tubulin localizes primarily to the core microtubule scaffold. A complete genomic knockout of ε-tubulin has revealed that it is an essential gene required for the assembly and maintenance of the triplet microtubule blades of basal bodies. We have conducted site-directed mutagenesis of the ε-tubulin gene and shown that residues within the nucleotide-binding domain, longitudinal interacting domains, and C-terminal tail are required for proper function. A single amino acid change of Thr150, a conserved residue in the nucleotide-binding domain, to Val is a conditional mutation that results in defects in the spatial and temporal assembly of basal bodies as well as their stability. We have genetically separated functions for the domains of ε-tubulin and identified a novel role for the nucleotide-binding domain in the regulation of basal body assembly and stability.
Collapse
Affiliation(s)
- Ian Ross
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
36
|
Stemm-Wolf AJ, Meehl JB, Winey M. Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila. J Cell Sci 2013; 126:1659-71. [PMID: 23426847 DOI: 10.1242/jcs.120238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directed fluid flow, which is achieved by the coordinated beating of motile cilia, is required for processes as diverse as cellular swimming, developmental patterning and mucus clearance. Cilia are nucleated, anchored and aligned at the plasma membrane by basal bodies, which are cylindrical microtubule-based structures with ninefold radial symmetry. In the unicellular ciliate Tetrahymena thermophila, two centrin family members associated with the basal body are important for both basal body organization and stabilization. We have identified a family of 13 proteins in Tetrahymena that contain centrin-binding repeats related to those identified in the Saccharomyces cerevisiae Sfi1 protein. We have named these proteins Sfr1-Sfr13 (for Sfi1-repeat). Nine of the Sfr proteins localize in unique polarized patterns surrounding the basal body, suggesting non-identical roles in basal body organization and association with basal body accessory structures. Furthermore, the Sfr proteins are found in distinct basal body populations in Tetrahymena cells, indicating that they are responsive to particular developmental programs. A complete genetic deletion of one of the family members, Sfr13, causes unstable basal bodies and defects in daughter basal body separation from the mother, phenotypes also observed with centrin disruption. It is likely that the other Sfr family members are involved in distinct centrin functions, providing specificity to the tasks that centrins perform at basal bodies.
Collapse
Affiliation(s)
- Alexander J Stemm-Wolf
- Department of Molecular, Cellular and Developmental Biology, University of Colorado - Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
37
|
Bayless BA, Giddings TH, Winey M, Pearson CG. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol Biol Cell 2012; 23:4820-32. [PMID: 23115304 PMCID: PMC3521689 DOI: 10.1091/mbc.e12-08-0577] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/23/2012] [Indexed: 12/03/2022] Open
Abstract
Basal bodies nucleate, anchor, and organize cilia. As the anchor for motile cilia, basal bodies must be resistant to the forces directed toward the cell as a consequence of ciliary beating. The molecules and generalized mechanisms that contribute to the maintenance of basal bodies remain to be discovered. Bld10/Cep135 is a basal body outer cartwheel domain protein that has established roles in the assembly of nascent basal bodies. We find that Bld10 protein first incorporates stably at basal bodies early during new assembly. Bld10 protein continues to accumulate at basal bodies after assembly, and we hypothesize that the full complement of Bld10 is required to stabilize basal bodies. We identify a novel mechanism for Bld10/Cep135 in basal body maintenance so that basal bodies can withstand the forces produced by motile cilia. Bld10 stabilizes basal bodies by promoting the stability of the A- and C-tubules of the basal body triplet microtubules and by properly positioning the triplet microtubule blades. The forces generated by ciliary beating promote basal body disassembly in bld10Δ cells. Thus Bld10/Cep135 acts to maintain the structural integrity of basal bodies against the forces of ciliary beating in addition to its separable role in basal body assembly.
Collapse
Affiliation(s)
- Brian A. Bayless
- Department of Cell and Developmental Biology, University of Colorado Denver–Anshutz Medical Campus, Aurora, CO 80045-2537
| | - Thomas H. Giddings
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Mark Winey
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Denver–Anshutz Medical Campus, Aurora, CO 80045-2537
| |
Collapse
|
38
|
Vonderfecht T, Cookson MW, Giddings TH, Clarissa C, Winey M. The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Mol Biol Cell 2012; 23:4766-77. [PMID: 23087207 PMCID: PMC3521684 DOI: 10.1091/mbc.e12-06-0454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrins are a ubiquitous family of small Ca(2+)-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
39
|
Biochemical approaches including the design and use of strains expressing epitope-tagged proteins. Methods Cell Biol 2012; 109:347-55. [PMID: 22444151 DOI: 10.1016/b978-0-12-385967-9.00012-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epitope tagging is a powerful approach used to enable investigations of a cellular component by elucidating its localization, interaction partners, and/or activity targets. Successful tag-based affinity purification yields a mixture of the molecule of interest, associated proteins and nucleic acids, and nonspecific background proteins and nucleic acids, many of which can depend on details of the protocol for enrichment. This chapter provides guidelines and considerations for designing an affinity purification experiment, beginning with construction of a strain expressing a tagged subunit. Common biochemical methods for detecting protein, RNA, and DNA in Tetrahymena thermophila are also discussed.
Collapse
|
40
|
Lin IT, Chao JL, Yao MC. An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila. Mol Biol Cell 2012; 23:2213-25. [PMID: 22513090 PMCID: PMC3364183 DOI: 10.1091/mbc.e11-11-0952] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Programmed DNA rearrangements are important processes present in many organisms. In the ciliated protozoan Tetrahymena thermophila, DNA rearrangements occur during the sexual conjugation process and lead to the deletion of thousands of specific DNA segments and fragmentation of the chromosomes. In this study, we found that the Ku80 homologue, a conserved component of the nonhomologous end-joining process of DNA repair, was essential for these two processes. During conjugation, TKU80 was highly expressed and localized to the new macronucleus, where DNA rearrangements occur. Homokaryon TKU80-knockout mutants are unable to complete conjugation and produce progeny and are arrested at the two-micronuclei/two-macronuclei stage. Analysis of their DNA revealed failure to complete DNA deletion. However, the DNA-cutting step appeared to have occurred, as evidenced by the presence of circularized excised DNA. Moreover, chromosome breakage or de novo telomere addition was affected. The mutant appears to accumulate free DNA ends detectable by terminal deoxynucleotidyl transferase dUTP nick end labeling assays that led to the degradation of most DNA in the developing macronucleus. These findings suggest that Tku80p may serve an end-protective role after DNA cleavage has occurred. Unexpectedly, the large heterochromatin structures that normally associate with DNA rearrangements failed to form without TKU80. Together the results suggest multiple roles for Tku80p and indicate that a Ku-dependent DNA-repair pathway is involved in programmed DNA rearrangements in Tetrahymena.
Collapse
Affiliation(s)
- I-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 112, Taiwan, Republic of China
| | | | | |
Collapse
|
41
|
Tavares A, Gonçalves J, Florindo C, Tavares ÁA, Soares H. Mob1: defining cell polarity for proper cell division. J Cell Sci 2012; 125:516-27. [DOI: 10.1242/jcs.096610] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mob1 is a component of both the mitotic exit network and Hippo pathway, being required for cytokinesis, control of cell proliferation and apoptosis. Cell division accuracy is crucial in maintaining cell ploidy and genomic stability and relies on the correct establishment of the cell division axis, which is under the control of the cell's environment and its intrinsic polarity. The ciliate Tetrahymena thermophila possesses a permanent anterior–posterior axis, left–right asymmetry and divides symmetrically. These unique features of Tetrahymena prompted us to investigate the role of Tetrahymena Mob1. Unexpectedly, we found that Mob1 accumulated in basal bodies at the posterior pole of the cell, and is the first molecular polarity marker so far described in Tetrahymena. In addition, Mob1 depletion caused the abnormal establishment of the cell division plane, providing clear evidence that Mob1 is important for its definition. Furthermore, cytokinesis was arrested and ciliogenesis delayed in Tetrahymena cells depleted of Mob1. This is the first evidence for an involvement of Mob1 in cilia biology. In conclusion, we show that Mob1 is an important cell polarity marker that is crucial for correct division plane placement, for cytokinesis completion and for normal cilia growth rates.
Collapse
Affiliation(s)
- Alexandra Tavares
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Edificio C8, 1749-016 Lisboa, Portugal
| | - João Gonçalves
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Edificio C8, 1749-016 Lisboa, Portugal
| | - Cláudia Florindo
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
- Departamento de Ciências Biomédicas e Medicina, Universidade de Algarve, Campus Gambela, 8005 Montenegro, Portugal
| | - Álvaro A. Tavares
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
- Departamento de Ciências Biomédicas e Medicina, Universidade de Algarve, Campus Gambela, 8005 Montenegro, Portugal
| | - Helena Soares
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Edificio C8, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096 Lisboa, Portugal
| |
Collapse
|
42
|
|
43
|
Cassidy-Hanley DM. Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage. Methods Cell Biol 2012; 109:237-76. [PMID: 22444147 PMCID: PMC3608402 DOI: 10.1016/b978-0-12-385967-9.00008-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The ciliated protozoan Tetrahymena thermophila has been an important model system for biological research for many years. During that time, a variety of useful strains, including highly inbred stocks, a collection of diverse mutant strains, and wild cultivars from a variety of geographical locations have been identified. In addition, thanks to the efforts of many different laboratories, optimal conditions for growth, maintenance, and storage of Tetrahymena have been worked out. To facilitate the efficient use of Tetrahymena, especially by those new to the system, this chapter presents a brief description of many available Tetrahymena strains and lists possible resources for obtaining viable cultures of T. thermophila and other Tetrahymena species. Descriptions of commonly used media, methods for cell culture and maintenance, and protocols for short- and long-term storage are also presented.
Collapse
Affiliation(s)
- Donna M Cassidy-Hanley
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
44
|
|
45
|
Motl JA, Chalker DL. Zygotic expression of the double-stranded RNA binding motif protein Drb2p is required for DNA elimination in the ciliate Tetrahymena thermophila. EUKARYOTIC CELL 2011; 10:1648-59. [PMID: 22021239 PMCID: PMC3232721 DOI: 10.1128/ec.05216-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/13/2011] [Indexed: 11/20/2022]
Abstract
Double-stranded RNA binding motif (DSRM)-containing proteins play many roles in the regulation of gene transcription and translation, including some with tandem DSRMs that act in small RNA biogenesis. We report the characterization of the genes for double-stranded RNA binding proteins 1 and 2 (DRB1 and DRB2), two genes encoding nuclear proteins with tandem DSRMs in the ciliate Tetrahymena thermophila. Both proteins are expressed throughout growth and development but exhibit distinct peaks of expression, suggesting different biological roles. In support of this, we show that expression of DRB2 is essential for vegetative growth while DRB1 expression is not. During conjugation, Drb1p and Drb2p localize to distinct nuclear foci. Cells lacking all DRB1 copies are able to produce viable progeny, although at a reduced rate relative to wild-type cells. In contrast, cells lacking germ line DRB2 copies, which thus cannot express Drb2p zygotically, fail to produce progeny, arresting late into conjugation. This arrest phenotype is accompanied by a failure to organize the essential DNA rearrangement protein Pdd1p into DNA elimination bodies and execute DNA elimination and chromosome breakage. These results implicate zygotically expressed Drb2p in the maturation of these nuclear structures, which are necessary for reorganization of the somatic genome.
Collapse
Affiliation(s)
- Jason A. Motl
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, Missouri 63130-4899
| | - Douglas L. Chalker
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, Missouri 63130-4899
| |
Collapse
|
46
|
Lampert TJ, Coleman KD, Hennessey TM. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction. PLoS One 2011; 6:e28022. [PMID: 22140501 PMCID: PMC3226668 DOI: 10.1371/journal.pone.0028022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/30/2011] [Indexed: 11/18/2022] Open
Abstract
Although G-protein coupled receptors (GPCRs) are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490). Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba2+ and K+, suggesting a decrease in basal excitability (decrease in Ca2+ channel activity). The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA) and proteose peptone (PP), two known chemoattractants in Tetrahymena. Using microsomal [35S]GTPγS binding assays, we found that wild-type (CU427) have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor), addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes) towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein.
Collapse
Affiliation(s)
- Thomas J Lampert
- Department of Biological Sciences, University at Buffalo, Amherst, New York, United States of America
| | | | | |
Collapse
|
47
|
Andersen KL, Collins K. Several RNase T2 enzymes function in induced tRNA and rRNA turnover in the ciliate Tetrahymena. Mol Biol Cell 2011; 23:36-44. [PMID: 22049026 PMCID: PMC3248902 DOI: 10.1091/mbc.e11-08-0689] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
RNase T2 enzymes are produced by a wide range of organisms and have been implicated to function in diverse cellular processes, including stress-induced anticodon loop cleavage of mature tRNAs to generate tRNA halves. Here we describe a family of eight RNase T2 genes (RNT2A-RNT2H) in the ciliate Tetrahymena thermophila. We constructed strains lacking individual or combinations of these RNT2 genes that were viable but had distinct cellular and molecular phenotypes. In strains lacking only one Rnt2 protein or lacking a subfamily of three catalytically inactive Rnt2 proteins, starvation-induced tRNA fragments continued to accumulate, with only a minor change in fragment profile in one strain. We therefore generated strains lacking pairwise combinations of the top three candidates for Rnt2 tRNases. Each of these strains showed a distinct starvation-specific profile of tRNA and rRNA fragment accumulation. These results, the delineation of a broadened range of conditions that induce the accumulation of tRNA halves, and the demonstration of a predominantly ribonucleoprotein-free state of tRNA halves in cell extract suggest that ciliate tRNA halves are degradation intermediates in an autophagy pathway induced by growth arrest that functions to recycle idle protein synthesis machinery.
Collapse
Affiliation(s)
- Kasper L Andersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
48
|
Tomazic ML, Najle SR, Nusblat AD, Uttaro AD, Nudel CB. A novel sterol desaturase-like protein promoting dealkylation of phytosterols in Tetrahymena thermophila. EUKARYOTIC CELL 2011; 10:423-34. [PMID: 21257793 PMCID: PMC3067464 DOI: 10.1128/ec.00259-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/07/2011] [Indexed: 11/20/2022]
Abstract
The gene TTHERM_00438800 (DES24) from the ciliate Tetrahymena thermophila encodes a protein with three conserved histidine clusters, typical of the fatty acid hydroxylase superfamily. Despite its high similarity to sterol desaturase-like enzymes, the phylogenetic analysis groups Des24p in a separate cluster more related to bacterial than to eukaryotic proteins, suggesting a possible horizontal gene transfer event. A somatic knockout of DES24 revealed that the gene encodes a protein, Des24p, which is involved in the dealkylation of phytosterols. Knocked-out mutants were unable to eliminate the C-24 ethyl group from C(29) sterols, whereas the ability to introduce other modifications, such as desaturations at positions C-5(6), C-7(8), and C-22(23), were not altered. Although C-24 dealkylations have been described in other organisms, such as insects, neither the enzymes nor the corresponding genes have been identified to date. Therefore, this is the first identification of a gene involved in sterol dealkylation. Moreover, the knockout mutant and wild-type strain differed significantly in growth and morphology only when cultivated with C(29) sterols; under this culture condition, a change from the typical pear-like shape to a round shape and an alteration in the regulation of tetrahymanol biosynthesis were observed. Sterol analysis upon culture with various substrates and inhibitors indicate that the removal of the C-24 ethyl group in Tetrahymena may proceed by a mechanism different from the one currently known.
Collapse
Affiliation(s)
- Mariela L. Tomazic
- Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | - Sebastián R. Najle
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Alejandro D. Nusblat
- Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | - Antonio D. Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Clara B. Nudel
- Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|
49
|
Aldag I, Bockau U, Rossdorf J, Laarmann S, Raaben W, Herrmann L, Weide T, Hartmann MWW. Expression, secretion and surface display of a human alkaline phosphatase by the ciliate Tetrahymena thermophila. BMC Biotechnol 2011; 11:11. [PMID: 21281462 PMCID: PMC3042934 DOI: 10.1186/1472-6750-11-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/31/2011] [Indexed: 01/31/2023] Open
Abstract
Background Tetrahymena thermophila possesses many attributes that render it an attractive host for the expression of recombinant proteins. Surface proteins from the parasites Ichthyophthirius multifiliis and Plasmodium falciparum and avian influenza virus antigen H5N1 were displayed on the cell membrane of this ciliate. Furthermore, it has been demonstrated that T. thermophila is also able to produce a functional human DNase I. The present study investigates the heterologous expression of the functional human intestinal alkaline phosphatase (hiAP) using T. thermophila and thereby presents a powerful tool for the optimization of the ciliate-based expression system. Results Functional and full length human intestinal alkaline phosphatase was expressed by T. thermophila using a codon-adapted gene containing the native signal-peptide and GPI (Glycosylphosphatidylinositol) anchor attachment signal. HiAP activity in the cell extract of transformants suggested that the hiAP gene was successfully expressed. Furthermore, it was demonstrated that the enzyme was modified with N-glycosylation and localized on the surface membrane by the C-terminal GPI anchor. A C-terminally truncated version of hiAP lacking the GPI anchor signal peptide was secreted into the medium as an active enzyme. In a first approach to establish a high level expression system up to 14,000 U/liter were produced in a time frame of two days, which exceeds the production rate of other published expression systems for this enzyme. Conclusions With the expression of hiAP, not only a protein of commercial interest could be produced, but also a reporter enzyme that offers the possibility to analyze T. thermophila genes that play a role in the regulation of protein secretion. Additionally, the fact that ciliates do not secrete an endogenous alkaline phosphatase provides the possibility to use the truncated hiAP as a reporter enzyme, allowing the quantification of measures that will be necessary for further optimization of the host strains and the fermentation processes.
Collapse
Affiliation(s)
- Ingo Aldag
- Cilian AG, Johann-Krane-Weg 42, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
α-Tubulin mutations alter oryzalin affinity and microtubule assembly properties to confer dinitroaniline resistance. EUKARYOTIC CELL 2010; 9:1825-34. [PMID: 20870876 DOI: 10.1128/ec.00140-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plant and protozoan microtubules are selectively sensitive to dinitroanilines, which do not disrupt vertebrate or fungal microtubules. Tetrahymena thermophila is an abundant source of dinitroaniline-sensitive tubulin, and we have modified the single T. thermophila α-tubulin gene to create strains that solely express mutant α-tubulin in functional dimers. Previous research identified multiple α-tubulin mutations that confer dinitroaniline resistance in the human parasite Toxoplasma gondii, and when two of these mutations (L136F and I252L) were introduced into T. thermophila, they conferred resistance in these free-living ciliates. Purified tubulin heterodimers composed of L136F or I252L α-tubulin display decreased affinity for the dinitroaniline oryzalin relative to wild-type T. thermophila tubulin. Moreover, the L136F substitution dramatically reduces the critical concentration for microtubule assembly relative to the properties of wild-type T. thermophila tubulin. Our data provide additional support for the proposed dinitroaniline binding site on α-tubulin and validate the use of T. thermophila for expression of genetically homogeneous populations of mutant tubulins for biochemical characterization.
Collapse
|