1
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
4
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
5
|
Saeliw T, Kanlayaprasit S, Thongkorn S, Songsritaya K, Sanannam B, Sae-Lee C, Jindatip D, Hu VW, Sarachana T. Epigenetic Gene-Regulatory Loci in Alu Elements Associated with Autism Susceptibility in the Prefrontal Cortex of ASD. Int J Mol Sci 2023; 24:ijms24087518. [PMID: 37108679 PMCID: PMC10139202 DOI: 10.3390/ijms24087518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Alu elements are transposable elements that can influence gene regulation through several mechanisms; nevertheless, it remains unclear whether dysregulation of Alu elements contributes to the neuropathology of autism spectrum disorder (ASD). In this study, we characterized transposable element expression profiles and their sequence characteristics in the prefrontal cortex tissues of ASD and unaffected individuals using RNA-sequencing data. Our results showed that most of the differentially expressed transposable elements belong to the Alu family, with 659 loci of Alu elements corresponding to 456 differentially expressed genes in the prefrontal cortex of ASD individuals. We predicted cis- and trans-regulation of Alu elements to host/distant genes by conducting correlation analyses. The expression level of Alu elements correlated significantly with 133 host genes (cis-regulation, adjusted p < 0.05) associated with ASD as well as the cell survival and cell death of neuronal cells. Transcription factor binding sites in the promoter regions of differentially expressed Alu elements are conserved and associated with autism candidate genes, including RORA. COBRA analyses of postmortem brain tissues showed significant hypomethylation in global methylation analyses of Alu elements in ASD subphenotypes as well as DNA methylation of Alu elements located near the RNF-135 gene (p < 0.05). In addition, we found that neuronal cell density, which was significantly increased (p = 0.042), correlated with the expression of genes associated with Alu elements in the prefrontal cortex of ASD. Finally, we determined a relationship between these findings and the ASD severity (i.e., ADI-R scores) of individuals with ASD. Our findings provide a better understanding of the impact of Alu elements on gene regulation and molecular neuropathology in the brain tissues of ASD individuals, which deserves further investigation.
Collapse
Affiliation(s)
- Thanit Saeliw
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songphon Kanlayaprasit
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bumpenporn Sanannam
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Depicha Jindatip
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Morgan M, Kumar L, Li Y, Baptissart M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci 2021; 78:8049-8071. [PMID: 34748024 DOI: 10.1007/s00018-021-04012-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023]
Abstract
Multiple RNA pathways are required to produce functional sperm. Here, we review RNA post-transcriptional regulation during spermatogenesis with particular emphasis on the role of 3' end modifications. From early studies in the 1970s, it became clear that spermiogenesis transcripts could be stored for days only to be translated at advanced stages of spermatid differentiation. The transition between the translationally repressed and active states was observed to correlate with the shortening of the transcripts' poly(A) tail, establishing a link between RNA 3' end metabolism and male germ cell differentiation. Since then, numerous RNA metabolic pathways have been implicated not only in the progression through spermatogenesis, but also in the maintenance of genomic integrity. Recent studies have characterized the elusive 3' biogenesis of Piwi-interacting RNAs (piRNAs), identified a critical role for messenger RNA (mRNA) 3' uridylation in meiotic progression, established the mechanisms that destabilize transcripts with long 3' untranslated regions (3'UTRs) in post-mitotic cells, and defined the physiological relevance of RNA exonucleases and deadenylases in male germ cells. In this review, we discuss RNA processing in the male germline in the light of the most recent findings. A brief recollection of different RNA-processing events will aid future studies exploring post-transcriptional regulation in spermatogenesis.
Collapse
Affiliation(s)
- Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA.
| | - Lokesh Kumar
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
7
|
Sui Y, Peng S. A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons. Front Cell Dev Biol 2021; 9:618113. [PMID: 33644055 PMCID: PMC7905054 DOI: 10.3389/fcell.2021.618113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, more and more evidence has emerged showing that changes in copy number variations (CNVs) correlated with the transcriptional level can be found during evolution, embryonic development, and oncogenesis. However, the underlying mechanisms remain largely unknown. The success of the induced pluripotent stem cell suggests that genome changes could bring about transformations in protein expression and cell status; conversely, genome alterations generated during embryonic development and senescence might also be the result of genome changes. With rapid developments in science and technology, evidence of changes in the genome affected by transcriptional level has gradually been revealed, and a rational and concrete explanation is needed. Given the preference of the HIV-1 genome to insert into transposons of genes with high transcriptional levels, we propose a mechanism based on retrotransposons facilitated by specific pre-mRNA splicing style and homologous recombination (HR) to explain changes in CNVs in the genome. This mechanism is similar to that of the group II intron that originated much earlier. Under this proposed mechanism, CNVs on genome are dynamically and spontaneously extended in a manner that is positively correlated with transcriptional level or contract as the cell divides during evolution, embryonic development, senescence, and oncogenesis, propelling alterations in them. Besides, this mechanism explains several critical puzzles in these processes. From evidence collected to date, it can be deduced that the message contained in genome is not just three-dimensional but will become four-dimensional, carrying more genetic information.
Collapse
Affiliation(s)
- Yunpeng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | | |
Collapse
|
8
|
Evans TA, Erwin JA. Retroelement-derived RNA and its role in the brain. Semin Cell Dev Biol 2020; 114:68-80. [PMID: 33229216 DOI: 10.1016/j.semcdb.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression. Here, we review the emerging evidence that the functional importance of RNA derived from retroelements is multifaceted. Retroelements can influence organismal states through the seeding of epigenetic states in chromatin, the production of structured RNA and even catalytically active ribozymes, the generation of cytoplasmic ssDNA and RNA/DNA hybrids, the production of viral-like proteins, and the generation of somatic mutations. Comparative sequencing suggests that retroelements can contribute to intraspecies variation through these mechanisms to alter transcript identity and abundance. In humans, an increasing number of neurodevelopmental and neurodegenerative conditions are associated with dysregulated retroelements, including Aicardi-Goutieres syndrome (AGS), Rett syndrome (RTT), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), schizophrenia (SZ), and aging. Taken together, these concepts suggest a larger functional role for RNA derived from retroelements. This review aims to define retroelement-derived RNA, discuss how it impacts the mammalian genome, as well as summarize data supporting phenotypic consequences of this unique RNA subset in the brain.
Collapse
Affiliation(s)
- Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Ann Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
AP-TSS: A New Method for the Analysis of RNA Expression from Particular and Challenging Transcription Start Sites. Biomolecules 2020; 10:biom10060827. [PMID: 32481529 PMCID: PMC7355800 DOI: 10.3390/biom10060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 11/25/2022] Open
Abstract
Alternative promoter usage involved in the regulation of transcription, splicing, and translation contributes to proteome diversity and is involved in a large number of diseases, in particular, cancer. Epigenetic mechanisms and cis regulatory elements are involved in alternative promoter activity. Multiple transcript isoforms can be produced from a gene, due to the initiation of transcription at different transcription start sites (TSS). These transcripts may not have regions that allow discrimination during RT-qPCR, making quantification technically challenging. This study presents a general method for the relative quantification of a transcript synthesized from a particular TSS that we called AP-TSS (analysis of particular TSS). AP-TSS is based on the specific elongation of the cDNA of interest, followed by its quantification by qPCR. As proof of principle, AP-TSS was applied to two non-coding RNA: telomeric repeat-containing RNAs (TERRA) from a particular subtelomeric TSS, and Alu transcripts. The treatment of cells with a DNA methylation inhibitor was associated with a global increase of the total TERRA level, but the TERRA expression from the TSS of interest did not change in HT1080 cells, and only modestly increased in HeLa cells. This result suggests that TERRA upregulation induced by global demethylation of the genome is mainly due to activation from sites other than this particular TSS. For Alu RNA, the signal obtained by AP-TSS is specific for the RNA Polymerase III-dependent Alu transcript. In summary, our method provides a tool to study regulation of gene expression from a given transcription start site, in different conditions that could be applied to many genes. In particular, AP-TSS can be used to investigate the epigenetic regulation of alternative TSS usage that is of importance for the development of epigenetic-targeted therapies.
Collapse
|
10
|
Alu RNA Modulates the Expression of Cell Cycle Genes in Human Fibroblasts. Int J Mol Sci 2019; 20:ijms20133315. [PMID: 31284509 PMCID: PMC6651528 DOI: 10.3390/ijms20133315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Alu retroelements, whose retrotransposition requires prior transcription by RNA polymerase III to generate Alu RNAs, represent the most numerous non-coding RNA (ncRNA) gene family in the human genome. Alu transcription is generally kept to extremely low levels by tight epigenetic silencing, but it has been reported to increase under different types of cell perturbation, such as viral infection and cancer. Alu RNAs, being able to act as gene expression modulators, may be directly involved in the mechanisms determining cellular behavior in such perturbed states. To directly address the regulatory potential of Alu RNAs, we generated IMR90 fibroblasts and HeLa cell lines stably overexpressing two slightly different Alu RNAs, and analyzed genome-wide the expression changes of protein-coding genes through RNA-sequencing. Among the genes that were upregulated or downregulated in response to Alu overexpression in IMR90, but not in HeLa cells, we found a highly significant enrichment of pathways involved in cell cycle progression and mitotic entry. Accordingly, Alu overexpression was found to promote transition from G1 to S phase, as revealed by flow cytometry. Therefore, increased Alu RNA may contribute to sustained cell proliferation, which is an important factor of cancer development and progression.
Collapse
|
11
|
Abstract
Transposable elements (TEs) are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in molecular functions that influence genomic plasticity and gene expression regulation. With the advent of next-generation sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. In this chapter, the Authors comprehensively summarize the state-of the-art of TE research in animal models and humans supporting a framework in which TEs play a functional role in mechanisms affecting a variety of behaviors, including neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Finally, the Authors discuss recent therapeutic applications raised from the increasing experimental evidence on TE functional mechanisms.
Collapse
Affiliation(s)
- G Guffanti
- McLean Hospital - Harvard Medical School, Belmont, MA, USA.
| | - A Bartlett
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| | - P DeCrescenzo
- McLean Hospital - Harvard Medical School, Belmont, MA, USA
| | - F Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - R Hunter
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| |
Collapse
|
12
|
Burke JM, Kincaid RP, Nottingham RM, Lambowitz AM, Sullivan CS. DUSP11 activity on triphosphorylated transcripts promotes Argonaute association with noncanonical viral microRNAs and regulates steady-state levels of cellular noncoding RNAs. Genes Dev 2017; 30:2076-2092. [PMID: 27798849 PMCID: PMC5066614 DOI: 10.1101/gad.282616.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Here, Burke et al. delineate a new pathway for mammalian small RNAs to enter the RNAi gene silencing machinery. They show that DUSP11 directly dephosphorylates viral triphosphate ncRNA transcripts and that this is required for efficient silencing by RISC, suggesting that mammalian viral pathogens can use DUSP11 to generate atypical microRNAs. RNA silencing is a conserved eukaryotic gene expression regulatory mechanism mediated by small RNAs. In Caenorhabditis elegans, the accumulation of a distinct class of siRNAs synthesized by an RNA-dependent RNA polymerase (RdRP) requires the PIR-1 phosphatase. However, the function of PIR-1 in RNAi has remained unclear. Since mammals lack an analogous siRNA biogenesis pathway, an RNA silencing role for the mammalian PIR-1 homolog (dual specificity phosphatase 11 [DUSP11]) was unexpected. Here, we show that the RNA triphosphatase activity of DUSP11 promotes the RNA silencing activity of viral microRNAs (miRNAs) derived from RNA polymerase III (RNAP III) transcribed precursors. Our results demonstrate that DUSP11 converts the 5′ triphosphate of miRNA precursors to a 5′ monophosphate, promoting loading of derivative 5p miRNAs into Argonaute proteins via a Dicer-coupled 5′ monophosphate-dependent strand selection mechanism. This mechanistic insight supports a likely shared function for PIR-1 in C. elegans. Furthermore, we show that DUSP11 modulates the 5′ end phosphate group and/or steady-state level of several host RNAP III transcripts, including vault RNAs and Alu transcripts. This study shows that steady-state levels of select noncoding RNAs are regulated by DUSP11 and defines a previously unknown portal for small RNA-mediated silencing in mammals, revealing that DUSP11-dependent RNA silencing activities are shared among diverse metazoans.
Collapse
Affiliation(s)
- James M Burke
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Rodney P Kincaid
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Christopher S Sullivan
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
13
|
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7:9. [PMID: 27158268 PMCID: PMC4859970 DOI: 10.1186/s13100-016-0065-9] [Citation(s) in RCA: 452] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.
Collapse
Affiliation(s)
- Dustin C. Hancks
- />Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Haig H. Kazazian
- />McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
14
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
15
|
Bakshi A, Herke SW, Batzer MA, Kim J. DNA methylation variation of human-specific Alu repeats. Epigenetics 2016; 11:163-73. [PMID: 26890526 DOI: 10.1080/15592294.2015.1130518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
DNA methylation is the major repression mechanism for human retrotransposons, such as the Alu family. Here, we have determined the methylation levels associated with 5238 loci belonging to 2 Alu subfamilies, AluYa5 and AluYb8, using high-throughput targeted repeat element bisulfite sequencing (HT-TREBS). The results indicate that ∼90% of loci are repressed by high methylation levels. Of the remaining loci, many of the hypomethylated elements are found near gene promoters and show high levels of DNA methylation variation. We have characterized this variation in the context of tumorigenesis and interindividual differences. Comparison of a primary breast tumor and its matched normal tissue revealed early DNA methylation changes in ∼1% of AluYb8 elements in response to tumorigenesis. Simultaneously, AluYa5/Yb8 elements proximal to promoters also showed differences in methylation of up to one order of magnitude, even between normal individuals. Overall, the current study demonstrates that early loss of methylation occurs during tumorigenesis in a subset of young Alu elements, suggesting their potential clinical relevance. However, approaches such as deep-bisulfite-sequencing of individual loci using HT-TREBS are required to distinguish clinically relevant loci from the background observed for AluYa5/Yb8 elements in general with regard to high levels of interindividual variation in DNA methylation.
Collapse
Affiliation(s)
- Arundhati Bakshi
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Scott W Herke
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Mark A Batzer
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Joomyeong Kim
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
16
|
Varshney D, Vavrova-Anderson J, Oler AJ, Cairns BR, White RJ. Selective repression of SINE transcription by RNA polymerase III. Mob Genet Elements 2015; 5:86-91. [PMID: 26942044 DOI: 10.1080/2159256x.2015.1096997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022] Open
Abstract
A million copies of the Alu short interspersed nuclear element (SINE) are scattered throughout the human genome, providing ∼11% of our total DNA. SINEs spread by retrotransposition, using a transcript generated by RNA polymerase (pol) III from an internal promoter. Levels of these pol III-dependent Alu transcripts are far lower than might be expected from the abundance of the template. This was believed to reflect transcriptional suppression through DNA methylation, denying pol III access to most SINEs through chromatin-mediated effects. Contrary to expectations, our recent study found no evidence that methylation of SINE DNA reduces its occupancy or expression by pol III. However, histone H3 associated with SINEs is prominently methylated on lysine 9, a mark that correlates with transcriptional silencing. The SUV39 methyltransferases that deposit this mark can be found at many SINEs. Furthermore, a selective inhibitor of SUV39 stimulates pol III recruitment to these loci, as well as SINE expression. These data suggest that methylation of histone H3 rather than DNA may mediate repression of SINE transcription by pol III, at least under the conditions we studied.
Collapse
Affiliation(s)
- Dhaval Varshney
- Centre for Gene Regulation and Expression; University of Dundee ; Dundee, UK
| | - Jana Vavrova-Anderson
- College of Medical; Veterinary and Life Sciences; University of Glasgow ; Glasgow, UK
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch; Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases; National Institutes of Health ; Bethesda, MD USA
| | - Bradley R Cairns
- Department of Oncological Sciences; Huntsman Cancer Institute; University of Utah School of Medicine; Salt Lake City, UT USA; Howard Hughes Medical Institute; University of Utah School of Medicine; Salt Lake City, UT USA
| | | |
Collapse
|
17
|
Berger A, Ivanova E, Gareau C, Scherrer A, Mazroui R, Strub K. Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA. Nucleic Acids Res 2014; 42:11203-17. [PMID: 25200073 PMCID: PMC4176187 DOI: 10.1093/nar/gku822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stress granules (SGs) are formed in response to stress, contain mRNAs, 40S ribosomal subunits, initiation factors, RNA-binding and signaling proteins, and promote cell survival. Our study describes a novel function of the protein heterodimer SRP9/14 and Alu RNA in SG formation and disassembly. In human cells, SRP9/14 exists assembled into SRP, bound to Alu RNA and as a free protein. SRP9/14, but not SRP, localizes to SGs following arsenite or hippuristanol treatment. Depletion of the protein decreases SG size and the number of SG-positive cells. Localization and function of SRP9/14 in SGs depend primarily on its ability to bind directly to the 40S subunit. Binding of SRP9/14 to 40S and Alu RNA is mutually exclusive indicating that the protein alone is bound to 40S in SGs and that Alu RNA might competitively regulate 40S binding. Indeed, by changing the effective Alu RNA concentration in the cell or by expressing an Alu RNA binding-defective protein we were able to influence SG formation and disassembly. Our findings suggest a model in which SRP9/14 binding to 40S promotes SG formation whereas the increase in cytoplasmic Alu RNA following stress promotes disassembly of SGs by disengaging SRP9/14 from 40S.
Collapse
Affiliation(s)
- A Berger
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - E Ivanova
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - C Gareau
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - A Scherrer
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - R Mazroui
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - K Strub
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Liang KH, Yeh CT. A gene expression restriction network mediated by sense and antisense Alu sequences located on protein-coding messenger RNAs. BMC Genomics 2013; 14:325. [PMID: 23663499 PMCID: PMC3655826 DOI: 10.1186/1471-2164-14-325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 05/07/2013] [Indexed: 01/08/2023] Open
Abstract
Background Alus are primate-specific retrotransposons which account for 10.6% of the human genome. A large number of protein-coding mRNAs are encoded with sense or antisense Alus in the un-translated regions. Results We postulated that mRNAs carrying Alus in the two opposite directions can generate double stranded RNAs, capable of regulating the levels of other Alu-carrying mRNAs post-transcriptionally. A gene expression profiling assay showed that the levels of antisense and sense Alus-carrying mRNAs were suppressed in a reversible manner by over-expression of exogenous sense and antisense Alus derived from mRNAs (Family-wise error rate P= 0.0483 and P < 0.0001 respectively). Screening through human mRNAs on the NCBI-RefSeq database, it was found that sense and antisense Alu-carrying transcripts were enriched in distinct cellular functions. Antisense Alu-carrying genes were particularly enriched in neurological and developmental processes, while sense Alu-carrying genes were enriched in immunological functions. Conclusions Taken together, we proposed a novel Alu-mediated regulation network capable of stabilizing Alu-carrying mRNA levels in different cell types and restricting the activated expression levels of protein-coding, Alu-carrying mRNAs.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Liver Research Center, Chang Gung Memorial Hospital, and Molecular Medicine Research Center, Chang Gung University School of Medicine, Taipei, Taiwan
| | | |
Collapse
|
19
|
Ramli N, Abd-Aziz S, Alitheen NB, Hassan MA, Maeda T. Improvement of Cyclodextrin Glycosyltransferase Gene Expression in Escherichia coli by Insertion of Regulatory Sequences Involved in the Promotion of RNA Transcription. Mol Biotechnol 2013; 54:961-8. [DOI: 10.1007/s12033-013-9647-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Green NM, Moody KS, Debatis M, Marshak-Rothstein A. Activation of autoreactive B cells by endogenous TLR7 and TLR3 RNA ligands. J Biol Chem 2012; 287:39789-99. [PMID: 23019335 DOI: 10.1074/jbc.m112.383000] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The key step in the activation of autoreactive B cells is the internalization of nucleic acid containing ligands and delivery of these ligands to the Toll-like Receptor (TLR) containing endolysosomal compartment. Ribonucleoproteins represent a large fraction of autoantigens in systemic autoimmune diseases. Here we demonstrate that many uridine-rich mammalian RNA sequences associated with common autoantigens effectively activate autoreactive B cells. Priming with type I IFN increased the magnitude of activation, and the range of which RNAs were stimulatory. A subset of RNAs that contain a high degree of self-complementarity also activated B cells through TLR3. For the RNA sequences that activated predominantly through TLR7, the activation is proportional to uridine-content, and more precisely defined by the frequency of specific uridine-containing motifs. These results identify parameters that define specific mammalian RNAs as ligands for TLRs.
Collapse
Affiliation(s)
- Nathaniel M Green
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
21
|
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011; 12:187-215. [PMID: 21801021 DOI: 10.1146/annurev-genom-082509-141802] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Human Genetics, University of MIchigan Medical School, Ann Arbor, Michigan 48109-5618, USA.
| | | | | | | |
Collapse
|
22
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
23
|
Gu TJ, Yi X, Zhao XW, Zhao Y, Yin JQ. Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 2009; 10:563. [PMID: 19943974 PMCID: PMC3087558 DOI: 10.1186/1471-2164-10-563] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/30/2009] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Despite many studies on the biogenesis, molecular structure and biological functions of microRNAs, little is known about the transcriptional regulatory mechanisms controlling the spatiotemporal expression pattern of human miRNA gene loci. Several lines of experimental results have indicated that both polymerase II (Pol-II) and polymerase III (Pol-III) may be involved in transcribing miRNAs. Here, we assessed the genomic evidence for Alu-directed transcriptional regulation of some novel miRNA genes in humans. Our data demonstrate that the expression of these Alu-related miRNAs may be modulated by Pol-III. RESULTS We present a comprehensive exploration of the Alu-directed transcriptional regulation of some new miRNAs. Using a new computational approach, a variety of Alu-related sequences from multiple sources were pooled and filtered to obtain a subset containing Alu elements and characterized miRNA genes for which there is clear evidence of full-length transcription (embedded in EST). We systematically demonstrated that 73 miRNAs including five known ones may be transcribed by Pol-III through Alu or MIR. Among the new miRNAs, 33 were determined by high-throughput Solexa sequencing. Real-time TaqMan PCR and Northern blotting verified that three newly identified miRNAs could be induced to co-express with their upstream Alu transcripts by heat shock or cycloheximide. CONCLUSION Through genomic analysis, Solexa sequencing and experimental validation, we have identified candidate sequences for Alu-related miRNAs, and have found that the transcription of these miRNAs could be governed by Pol-III. Thus, this study may elucidate the mechanisms by which the expression of a class of small RNAs may be regulated by their upstream repeat elements.
Collapse
Affiliation(s)
- Tong J Gu
- National Laboratory of Biomacromolecules, Center for Computing and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, PR China.
| | | | | | | | | |
Collapse
|
24
|
Mourier T, Willerslev E. Retrotransposons and non-protein coding RNAs. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:493-501. [PMID: 19729447 DOI: 10.1093/bfgp/elp036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retrotransposons constitute a significant fraction of mammalian genomes. Considering the finding of widespread transcriptional activity across entire genomes, it is not surprising that retrotransposons contribute to the collective RNA pool. However, the transcriptional output from retrotransposons does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review the emerging understanding of how retrotransposons themselves are regulated by small RNAs.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
25
|
Comeaux MS, Roy-Engel AM, Hedges DJ, Deininger PL. Diverse cis factors controlling Alu retrotransposition: what causes Alu elements to die? Genome Res 2009; 19:545-55. [PMID: 19273617 DOI: 10.1101/gr.089789.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human genome contains nearly 1.1 million Alu elements comprising roughly 11% of its total DNA content. Alu elements use a copy and paste retrotransposition mechanism that can result in de novo disease insertion alleles. There are nearly 900,000 old Alu elements from subfamilies S and J that appear to be almost completely inactive, and about 200,000 from subfamily Y or younger, which include a few thousand copies of the Ya5 subfamily which makes up the majority of current activity. Given the much higher copy number of the older Alu subfamilies, it is not known why all of the active Alu elements belong to the younger subfamilies. We present a systematic analysis evaluating the observed sequence variation in the different sections of an Alu element on retrotransposition. The length of the longest number of uninterrupted adenines in the A-tail, the degree of A-tail heterogeneity, the length of the 3' unique end after the A-tail and before the RNA polymerase III terminator, and random mutations found in the right monomer all modulate the retrotransposition efficiency. These changes occur over different evolutionary time frames. The combined impact of sequence changes in all of these regions explains why young Alus are currently causing disease through retrotransposition, and the old Alus have lost their ability to retrotranspose. We present a predictive model to evaluate the retrotransposition capability of individual Alu elements and successfully applied it to identify the first putative source element for a disease-causing Alu insertion in a patient with cystic fibrosis.
Collapse
Affiliation(s)
- Matthew S Comeaux
- Tulane Cancer Center and Dept. of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
26
|
Albrecht-Buehler G. Outline of a genome navigation system based on the properties of GA-sequences and their flanks. PLoS One 2009; 4:e4701. [PMID: 19270754 PMCID: PMC2651618 DOI: 10.1371/journal.pone.0004701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/21/2009] [Indexed: 01/10/2023] Open
Abstract
Introducing a new method to visualize large stretches of genomic DNA (see Appendix S1) the article reports that most GA-sequences [1] shared chains of tetra-GA-motifs and contained upstream poly(A)-segments. Although not integral parts of them, Alu-elements were found immediately upstream of all human and chimpanzee GA-sequences with an upstream poly(A)-segment. The article hypothesizes that genome navigation uses these properties of GA-sequences in the following way. (1) Poly(A) binding proteins interact with the upstream poly(A)-segments and arrange adjacent GA-sequences side-by-side ('GA-ribbon'), while folding the intervening DNA sequences between them into loops ('associated DNA-loops'). (2) Genome navigation uses the GA-ribbon as a search path for specific target genes that is up to 730-fold shorter than the full-length chromosome. (3) As to the specificity of the search, each molecule of a target protein is assumed to catalyze the formation of specific oligomers from a set of transcription factors that recognize tetra-GA-motifs. Their specific combinations of tetra-GA motifs are assumed to be present in the particular GA-sequence whose associated loop contains the gene for the target protein. As long as the target protein is abundant in the cell it produces sufficient numbers of such oligomers which bind to their specific GA-sequences and, thereby, inhibit locally the transcription of the target protein in the associated loop. However, if the amount of target protein drops below a certain threshold, the resultant reduction of specific oligomers leaves the corresponding GA-sequence 'denuded'. In response, the associated DNA-loop releases its nucleosomes and allows transcription of the target protein to proceed. (4) The Alu-transcripts may help control the general background of protein synthesis proportional to the number of transcriptionally active associated loops, especially in stressed cells. (5) The model offers a new mechanism of co-regulation of protein synthesis based on the shared segments of different GA-sequences.
Collapse
Affiliation(s)
- Guenter Albrecht-Buehler
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.
| |
Collapse
|
27
|
Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O, Devine SE. Active Alu retrotransposons in the human genome. Genes Dev 2008; 18:1875-83. [PMID: 18836035 PMCID: PMC2593586 DOI: 10.1101/gr.081737.108] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/30/2008] [Indexed: 12/16/2022]
Abstract
Alu retrotransposons evolved from 7SL RNA approximately 65 million years ago and underwent several rounds of massive expansion in primate genomes. Consequently, the human genome currently harbors 1.1 million Alu copies. Some of these copies remain actively mobile and continue to produce both genetic variation and diseases by "jumping" to new genomic locations. However, it is unclear how many active Alu copies exist in the human genome and which Alu subfamilies harbor such copies. Here, we present a comprehensive functional analysis of Alu copies across the human genome. We cloned Alu copies from a variety of genomic locations and tested these copies in a plasmid-based mobilization assay. We show that functionally intact core Alu elements are highly abundant and far outnumber all other active transposons in humans. A range of Alu lineages were found to harbor such copies, including all modern AluY subfamilies and most AluS subfamilies. We also identified two major determinants of Alu activity: (1) The primary sequence of a given Alu copy, and (2) the ability of the encoded RNA to interact with SRP9/14 to form RNA/protein (RNP) complexes. We conclude that Alu elements pose the largest transposon-based mutagenic threat to the human genome. On the basis of our data, we have begun to identify Alu copies that are likely to produce genetic variation and diseases in humans.
Collapse
Affiliation(s)
- E. Andrew Bennett
- Genetics and Molecular Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Heiko Keller
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ryan E. Mills
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Steffen Schmidt
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - John V. Moran
- Howard Hughes Medical Institute, Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Scott E. Devine
- Genetics and Molecular Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
28
|
Does selection against transcriptional interference shape retroelement-free regions in mammalian genomes? PLoS One 2008; 3:e3760. [PMID: 19018283 PMCID: PMC2582637 DOI: 10.1371/journal.pone.0003760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/31/2008] [Indexed: 11/29/2022] Open
Abstract
Background Eukaryotic genomes are scattered with retroelements that proliferate through retrotransposition. Although retroelements make up around 40 percent of the human genome, large regions are found to be completely devoid of retroelements. This has been hypothesised to be a result of genomic regions being intolerant to insertions of retroelements. The inadvertent transcriptional activity of retroelements may affect neighbouring genes, which in turn could be detrimental to an organism. We speculate that such retroelement transcription, or transcriptional interference, is a contributing factor in generating and maintaining retroelement-free regions in the human genome. Methodology/Principal Findings Based on the known transcriptional properties of retroelements, we expect long interspersed elements (LINEs) to be able to display a high degree of transcriptional interference. In contrast, we expect short interspersed elements (SINEs) to display very low levels of transcriptional interference. We find that genomic regions devoid of long interspersed elements (LINEs) are enriched for protein-coding genes, but that this is not the case for regions devoid of short interspersed elements (SINEs). This is expected if genes are subject to selection against transcriptional interference. We do not find microRNAs to be associated with genomic regions devoid of either SINEs or LINEs. We further observe an increased relative activity of genes overlapping LINE-free regions during early embryogenesis, where activity of LINEs has been identified previously. Conclusions/Significance Our observations are consistent with the notion that selection against transcriptional interference has contributed to the maintenance and/or generation of retroelement-free regions in the human genome.
Collapse
|
29
|
Mourier T. Reverse transcription in genome evolution. Cytogenet Genome Res 2005; 110:56-62. [PMID: 16093658 DOI: 10.1159/000084938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 01/22/2004] [Indexed: 11/19/2022] Open
Abstract
As reverse transcription is predominantly performed by retrotransposable elements, the process is often entirely associated with the propagation of these elements. However, as a unique tool for transmitting information from the dynamic RNA to the more inert DNA, reverse transcription has been instrumental in shaping extant genomes. This review aims at presenting the diversity by which reverse transcription has influenced modern genomic structures.
Collapse
Affiliation(s)
- T Mourier
- Department of Evolutionary Biology, Biological Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
Ludwig A, Rozhdestvensky TS, Kuryshev VY, Schmitz J, Brosius J. An Unusual Primate Locus that Attracted Two Independent Alu Insertions and Facilitates their Transcription. J Mol Biol 2005; 350:200-14. [PMID: 15922354 DOI: 10.1016/j.jmb.2005.03.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 03/18/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
BC200 RNA, a neuronal, small non-messenger RNA that originated from a monomeric Alu element is specific to anthropoid primates. Tarsiers lack an insert at the orthologous genomic position, whereas strepsirrhines (Lemuriformes and Lorisiformes) acquired a dimeric Alu element, independently from anthropoids. In Galago moholi, the CpG dinucleotides are conspicuously conserved, while in Eulemur coronatus a large proportion is changed, indicating that the G.moholi Alu is under purifying selection and might be transcribed. Indeed, Northern blot analysis of total brain RNA from G.moholi with a specific probe revealed a prominent signal. In contrast, a corresponding signal was absent from brain RNA from E.coronatus. Isolation and sequence analysis of additional strepsirrhine loci confirmed the differential sequence conservation including CpG patterns of the orthologous dimeric Alu elements in Lorisiformes and Lemuriformes. Interestingly, all examined Alu elements from Lorisiformes were transcribed, while all from Lemuriformes were silent when transiently transfected into HeLa cells. Upstream sequences, especially those between the transcriptional start site and -22 upstream, were important for basal transcriptional activity. Thus, the BC200 RNA gene locus attracted two independent Alu insertions during its evolutionary history and provided upstream promoter elements required for their transcription.
Collapse
Affiliation(s)
- A Ludwig
- Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
31
|
Nikitina TV, Tishchenko LI. Computational Search for Potential Posttranslational Modification Sites in Human RNA Polymerase III Subunits. Mol Biol 2005. [DOI: 10.1007/s11008-005-0053-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Pélissier T, Bousquet-Antonelli C, Lavie L, Deragon JM. Synthesis and processing of tRNA-related SINE transcripts in Arabidopsis thaliana. Nucleic Acids Res 2004; 32:3957-66. [PMID: 15282328 PMCID: PMC506818 DOI: 10.1093/nar/gkh738] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the ubiquitous distribution of tRNA-related short interspersed elements (SINEs) in eukaryotic species, very little is known about the synthesis and processing of their RNAs. In this work, we have characterized in detail the different RNA populations resulting from the expression of a tRNA-related SINE S1 founder copy in Arabidopsis thaliana. The main population is composed of poly(A)-ending (pa) SINE RNAs, while two minor populations correspond to full-length (fl) or poly(A) minus [small cytoplasmic (sc)] SINE RNAs. Part of the poly(A) minus RNAs is modified by 3'-terminal addition of C or CA nucleotides. All three RNA populations accumulate in the cytoplasm. Using a mutagenesis approach, we show that the poly(A) region and the 3' end unique region, present at the founder locus, are both important for the maturation and the steady-state accumulation of the different S1 RNA populations. The observation that primary SINE transcripts can be post-transcriptionally processed in vivo into a poly(A)-ending species introduces the possibility that this paRNA is used as a retroposition intermediate.
Collapse
MESH Headings
- 3' Untranslated Regions
- Arabidopsis/genetics
- Base Sequence
- Cytoplasm/metabolism
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Polyadenylation
- RNA Processing, Post-Transcriptional
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Short Interspersed Nucleotide Elements
- Transcription, Genetic
Collapse
Affiliation(s)
- Thierry Pélissier
- CNRS UMR 6547 BIOMOVE and GDR 2157, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
33
|
Abstract
The effect that different regions of the Alu consensus sequence have upon the stability and accumulation of its RNA polymerase III (Pol III) directed transcripts was determined by transiently overexpressing Alu deletion and chimeric constructs in human 293 cells. Transcripts of the left Alu monomer are more stable than those of the full-length consensus sequence and any additional 3' sequence beyond the left monomer destabilizes the resulting transcript. Neither the middle A-rich region nor the 3' A-rich tail specifically affect the stability of Alu transcripts. However, the right monomer is inherently less stable than corresponding left monomer transcripts. Alu's dimeric structure and sequences peculiar to the right monomer each limit the stability and steady state accumulation of its transcripts. A host requirement to rapidly metabolize Alu RNA or restrict its abundance may have selected for these two features of the Alu consensus sequence.
Collapse
Affiliation(s)
- Tzu Huey Li
- Departments of Surgery and Genetics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
34
|
Johanning K, Stevenson CA, Oyeniran OO, Gozal YM, Roy-Engel AM, Jurka J, Deininger PL. Potential for retroposition by old Alu subfamilies. J Mol Evol 2003; 56:658-64. [PMID: 12911029 DOI: 10.1007/s00239-002-2433-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alu elements sharing sequence characteristics of the "old" subfamilies are thought to currently be retrotranspositionally inactive. We analyzed one of these old subfamilies of Alu elements, Sx, for sequence conservation relative to the consensus and the length of the "A-tail" as parameters to define the presence of potential Alu Sx source genes in the human genome. Sequence identity to the left half or the right half of the Alu Sx consensus sequence was evaluated for 4424 complete elements obtained from the human genome draft sequence. A small subset of Alu Sx left halves were found to be more conserved than any of the Alu Sx right halves. Selection for promoter function in active elements may explain the slightly higher conservation of the left half. In order to determine whether this sequence identity was the result of recent activity, or simply sequence conservation for older elements, PCR amplification of some of the loci containing Sx elements with conserved left/right halves from different primate genomes was carried out. Several of these Sx Alus were found to have amplified at a later evolutionary period (<35 mya) than expected based on previous studies of Sx elements. Analysis of "A-tail" length, a feature correlated with current retroposition activity, varied between Alu Sx element loci in different primates, where the length increased in specific Alu elements in the human genome. The presence of few conserved Alu Sx elements and the dynamic expansion/contraction of the A-tail suggests that some of these older subfamilies may still be active at very low levels or in a few individuals.
Collapse
Affiliation(s)
- Karla Johanning
- Tulane Cancer Center SL-66, Department of Environmental Health Sciences, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Roy-Engel AM, Salem AH, Oyeniran OO, Deininger L, Hedges DJ, Kilroy GE, Batzer MA, Deininger PL. Active Alu element "A-tails": size does matter. Genome Res 2002; 12:1333-44. [PMID: 12213770 PMCID: PMC186649 DOI: 10.1101/gr.384802] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Long and short interspersed elements (LINEs and SINEs) are retroelements that make up almost half of the human genome. L1 and Alu represent the most prolific human LINE and SINE families, respectively. Only a few Alu elements are able to retropose, and the factors determining their retroposition capacity are poorly understood. The data presented in this paper indicate that the length of Alu "A-tails" is one of the principal factors in determining the retropositional capability of an Alu element. The A stretches of the Alu subfamilies analyzed, both old (Alu S and J) and young (Ya5), had a Poisson distribution of A-tail lengths with a mean size of 21 and 26, respectively. In contrast, the A-tails of very recent Alu insertions (disease causing) were all between 40 and 97 bp in length. The L1 elements analyzed displayed a similar tendency, in which the "disease"-associated elements have much longer A-tails (mean of 77) than do the elements even from the young Ta subfamily (mean of 41). Analysis of the draft sequence of the human genome showed that only about 1000 of the over one million Alu elements have tails of 40 or more adenosine residues in length. The presence of these long A stretches shows a strong bias toward the actively amplifying subfamilies, consistent with their playing a major role in the amplification process. Evaluation of the 19 Alu elements retrieved from the draft sequence of the human genome that are identical to the Alu Ya5a2 insert in the NF1 gene showed that only five have tails with 40 or more adenosine residues. Sequence analysis of the loci with the Alu elements containing the longest A-tails (7 of the 19) from the genomes of the NF1 patient and the father revealed that there are at least two loci with A-tails long enough to serve as source elements within our model. Analysis of the A-tail lengths of 12 Ya5a2 elements in diverse human population groups showed substantial variability in both the Alu A-tail length and sequence homogeneity. On the basis of these observations, a model is presented for the role of A-tail length in determining which Alu elements are active.
Collapse
Affiliation(s)
- Astrid M Roy-Engel
- Tulane Cancer Center, SL-66, Department of Environmental Health Sciences, Tulane University-Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jansa P, Burek C, Sander EE, Grummt I. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I. Nucleic Acids Res 2001; 29:423-9. [PMID: 11139612 PMCID: PMC29675 DOI: 10.1093/nar/29.2.423] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Termination of murine rDNA transcription by RNA polymerase I (Pol I) requires pausing of Pol I by terminator-bound TTF-I (transcription termination factor for Pol I), followed by dissociation of the ternary complex by PTRF (Pol I and transcript release factor). To examine the functional correlation between transcription termination and initiation, we have compared transcription on terminator-containing and terminator-less rDNA templates. We demonstrate that terminated RNA molecules are more efficiently synthesized than run-off transcripts, indicating that termination facilitates reinitiation. Transcriptional enhancement is observed in multiple- but not single-round transcription assays measuring either promoter-dependent or promoter-independent Pol I transcription. Increased synthesis of terminated transcripts is observed in crude extracts but not in a PTRF-free reconstituted transcription system, indicating that PTRF-mediated release of pre-rRNA is responsible for transcriptional enhancement. Consistent with PTRF serving an important role in modulating the efficiency of rRNA synthesis, PTRF exhibits pronounced charge heterogeneity, is phosphorylated at multiple sites and fractionates into transcriptionally active and inactive forms. The results suggest that regulation of PTRF activity may be an as yet unrecognized means to control the efficiency of ribosomal RNA synthesis.
Collapse
Affiliation(s)
- P Jansa
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
37
|
Wang Z, Bai L, Hsieh YJ, Roeder RG. Nuclear factor 1 (NF1) affects accurate termination and multiple-round transcription by human RNA polymerase III. EMBO J 2000; 19:6823-32. [PMID: 11118217 PMCID: PMC305894 DOI: 10.1093/emboj/19.24.6823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have shown previously that the TFIIIC1/TFIIIC1' fraction interacts specifically with the VA1 terminator regions to affect both termination and initiation/reinitiation of transcription by human RNA polymerase III. Here, we further purified the VA1 terminator-binding factor to apparent homogeneity and found, by peptide sequence analysis, that it belongs to the NF1 protein family. NF1 interacts specifically with the NF1-binding sites within the terminator regions of the VA1 gene and with two subunits (TFIIIC220 and TFIIIC110) of human TFIIIC2. Immunodepletion with anti-NF1 antibodies dramatically decreases transcription from the VA1 template in nuclear extract, and mutation at the NF1-binding site in the terminator region of the VA1 gene selectively affects multiple-round transcription (reinitiation of transcription) and termination. In addition, NF1 acts in conjunction with TFIIIC to promote accurate termination by RNA polymerase III on a C-tailed VA1 template.
Collapse
Affiliation(s)
- Z Wang
- The Laboratory of Biochemistry and Molecular Biology,The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
38
|
Alemán C, Roy-Engel AM, Shaikh TH, Deininger PL. Cis-acting influences on Alu RNA levels. Nucleic Acids Res 2000; 28:4755-61. [PMID: 11095687 PMCID: PMC115182 DOI: 10.1093/nar/28.23.4755] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human short interspersed repeated element (SINE), Alu, amplifies through a poorly understood RNA-mediated mechanism, termed retroposition. There are over one million copies of Alu per haploid human genome. The copies show some internal variations in sequence and are very heterogeneous in chromosomal environment. However, very few Alu elements actively amplify. The amplification rate has decreased greatly in the last 40 million years. Factors influencing Alu transcription would directly affect an element's retroposition capability. Therefore, we evaluated several features that might influence expression from individual Alu elements. The influence of various internal sequence variations and 3' unique flanks on full-length Alu RNA steady-state levels was determined. Alu subfamily diagnostic mutations do not significantly alter the amount of Alu RNA observed. However, sequences containing random mutations throughout the right half of selected genomic Alu elements altered Alu RNA steady-state levels in cultured cells. In addition, sequence variations at the 3' unique end of the transcript also significantly altered the Alu RNA levels. In general, sequence mutations and 3' end sequences contribute to Alu RNA levels, suggesting that the master Alu element(s) have a multitude of individual differences that collectively gives them a selective advantage over other Alu elements.
Collapse
Affiliation(s)
- C Alemán
- Tulane Cancer Center, SL-66, and Department of Environmental Health Sciences, Tulane University-Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
39
|
Roy AM, West NC, Rao A, Adhikari P, Alemán C, Barnes AP, Deininger PL. Upstream flanking sequences and transcription of SINEs. J Mol Biol 2000; 302:17-25. [PMID: 10964558 DOI: 10.1006/jmbi.2000.4027] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SINEs, short interspersed repeated DNA elements, undergo amplification through retroposition and subsequent integration into a new location in the genome. Each new SINE insertion will be located in a new chromosomal environment, with different flanking sequences. Modulation of transcription by different flanking sequences may play an important role in determining which SINE elements are preferentially active in a genome. We evaluated the ability of upstream flanking sequences to regulate the transcription of three different SINEs (Alu, B2 and ID) by constructing chimeric constructs with known 5' flanking sequences of RNA polymerase III-transcribed genes. Upstream sequences from the 7SL RNA gene, U6 RNA gene, vault RNA gene, and BC1 gene increase transcription of Alu, B2 and BC1 in transient transfections of NIH3T3, HeLa, Neuro2a and C6 glioma cell lines. The 7SL sequence proved most efficient in increasing SINE transcription. The 7SL upstream fused to the BC1 RNA gene (an ID element) was used to create a transgenic mouse line. In contrast to the tissue-specific endogenous BC1 transcription, BC1 transgene transcripts were detected in all tissues tested. However, expression was much higher in those tissues that express the endogenous gene, demonstrating both transcriptional and post-transcriptional regulation. The BC1 RNA was detected in a similar ribonucleoprotein complex in the different tissues.
Collapse
Affiliation(s)
- A M Roy
- Department of Environmental Health Sciences, Tulane Cancer Center, SL-66 and, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Li TH, Kim C, Rubin CM, Schmid CW. K562 cells implicate increased chromatin accessibility in Alu transcriptional activation. Nucleic Acids Res 2000; 28:3031-9. [PMID: 10931917 PMCID: PMC108432 DOI: 10.1093/nar/28.16.3031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alu repeats in K562 cells are unusually hypomethylated and far more actively transcribed than those in other human cell lines and somatic tissues. Also, the level of Alu RNA in K562 cells is relatively insensitive to cell stresses, namely heat shock, adenovirus infection and treatment with cycloheximide, which increase the abundance of Alu RNA in HeLa and 293 cells. Recent advances in understanding the interactions between DNA methylation, transcriptional activation and chromatin conformation reveal reasons for the constitutively high level of Alu expression in K562 cells. Methylation represses transcription of transiently transfected Alu templates in all cell lines tested but cell stresses do not relieve this repression suggesting that they activate Alu transcription through another pathway. A relatively large fraction of the Alus within K562 chromatin is accessible to restriction enzyme cleavage and cell stresses increase the chromatin accessibility of Alus in HeLa and 293 cells. Cell stress evidently activates Alu transcription by rapidly remodeling chromatin to recruit additional templates.
Collapse
Affiliation(s)
- T H Li
- Section of Molecular and Cellular Biology and Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
41
|
Ueda Y, Chaudhuri G. Differential expression of B1-containing transcripts in Leishmania-exposed macrophages. J Biol Chem 2000; 275:19428-32. [PMID: 10781585 PMCID: PMC3086771 DOI: 10.1074/jbc.m001336200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
When the parasitic protozoan Leishmania infect host macrophage cells, establishment of the infection requires alteration in the expression of genes in both the parasite and the host cells. In the early phase of infection of macrophages in vitro, Leishmania exposure affects the expression of a group of mouse macrophage genes containing the repetitive transposable element designated B1 sequence. In Leishmania-exposed macrophages compared with unexposed macrophages, small (approximately 0.5 kilobase) B1-containing RNAs (small B1-RNAs) are down-regulated, and large (1-4 kilobases) B1-containing RNAs (large B1-RNA) are up-regulated. The down-regulation of small B1-RNAs precedes the up-regulation of large B1-RNAs in Leishmania-exposed macrophages. These differential B1-containing gene expressions in Leishmania-exposed macrophages were verified using individual small-B1-RNA and large B1-RNA. The differential expressions of the B1-containing RNAs at the early phase of Leishmania-macrophage interaction may associate the establishment of the leishmanial infection.
Collapse
Affiliation(s)
| | - Gautam Chaudhuri
- To whom correspondence should be addressed: Dept. of Microbiology, School of Medicine, Meharry Medical College, 1005 D. B. Todd Jr. Blvd., Nashville, TN 37208. Tel.: 615-327-6499; Fax: 615-327-5559;
| |
Collapse
|
42
|
Kimura RH, Choudary PV, Schmid CW. Silk worm Bm1 SINE RNA increases following cellular insults. Nucleic Acids Res 1999; 27:3380-7. [PMID: 10454647 PMCID: PMC148573 DOI: 10.1093/nar/27.16.3380] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of cell stresses upon the expression of the Bm1 short interspersed element (SINE) family in cultured silk worm cells is examined. Primer extension analysis shows that Bm1 repeats are transcribed by RNA polymerase III (Pol III) into cytoplasmic RNAs. Five consecutive T residues, which would normally terminate Pol III transcription, occur within the Bm1 consensus and are included within cDNA sequences representing these transcripts. In analogy to mammalian SINEs, the level of the Bm1 transcripts increases in response to either heat shock, inhibiting protein synthesis by cycloheximide or viral infection. The lifetime of Bm1 RNA increases following cell insults so that post-transcriptional events partially account for stress induced increases in its abundance. In the case of heat shock, the increase in Bm1 RNA follows the transient increase in hsp70 mRNA indicating that this response is temporally regulated to occur later in heat shock recovery. These results support the proposal that SINE RNAs serve a role in the cell stress response that predates the divergence of insects and mammals implying that SINEs are essentially a class of cell stress genes.
Collapse
Affiliation(s)
- R H Kimura
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
43
|
Kropotov A, Sedova V, Ivanov V, Sazeeva N, Tomilin A, Krutilina R, Oei SL, Griesenbeck J, Buchlow G, Tomilin N. A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:336-46. [PMID: 10095767 DOI: 10.1046/j.1432-1327.1999.00162.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we identified a novel protein which may contribute to the transcriptional inactivity of Alu retroposons in vivo. A human cDNA clone encoding this protein (ACR1) was isolated from a human expression library using South-western screening with an Alu subfragment, implicated in the regulation of Alu in vitro transcription and interacting with a HeLa nuclear protein down-regulated in adenovirus-infected cells. Bacterially expressed ACR1 is demonstrated to inhibit RNA polymerase III (Pol III)-dependent Alu transcription in vitro but showed no repression of transcription of a tRNA gene or of a reporter gene under control of a Pol II promoter. ACR1 mRNA is also found to be down-regulated in adenovirus-infected HeLa cells, consistent with a possible repressor function of the protein in vivo. ACR1 is mainly (but not exclusively) located in cytoplasm and appears to be a member of a weakly characterized redox protein family having a central, highly conserved sequence motif, PGAFTPXCXXXXLP. One member of the family identified earlier as peroxisomal membrane protein (PMP)20 is known to interact in a sequence-specific manner with a yeast homolog of mammalian cyclosporin-A-binding protein cyclophilin, and mammalian cyclophilin A (an abundant ubiquitously expressed protein) is known to interact with human transcriptional repressor YY1, which is a major sequence-specific Alu-binding protein in human cells. It appears, therefore, that transcriptional silencing of Alu in vivo is a result of complex interactions of many proteins which bind to its Pol III promoter.
Collapse
Affiliation(s)
- A Kropotov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The evolution, mobility and deleterious genetic effects of human Alus are fairly well understood. The complexity of regulated transcriptional expression of Alus is becoming apparent and insight into the mechanism of retrotransposition is emerging. Unresolved questions concern why mobile, highly repetitive short interspersed elements (SINEs) have been tolerated throughout evolution and why and how families of such sequences are periodically replaced. Either certain SINEs are more successful genomic parasites or positive selection drives their relative success and genomic maintenance. A complete understanding of the evolutionary dynamics and significance of SINEs requires determining whether or not they have a function(s). Recent evidence suggests two possibilities, one concerning DNA and the other RNA. Dispersed Alus exhibit remarkable tissue-specific differences in the level of their 5-methylcytosine content. Differences in Alu methylation in the male and female germlines suggest that Alu DNA may be involved in either the unique chromatin organization of sperm or signaling events in the early embryo. Alu RNA is increased by cellular insults and stimulates protein synthesis by inhibiting PKR, the eIF2 kinase that is regulated by double-stranded RNA. PKR serves other roles potentially linking Alu RNA to a variety of vital cell functions. Since Alus have appeared only recently within the primate lineage, this proposal provokes the challenging question of how Alu RNA could have possibly assumed a significant role in cell physiology.
Collapse
Affiliation(s)
- C W Schmid
- Section of Molecular and Cellular Biology and Department of Chemistry, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Goodier JL, Maraia RJ. Terminator-specific recycling of a B1-Alu transcription complex by RNA polymerase III is mediated by the RNA terminus-binding protein La. J Biol Chem 1998; 273:26110-6. [PMID: 9748291 DOI: 10.1074/jbc.273.40.26110] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient synthesis of many small abundant RNAs is achieved by the proficient recycling of RNA polymerase (pol) III and stable transcription complexes. Cellular Alu and related retroposons represent unusual pol III genes that are normally repressed but are activated by viral infection and other conditions. The core sequences of these elements contain pol III promoters but must rely on fortuitous downstream oligo(dT) tracts for terminator function. We show that a B1-Alu gene differs markedly from a classical pol III gene (tRNAiMet) in terminator sequence requirements. B1-Alu genes that differ only in terminator sequence context direct differential RNA 3' end formation. These genes are assembled into stable transcription complexes but differ in their ability to be recycled in the presence of the La transcription termination factor. La binds to the nascent RNA 3' UUUOH end motif that is generated by transcriptional termination within the pol III termination signal, oligo(dT). We found that the recycling efficiency of the B1-Alu genes is correlated with the ability of La to access the 3' end of the nascent transcript and protect it from 3'-5' exonucleolytic processing. These results illuminate a relationship between RNA 3' end formation and transcription termination, and La-mediated reinitiation by pol III.
Collapse
Affiliation(s)
- J L Goodier
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | |
Collapse
|
46
|
Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 1998; 18:58-68. [PMID: 9418853 PMCID: PMC121451 DOI: 10.1128/mcb.18.1.58] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1997] [Accepted: 10/13/1997] [Indexed: 02/05/2023] Open
Abstract
Cell stress, viral infection, and translational inhibition increase the abundance of human Alu RNA, suggesting that the level of these transcripts is sensitive to the translational state of the cell. To determine whether Alu RNA functions in translational homeostasis, we investigated its role in the regulation of double-stranded RNA-activated kinase PKR. We found that overexpression of Alu RNA by cotransient transfection increased the expression of a reporter construct, which is consistent with an inhibitory effect on PKR. Alu RNA formed stable, discrete complexes with PKR in vitro, bound PKR in vivo, and antagonized PKR activation both in vitro and in vivo. Alu RNAs produced by either overexpression or exposure of cells to heat shock bound PKR, whereas transiently overexpressed Alu RNA antagonized virus-induced activation of PKR in vivo. Cycloheximide treatment of cells decreased PKR activity, coincident with an increase in Alu RNA. These observations suggest that the increased levels of Alu RNAs caused by cellular exposure to different stresses regulate protein synthesis by antagonizing PKR activation. This provides a functional role for mammalian short interspersed elements, prototypical junk DNA.
Collapse
Affiliation(s)
- W M Chu
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
47
|
Shaikh TH, Roy AM, Kim J, Batzer MA, Deininger PL. cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. J Mol Biol 1997; 271:222-34. [PMID: 9268654 DOI: 10.1006/jmbi.1997.1161] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated and sequenced twenty-six cDNAs derived from primary Alu transcripts. Most cDNAs (22/26) sequenced end in multiple T residues, known to be at the termination for RNA polymerase III-directed transcripts. We conclude that these cDNAs were derived from authentic, RNA polymerase III-directed primary Alu transcripts. Sequence alignment of the cDNAs with Alu consensus sequences show that the cDNAs belong to different, previously described Alu subfamilies. The sequence variation observed in the 3' non-Alu regions of each of the cDNAs led us to conclude that they were derived from different genomic loci, thus demonstrating that multiple Alu loci are transcriptionally active. The subfamily distribution of the cDNAs suggests that transcriptional activity is biased towards evolutionarily younger Alu subfamilies, with a strong selection for the consensus sequence in the first 42 bases and the promoter B box. Sequence data from seven cDNAs derived from small cytoplasmic Alu (scAlu) transcripts, a processed form of Alu transcripts, also have a similar bias towards younger Alu subfamilies. About half of these cDNAs are due to processing or degradation, but the other half appear to be due to the formation of a cryptic RNA polymerase III termination signal in multiple loci. Using our sequence data, we have isolated a transcriptionally active genomic Alu element belonging to the Ya5 subfamily. In vitro transcription studies of this element suggest that its flanking sequences contribute to its transcriptional activity. The role of flanking sequences and other factors involved in transcriptional activity of Alu elements are discussed.
Collapse
Affiliation(s)
- T H Shaikh
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, 1901 Perdido St, New Orleans, LA, 70112, USA
| | | | | | | | | |
Collapse
|
48
|
Chu WM, Wang Z, Roeder RG, Schmid CW. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J Biol Chem 1997; 272:14755-61. [PMID: 9169441 DOI: 10.1074/jbc.272.23.14755] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma susceptibility gene product (Rb) generally represses RNA polymerase III (Pol III)-directed transcription. This implies that Rb interacts with essential transcription factors. Mutations in either the A or B subdomains in the Rb pocket interfere with Rb-mediated repression of Pol III-directed transcription, which indicates that both subdomains are directly involved in this activity. Addition of either purified TFIIIB or purified TFIIIC2 partially relieves Rb-mediated repression and restores activity to nuclear extracts that had been depleted of essential factors by binding to Rb. Pull down and coimmunoprecipitation experiments as well as functional assays indicate that Rb interacts with both TFIIIB and TFIIIC2 and that the A subdomain is primarily required for binding TFIIIB and the B subdomain for binding TFIIIC2. While Rb interacts with both factors, the A subdomain is more important than the B subdomain in directing Rb-mediated repression, and TFIIIB is the principal target of that activity.
Collapse
Affiliation(s)
- W M Chu
- Section of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
49
|
Chu WM, Ballard RE, Schmid CW. Palindromic sequences preceding the terminator increase polymerase III template activity. Nucleic Acids Res 1997; 25:2077-82. [PMID: 9153305 PMCID: PMC146701 DOI: 10.1093/nar/25.11.2077] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Four consecutive T residues in the sense strand are sufficient to terminate transcription by RNA polymerase III (pol III). Previously we observed that compared with this minimally sufficient terminator, five T residues immediately preceded by a palindromic sequence increases transcriptional expression both in vitro and in vivo, raising the question of whether a palindromic sequence has a role in pol III termination. Here we observe that site-directed mutations which eliminate the dyad symmetry of the palindromic sequence decrease transcriptional expression. Similar effects are observed whether dyad symmetry is eliminated in regions of the palindrome which are proximal or distal with respect to the terminator. Compensatory mutations at either site to restore dyad symmetry rescue transcriptional activity. These observations suggest that a higher order structure, such as a RNA hairpin, immediately preceding the terminator increases pol III transcriptional activity.
Collapse
Affiliation(s)
- W M Chu
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
50
|
Fan H, Sakulich AL, Goodier JL, Zhang X, Qin J, Maraia RJ. Phosphorylation of the human La antigen on serine 366 can regulate recycling of RNA polymerase III transcription complexes. Cell 1997; 88:707-15. [PMID: 9054510 DOI: 10.1016/s0092-8674(00)81913-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human La antigen is an RNA-binding protein that facilitates transcriptional termination and reinitiation by RNA polymerase III. Native La protein fractionates into transcriptionally active and inactive forms that are unphosphorylated and phosphorylated at serine 366, respectively, as determined by enzymatic and mass spectrometric analyses. Serine 366 comprises a casein kinase II phosphorylation site that resides within a conserved region in the La proteins from several species. RNA synthesis from isolated transcription complexes is inhibited by casein kinase II-mediated phosphorylation of La serine 366 and is reversible by dephosphorylation. This work demonstrates a novel mechanism of transcriptional control at the level of recycling of stable transcription complexes.
Collapse
Affiliation(s)
- H Fan
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|