1
|
Tavares J, Bravo JP, Gimenes F, Neto QAL, Fiorini A, Fernandez MA. Differential structure of the intronic promoter of the Bombyx mori A3 actin gene correlated with silkworm sensitivity/resistance to nucleopolyhedrovirus. GENETICS AND MOLECULAR RESEARCH 2011; 10:471-81. [PMID: 21476193 DOI: 10.4238/vol10-1gmr978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous reports demonstrated that actin is necessary for nucleocapsid transport and viral gene expression during nucleopolyhedrovirus infection of Bombyx mori. The first intron of B. mori A3 actin contains a cryptic promoter that drives expression of a rare isoform. We detected differences in the size and nucleotide composition of the first intron of the A3 actin gene from B. mori strain C24A, which is more resistant to nucleopolyhedrovirus than the M11A strain (22 and 95% lethality, respectively). We sought to determine if resistance to BmMNPV infection and the A3 actin promoter structure are correlated. Intrinsically bent DNA sites in these sequences, which determine curved structures, were analyzed by electrophoretic mobility assays and the helical parameters ENDS ratio, roll and twist. We found both fragments to have non-centralized bent DNA sites with distinct ENDS ratio values, nucleotide positions and two-dimensional structures. Additionally, a conformational-sensitive gel electrophoresis assay identified an allelic variation found in strain M11A that is absent in strain C24A. These data suggest that A3 actin intronic sequence variations impair virus propagation and are markers of BmMNPV-resistant populations.
Collapse
Affiliation(s)
- J Tavares
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | | | | | | | |
Collapse
|
2
|
Fiorini A, de Gouveia FS, de Soares MAM, Stocker AJ, Ciferri RR, Fernandez MA. DNA bending in the replication zone of the C3 DNA puff amplicon of Rhynchosciara americana (Diptera: Sciaridae). Mol Biol Rep 2007; 33:71-82. [PMID: 16636920 DOI: 10.1007/s11033-006-0009-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
Intrinsic bent DNA sites were identified in the 4289 bp segment encompassing the replication zone which directs DNA amplification and transcription of the C3-22 gene of Rhynchosciara americana. Restriction fragments showed reduced electrophoretic mobility in polyacrylamide gels. The 2D modeling of the 3D DNA path and the ENDS ratio values obtained from the dinucleotide wedge model of Trifonov revealed the presence of four major bent sites, positioned at nucleotides -6753, -5433, -5133 and -4757. Sequence analysis showed that these bends are composed of 2-6 bp dA.dT tracts in phase with the DNA helical repeat. The circular permutation analysis permitted the verification that the fragments containing the bending sites promote curvature in other sequence contexts. Computer analyses of the 4289 bp sequence revealed low helical stability (DeltaG values), negative roll angles indicating a narrow minor groove and a putative matrix attachment region. The data presented in this paper add to information about the structural features involved in this amplified segment.
Collapse
Affiliation(s)
- Adriana Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil
| | | | | | | | | | | |
Collapse
|
3
|
Fiorini A, Gouveia FDS, Fernandez MA. Scaffold/Matrix Attachment Regions and intrinsic DNA curvature. BIOCHEMISTRY (MOSCOW) 2006; 71:481-8. [PMID: 16732725 DOI: 10.1134/s0006297906050038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent approaches have failed to detect nucleotide sequence motifs in Scaffold/Matrix Attachment Regions (S/MARs). The lack of any known motifs, together with the confirmation that some S/MARs are not associated to any peculiar sequence, indicates that some structural elements, such as DNA curvature, have a role in chromatin organization and on their efficiency in protein binding. Similar to DNA curvature, S/MARs are located close to promoters, replication origins, and multiple nuclear processes like recombination and breakpoint sites. The chromatin structure in these regulatory regions is important to chromosome organization for accurate regulation of nuclear processes. In this article we review the biological importance of the co-localization between bent DNA sites and S/MARs.
Collapse
Affiliation(s)
- A Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá Maringá, Paraná 87020-900, Brazil
| | | | | |
Collapse
|
4
|
Saha S, Nicholson A, Kapler GM. Cloning and biochemical analysis of the tetrahymena origin binding protein TIF1: competitive DNA binding in vitro and in vivo to critical rDNA replication determinants. J Biol Chem 2001; 276:45417-26. [PMID: 11577092 DOI: 10.1074/jbc.m106162200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cis-acting type I elements regulate the initiation of DNA replication, replication fork movement, and transcription of the Tetrahymena thermophila rDNA minichromosome and are required for cell cycle-controlled replication and developmentally programmed gene amplification. Previous studies identified three in vitro single-stranded type I element binding activities that were proposed to play distinct roles in replication control. Here we describe the cloning of one of these genes, TIF1, and we provide evidence for its association with type I elements in vivo. Furthermore, we show that TIF1 interacts (in vitro and in vivo) with pause site elements (PSE), which co-localize with replication initiation and fork arrest sites, and are shown to be essential. The in vivo accessibility of PSE and type I elements to potassium permanganate suggests that origin regions are frequently unwound in native chromatin. TIF1 contains sequence similarity to the Solanum tuberosum single strand-specific transcription factor, p24, and a related Arabidopsis protein. Antisense inhibition studies suggest that TIF1 competes with other proteins for PSE and type I element binding. TIF1 displays a marked strand bias in vivo, discriminating between origin- and promoter-proximal type I elements. We propose that this bias selectively modulates the binding of a different subset of proteins to the respective regulatory elements.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding, Competitive
- Chromatin/chemistry
- Chromatin/metabolism
- Cloning, Molecular
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Electrophoresis, Gel, Two-Dimensional
- Gene Deletion
- Mice
- Mice, Knockout
- Models, Genetic
- Molecular Sequence Data
- Oligonucleotides, Antisense/pharmacology
- Plasmids/metabolism
- Potassium Permanganate/pharmacology
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Protozoan Proteins
- Replication Origin
- Ribosomes/metabolism
- S100 Proteins/chemistry
- Sequence Homology, Amino Acid
- Tetrahymena/genetics
- Tetrahymena/metabolism
- Transcription, Genetic
- Ultraviolet Rays
Collapse
Affiliation(s)
- S Saha
- Department of Medical Biochemistry and Genetics, Texas A & M Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
5
|
|
6
|
Kupriyanova NS, Kirilenko PM, Netchvolodov KK, Ryskov AP. Preferential cleavage sites for Sau3A restriction endonuclease in human ribosomal DNA. Biochem Biophys Res Commun 2000; 274:11-5. [PMID: 10903888 DOI: 10.1006/bbrc.2000.3088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies of cloned ribosomal DNA (rDNA) variants isolated from the cosmid library of human chromosome 13 have revealed some disproportion in representativity of different rDNA regions (N. S. Kupriyanova, K. K. Netchvolodov, P. M. Kirilenko, B. I. Kapanadze, N. K. Yankovsky, and A. P. Ryskov, Mol. Biol. 30, 51-60, 1996). Here we show nonrandom cleavage of human rDNA with Sau3A or its isoshizomer MboI under mild hydrolysis conditions. The hypersensitive cleavage sites were found to be located in the ribosomal intergenic spacer (rIGS), especially in the regions of about 5-5.5 and 11 kb upstream of the rRNA transcription start point. This finding is based on sequencing mapping of the rDNA insert ends in randomly selected cosmid clones of human chromosome 13 and on the data of digestion kinetics of cloned and noncloned human genomic rDNA with Sau3A and MboI. The results show that a methylation status and superhelicity state of the rIGS have no effect on cleavage site sensitivity. It is interesting that all primary cleavage sites are adjacent to or entering into Alu or Psi cdc 27 retroposons of the rIGS suggesting a possible role of neighboring sequences in nuclease accessibility. The results explain nonequal representation of rDNA sequences in the human genomic DNA library used for this study.
Collapse
Affiliation(s)
- N S Kupriyanova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow, 117334, Russia.
| | | | | | | |
Collapse
|
7
|
Affiliation(s)
- K M Karrer
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
8
|
Vernis L, Chasles M, Pasero P, Lepingle A, Gaillardin C, Fournier P. Short DNA fragments without sequence similarity are initiation sites for replication in the chromosome of the yeast Yarrowia lipolytica. Mol Biol Cell 1999; 10:757-69. [PMID: 10069816 PMCID: PMC25200 DOI: 10.1091/mbc.10.3.757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, 78850 Thiverval-Grignon, France.
| | | | | | | | | | | |
Collapse
|
9
|
Krause M, Rückert B, Lurz R, Messer W. Complexes at the replication origin of Bacillus subtilis with homologous and heterologous DnaA protein. J Mol Biol 1997; 274:365-80. [PMID: 9405146 DOI: 10.1006/jmbi.1997.1404] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The initial steps in the formation of the initiation complex at oriC of Bacillus subtilis were analyzed with special emphasis on the exchangeability of B. subtilis DnaA protein by DnaA of Escherichia coli. The DNA binding domain of B. subtilis DnaA protein was localized in the 93 C-terminal amino acids. Formation of the "initial complex", as analyzed by electron microscopy, was indistinguishable with B. subtilis DnaA protein or with E. coli DnaA. Similarly, both proteins were able to form loops by interaction of DnaA proteins bound to the DnaA box regions upstream and downstream of the dnaA gene in B. subtilis oriC. The region of local unwinding in the "open complex" was precisely defined. It is located at one side of a region of helical instability, a DNA unwinding element (DUE). Unwinding in oriC could only be catalyzed by the homologous DnaA protein.
Collapse
Affiliation(s)
- M Krause
- Max-Planck-Institut für molekulare Genetik, Berlin-Dahlem, Germany
| | | | | | | |
Collapse
|
10
|
Blomberg P, Randolph C, Yao CH, Yao MC. Regulatory sequences for the amplification and replication of the ribosomal DNA minichromosome in Tetrahymena thermophila. Mol Cell Biol 1997; 17:7237-47. [PMID: 9372956 PMCID: PMC232581 DOI: 10.1128/mcb.17.12.7237] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have analyzed the cis-acting sequences that regulate rRNA gene (rDNA) replication in Tetrahymena thermophila. The macronucleus of this ciliated protozoan contains 9,000 copies of a 21-kbp minichromosome in the form of a palindrome comprising two copies of the rDNA. These are derived from a single chromosomally integrated copy during conjugation through selective amplification and are maintained by replicating once per cell cycle during vegetative growth. We have developed a transformation vector and carried out a deletion analysis to determine the minimal sequences required for replication, amplification, and/or stable maintenance of the rDNA molecule. Using constructs containing progressively longer deletions, we show that only a small portion (approximately 900 bp) of the rDNA is needed for extrachromosomal replication and stable maintenance of this molecule. This core region is very near but does not include the rRNA transcription initiation site or its putative promoter, indicating that replication is not dependent on normal rRNA transcription. It includes two nearly identical nuclease-sensitive domains (D1 and D2), one of which (D1) corresponds to the physical origin of replication determined previously. Deletion of both domains abolishes replication, whereas deletion of either domain allows the molecules to replicate, indicating that only one domain is required. In addition to this core region, we have found several DNA segments, including a tandem array of a 21-nucleotide repeat (type II repeats) and sequences within the rRNA coding region, that play distinctive and important roles in maintaining the rDNA at a high copy number.
Collapse
Affiliation(s)
- P Blomberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|