1
|
Lee YC, Cai Y, Mu H, Broyde S, Amin S, Chen X, Min JH, Geacintov NE. The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: is there a correlation? DNA Repair (Amst) 2014; 19:55-63. [PMID: 24784728 DOI: 10.1016/j.dnarep.2014.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The first eukaryotic NER factor that recognizes NER substrates is the heterodimeric XPC-RAD23B protein. The currently accepted hypothesis is that this protein recognizes the distortions/destabilization caused by DNA lesions rather than the lesions themselves. The resulting XPC-RAD23B-DNA complexes serve as scaffolds for the recruitment of subsequent NER factors that lead to the excision of the oligonucleotide sequences containing the lesions. Based on several well-known examples of DNA lesions like the UV radiation-induced CPD and 6-4 photodimers, as well as cisplatin-derived intrastrand cross-linked lesions, it is generally believed that the differences in excision activities in human cell extracts is correlated with the binding affinities of XPC-RAD23B to these DNA lesions. However, using electrophoretic mobility shift assays, we have found that XPC-RAD23B binding affinities of certain bulky lesions derived from metabolically activated polycyclic aromatic hydrocarbon compounds such as benzo[a]pyrene and dibenzo[a,l]pyrene, are not directly, or necessarily correlated with NER excision activities observed in cell-free extracts. These findings point to features of XPC-RAD23B-bulky DNA adduct complexes that may involve the formation of NER-productive or unproductive forms of binding that depend on the structural and stereochemical properties of the DNA adducts studied. The pronounced differences in NER cleavage efficiencies observed in cell-free extracts may be due to differences in the successful recruitment of subsequent NER factors by the XPC-RAD23B-DNA adduct complexes, and/or in the verification step. These phenomena appear to depend on the structural and conformational properties of the class of bulky DNA adducts studied.
Collapse
Affiliation(s)
- Yuan-Cho Lee
- Chemistry Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA
| | - Yuqin Cai
- Biology Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA
| | - Hong Mu
- Biology Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA
| | - Suse Broyde
- Biology Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Xuejing Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nicholas E Geacintov
- Chemistry Department, New York University, Silver Complex, 100 Washington Square East, New York, NY 10012, USA.
| |
Collapse
|
2
|
Skosareva LV, Lebedeva NA, Lavrik OI, Rechkunova NI. Repair of bulky DNA lesions deriving from polycyclic aromatic hydrocarbons. Mol Biol 2013. [DOI: 10.1134/s002689331305018x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Cai Y, Kropachev K, Xu R, Tang Y, Kolbanovskii M, Kolbanovskii A, Amin S, Patel DJ, Broyde S, Geacintov NE. Distant neighbor base sequence context effects in human nucleotide excision repair of a benzo[a]pyrene-derived DNA lesion. J Mol Biol 2010; 399:397-409. [PMID: 20399214 PMCID: PMC2923096 DOI: 10.1016/j.jmb.2010.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
Abstract
The effects of non-nearest base sequences, beyond the nucleotides flanking a DNA lesion on either side, on nucleotide excision repair (NER) in extracts from human cells were investigated. We constructed two duplexes containing the same minor groove-aligned 10S (+)-trans-anti-B[a]P-N(2)-dG (G*) DNA adduct, derived from the environmental carcinogen benzo[a]pyrene (B[a]P): 5'-C-C-A-T-C-G*-C-T-A-C-C-3' (CG*C-I), and 5'-C-A-C3-A4-C5-G*-C-A-C-A-C-3' (CG*C-II). We used polyacrylamide gel electrophoresis to compare the extent of DNA bending, and molecular dynamics simulations to analyze the structural characteristics of these two DNA duplexes. The NER efficiencies are 1.6(+/-0.2)-fold greater in the case of the CG*C-II than the CG*C-I sequence context in 135-mer duplexes. Gel electrophoresis and self-ligation circularization experiments revealed that the CG*C-II duplex is more bent than the CG*C-I duplex, while molecular dynamics simulations showed that the unique -C3-A4-C5- segment in the CG*C-II duplex plays a key role. The presence of a minor groove-positioned guanine amino group, the Watson-Crick partner to C3, acts as a wedge; facilitated by a highly deformable local -C3-A4- base step, this amino group allows the B[a]P ring system to produce a more enlarged minor groove in CG*C-II than in CG*C-I, as well as a local untwisting and enlarged and flexible Roll only in the CG*C-II sequence. These structural properties fit well with our earlier findings that in the case of the family of minor groove 10S (+)-trans-anti-B[a]P-N(2)-dG lesions, flexible bends and enlarged minor groove widths constitute NER recognition signals, and extend our understanding of sequence context effects on NER to the neighbors that are distant to the lesion.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, N.Y., 10003
| | | | - Rong Xu
- Department of Chemistry, New York University, New York, N.Y., 10003
| | - Yijin Tang
- Department of Chemistry, New York University, New York, N.Y., 10003
| | | | | | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, P.A., 17033
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, N.Y., 10021
| | - Suse Broyde
- Department of Biology, New York University, New York, N.Y., 10003
| | | |
Collapse
|
4
|
Kropachev K, Kolbanovskii M, Cai Y, Rodríguez F, Kolbanovskii A, Liu Y, Zhang L, Amin S, Patel D, Broyde S, Geacintov NE. The sequence dependence of human nucleotide excision repair efficiencies of benzo[a]pyrene-derived DNA lesions: insights into the structural factors that favor dual incisions. J Mol Biol 2009; 386:1193-203. [PMID: 19162041 PMCID: PMC2717896 DOI: 10.1016/j.jmb.2008.12.082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Nucleotide excision repair (NER) is a vital cellular defense system against carcinogen-DNA adducts, which, if not repaired, can initiate cancer development. The structural features of bulky DNA lesions that account for differences in NER efficiencies in mammalian cells are not well understood. In vivo, the predominant DNA adduct derived from metabolically activated benzo[a]pyrene (BP), a prominent environmental carcinogen, is the 10S (+)-trans-anti-[BP]-N(2)-dG adduct (G*), which resides in the B-DNA minor groove 5'-oriented along the modified strand. We have compared the structural distortions in double-stranded DNA, imposed by this adduct, in the different sequence contexts 5'-...CGG*C..., 5'-...CG*GC..., 5'-...CIG*C... (I is 2'-deoxyinosine), and 5'-...CG*C.... On the basis of electrophoretic mobilities, all duplexes manifest moderate bends, except the 5'-...CGG*C...duplex, which exhibits an anomalous, slow mobility attributed to a pronounced flexible kink at the site of the lesion. This kink, resulting from steric hindrance between the 5'-flanking guanine amino group and the BP aromatic rings, both positioned in the minor groove, is abolished in the 5'-...CIG*C...duplex (the 2'-deoxyinosine group, I, lacks this amino group). In contrast, the sequence-isomeric 5'-...CG*GC...duplex exhibits only a moderate bend, but displays a remarkably increased opening rate at the 5'-flanking base pair of G*, indicating a significant destabilization of Watson-Crick hydrogen bonding. The NER dual incision product yields were compared for these different sequences embedded in otherwise identical 135-mer duplexes in cell-free human HeLa extracts. The yields of excision products varied by a factor of as much as approximately 4 in the order 5'-...CG*GC...>5'...CGG*C...>or=5'...CIG*C...>or=5'-...CG*C.... Overall, destabilized Watson-Crick hydrogen bonding, manifested in the 5'-...CG*GC...duplex, elicits the most significant NER response, while the flexible kink displayed in the sequence-isomeric 5'-...CGG*C...duplex represents a less significant signal in this series of substrates. These results demonstrate that the identical lesion can be repaired with markedly variable efficiency in different local sequence contexts that differentially alter the structural features of the DNA duplex around the lesion site.
Collapse
Affiliation(s)
| | | | - Yuqin Cai
- Department of Biology, New York University, New York, N.Y., 10003
| | - Fabian Rodríguez
- Department of Chemistry, New York University, New York, N.Y., 10003
| | | | - Yang Liu
- Department of Chemistry, New York University, New York, N.Y., 10003
| | - Lu Zhang
- Department of Chemistry, New York University, New York, N.Y., 10003
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, P.A., 17033
| | - Dinshaw Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, N.Y., 10021
| | - Suse Broyde
- Department of Biology, New York University, New York, N.Y., 10003
| | | |
Collapse
|
5
|
Cai Y, Patel DJ, Geacintov NE, Broyde S. Differential nucleotide excision repair susceptibility of bulky DNA adducts in different sequence contexts: hierarchies of recognition signals. J Mol Biol 2009; 385:30-44. [PMID: 18948114 PMCID: PMC2680230 DOI: 10.1016/j.jmb.2008.09.087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022]
Abstract
The structural origin underlying differential nucleotide excision repair (NER) susceptibilities of bulky DNA lesions remains a challenging problem. We investigated the 10S (+)-trans-anti-[BP]-N(2)-2'-deoxyguanosine (G*) adduct in double-stranded DNA. This adduct arises from the reaction, in vitro and in vivo, of a major genotoxic metabolite of benzo[a]pyrene (BP), (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, with the exocyclic amino group of guanine. Removal of this lesion by the NER apparatus in cell-free extracts has been found to depend on the base sequence context in which the lesion is embedded, providing an excellent opportunity for elucidating the properties of the damaged DNA duplexes that favor NER. While the BP ring system is in the B-DNA minor groove, 5' directed along the modified strand, there are orientational distinctions that are sequence dependent and are governed by flanking amino groups [Nucleic Acids Res.35 (2007), 1555-1568]. To elucidate sequence-governed NER susceptibility, we conducted molecular dynamics simulations for the 5'-...CG*GC..., 5'-...CGG*C..., and 5'-...TCG*CT... adduct-containing duplexes. We also investigated the 5'-...CG*IC... and 5'-...CIG*C... sequences, which contain "I" (2'-deoxyinosine), with hydrogen replacing the amino group in 2'-deoxyguanosine, to further characterize the structural and dynamic roles of the flanking amino groups in the damaged duplexes. Our results pinpoint explicit roles for the amino groups in tandem GG sequences on the efficiency of NER and suggest a hierarchy of destabilizing structural features that differentially facilitate NER of the BP lesion in the sequence contexts investigated. Furthermore, combinations of several locally destabilizing features in the hierarchy, consistent with a multipartite model, may provide a relatively strong recognition signal.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | | | - Suse Broyde
- Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
6
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
7
|
Mocquet V, Kropachev K, Kolbanovskiy M, Kolbanovskiy A, Tapias A, Cai Y, Broyde S, Geacintov NE, Egly JM. The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO J 2007; 26:2923-32. [PMID: 17525733 PMCID: PMC1894768 DOI: 10.1038/sj.emboj.7601730] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 04/30/2007] [Indexed: 12/27/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a known environmental pollutant and tobacco smoke carcinogen, is metabolically activated to highly tumorigenic B[a]P diol epoxide derivatives that predominantly form N(2)-guanine adducts in cellular DNA. Although nucleotide excision repair (NER) is an important cellular defense mechanism, the molecular basis of recognition of these bulky lesions is poorly understood. In order to investigate the effects of DNA adduct structure on NER, three stereoisomeric and conformationally different B[a]P-N(2)-dG lesions were site specifically incorporated into identical 135-mer duplexes and their response to purified NER factors was investigated. Using a permanganate footprinting assay, the NER lesion recognition factor XPC/HR23B exhibits, in each case, remarkably different patterns of helix opening that is also markedly distinct in the case of an intra-strand crosslinked cisplatin adduct. The different extents of helix distortions, as well as differences in the overall binding of XPC/HR23B to double-stranded DNA containing either of the three stereoisomeric B[a]P-N(2)-dG lesions, are correlated with dual incisions catalyzed by a reconstituted incision system of six purified NER factors, and by the full NER apparatus in cell-free nuclear extracts.
Collapse
Affiliation(s)
- Vincent Mocquet
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | | | | | | - Angels Tapias
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | - Yuqin Cai
- Chemistry Department, New York University, New York, NY, USA
| | - Suse Broyde
- Biology Department, New York University, New York, NY, USA
| | - Nicholas E Geacintov
- Chemistry Department, New York University, New York, NY, USA
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA. Tel.: +1 212 998 8407; Fax: +1 212 998 8421; E-mail:
| | - Jean-Marc Egly
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA. Tel.: +1 212 998 8407; Fax: +1 212 998 8421; E-mail:
| |
Collapse
|
8
|
Tsao H, Rechkoblit O, Amin S, Geacintov NE. Impact of Site-Specific Benzo[a]Pyrene Diol Epoxide-dG Lesions at or near Single/Double-Strand DNA Junctions on DNA Bending. Polycycl Aromat Compd 2000. [DOI: 10.1080/10406630008028518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Pommier Y, Kohlhagen G, Pourquier P, Sayer JM, Kroth H, Jerina DM. Benzo[a]pyrene diol epoxide adducts in DNA are potent suppressors of a normal topoisomerase I cleavage site and powerful inducers of other topoisomerase I cleavages. Proc Natl Acad Sci U S A 2000; 97:2040-5. [PMID: 10688881 PMCID: PMC15750 DOI: 10.1073/pnas.040397497] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The catalytic intermediates of DNA topoisomerase I (top1) are cleavage complexes that can relax DNA supercoiling (intramolecular reaction) or mediate recombinations (intermolecular religation). We report here that DNA adducts formed from benzo[a]pyrene bay-region diol epoxides can markedly affect top1 activity. Four oligonucleotide 22-mers of the same sequence were synthesized, each of which contained a stereoisomerically unique benzo[a]pyrene 7, 8-diol 9,10-epoxide adduct at the 2-amino group of a central 2'-deoxyguanosine residue. These four adducts correspond to either cis or trans opening at C-10 of the (+)-(7R, 8S, 9S, 10R)- or (-)-(7S, 8R, 9R, 10S)-7,8-diol 9,10-epoxides. Their solution conformations in duplex DNA (intercalated and minor-groove bound for the cis and trans opened adducts respectively) can be deduced from previous NMR studies. All four adducts completely suppress top1 cleavage activity at the alkylation site and induce the formation of new top1cleavage complexes on both strands of the DNA 3-6 bases away from the alkylation site. The trans opened adduct from the highly carcinogenic (+)-diol epoxide is the most active in inducing top1 cleavage independently of camptothecin, demonstrating that minor groove alkylation can efficiently poison top1. We also found that this isomer of the diol epoxide induces the formation of top1-DNA complexes in mammalian cells, which suggests a possible relationship between induction of top1 cleavage complexes and carcinogenic activity of benzo[a]pyrene diol epoxides.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
10
|
Voskoboinik I, Persson Å, Jernström B. Effects of Diol Epoxide Adducts on Binding of Different Transcription Factors to DNA. Polycycl Aromat Compd 1999. [DOI: 10.1080/10406639908020599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Weisenberger DJ, Romano LJ. Cytosine methylation in a CpG sequence leads to enhanced reactivity with Benzo[a]pyrene diol epoxide that correlates with a conformational change. J Biol Chem 1999; 274:23948-55. [PMID: 10446162 DOI: 10.1074/jbc.274.34.23948] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a widespread environmental carcinogen that must be activated by cellular metabolism to a diol epoxide form (BPDE) before it reacts with DNA. It has recently been shown that BPDE preferentially modifies the guanine in methylated 5'-CpG-3' sequences in the human p53 gene, providing one explanation for why these sites are mutational hot spots. Using purified duplex oligonucleotides containing identical methylated and unmethylated CpG sequences, we show here that BPDE preferentially modified the guanine in hemimethylated or fully methylated CpG sequences, producing between 3- and 8-fold more modification at this site. Analysis of this reaction using shorter duplex oligonucleotides indicated that it was the level of the (+)-trans isomer that was specifically increased. To determine if there were conformational differences between the methylated and unmethylated B[a]P-modified DNA sequences that may be responsible for this enhanced reactivity, a native polyacrylamide gel electrophoresis analysis was carried out using DNA containing isomerically pure B[a]P-DNA adducts. These experiments showed that each adduct resulted in an altered gel mobility in duplex DNA but that only the presence of a (+)-trans isomer and a methylated C 5' to the adduct resulted in a significant gel mobility shift compared with the unmethylated case.
Collapse
Affiliation(s)
- D J Weisenberger
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
12
|
Hess MT, Gunz D, Luneva N, Geacintov NE, Naegeli H. Base pair conformation-dependent excision of benzo[a]pyrene diol epoxide-guanine adducts by human nucleotide excision repair enzymes. Mol Cell Biol 1997; 17:7069-76. [PMID: 9372938 PMCID: PMC232563 DOI: 10.1128/mcb.17.12.7069] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human nucleotide excision repair processes carcinogen-DNA adducts at highly variable rates, even at adjacent sites along individual genes. Here, we identify conformational determinants of fast or slow repair by testing excision of N2-guanine adducts formed by benzo[a]pyrene diol epoxide (BPDE), a potent and ubiquitous mutagen that induces mainly G x C-->T x A transversions and frameshift deletions. We found that human nucleotide excision repair processes the predominant (+)-trans-BPDE-N2-dG adduct 15 times less efficiently than a standard acetylaminofluorene-C8-dG lesion in the same sequence. No difference was observed between (+)-trans- and (-)-trans-BPDE-N2-dG, but excision was enhanced about 10-fold by changing the adduct configurations to either (+)-cis- or (-)-cis-BPDE-N2-dG. Conversely, excision of (+)-cis- and (-)-cis- but not (+)-trans-BPDE-N2-dG was reduced about 10-fold when the complementary cytosine was replaced by adenine, and excision of these BPDE lesions was essentially abolished when the complementary deoxyribonucleotide was missing. Thus, a set of chemically identical BPDE adducts yielded a greater-than-100-fold range of repair rates, demonstrating that nucleotide excision repair activity is entirely dictated by local DNA conformation. In particular, this unique comparison between structurally highly defined substrates shows that fast excision of BPDE-N2-dG lesions is correlated with displacement of both the modified guanine and its partner base in the complementary strand from their normal intrahelical positions. The very slow excision of carcinogen-DNA adducts located opposite deletion sites reveals a cellular strategy that minimizes the fixation of frameshifts after mutagenic translesion synthesis.
Collapse
Affiliation(s)
- M T Hess
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Johnson DG, Coleman A, Powell KL, MacLeod MC. High-affinity binding of the cell cycle-regulated transcription factors E2F1 and E2F4 to benzo[a]pyrene diol epoxide-DNA adducts. Mol Carcinog 1997; 20:216-23. [PMID: 9364211 DOI: 10.1002/(sici)1098-2744(199710)20:2<216::aid-mc8>3.0.co;2-k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies indicated that DNA adducts formed by a carcinogenic diol epoxide, 7r,8t-dihydroxy-9t, 10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), can increase the affinity of the transcription factor Sp1 for DNA sequences that are not normally specific binding sites. It was suggested that adduct-induced bends in the DNA were responsible for this behavior. The cell cycle-regulated transcription factor E2F is also known to bend DNA upon binding. When partially purified E2F was tested in a gel mobility-shift assay, binding to a target DNA containing two consensus E2F-binding sites was enhanced by prior modification of the DNA with BPDE. Recombinant human E2F1, E2F4, and DP1 fusion proteins were affinity purified from bacteria expressing these genes. A combination of either E2F1 or E2F4 with their dimerization partner, DP1, gave preparations that exhibited binding to the E2F site-containing DNA fragment. In both cases, the proteins exhibited much higher apparent affinity for BPDE-modified DNA than for unmodified DNA. In addition, BPDE-modified DNA was a better competitor for the binding than unmodified DNA. Heterologous DNA that contained no consensus E2F binding motifs also competed well for E2F binding when modified with BPDE. In contrast, transcription factor that does not bend DNA appreciably (GAL4) did not show enhanced affinity for BPDE-modified DNA. These findings suggest that numerous transcription factors that bend DNA may bind with anomalously high affinity to sequences that contain carcinogen-DNA adducts.
Collapse
Affiliation(s)
- D G Johnson
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957, USA
| | | | | | | |
Collapse
|
14
|
Mann DB, Springer DL, Smerdon MJ. DNA damage can alter the stability of nucleosomes: effects are dependent on damage type. Proc Natl Acad Sci U S A 1997; 94:2215-20. [PMID: 9122174 PMCID: PMC20067 DOI: 10.1073/pnas.94.6.2215] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1996] [Accepted: 12/26/1996] [Indexed: 02/04/2023] Open
Abstract
We have investigated the effects of DNA damage by (+/-)-anti-benzo[a]pyrene diol epoxide (BPDE) and UV light on the formation of a positioned nucleosome in the Xenopus borealis 5S rRNA gene. Gel-shift analysis of the reconstituted products indicates that BPDE damage facilitates the formation of a nucleosome onto this sequence. Competitive reconstitution experiments show that average levels of 0.5, 0.9, and 2.1 BPDE adducts/146 bp of 5S DNA (i.e., the size of DNA associated with a nucleosome core particle) yield changes of -220, -290, and -540 cal/mol, respectively, in the free energy (delta G) of nucleosome formation. These values yield increases of core histone binding to 5S DNA (K(a)) of 1.4-, 1.6-, and 2.5-fold, compared with undamaged DNA. Conversely, irradiation with UV light decreases nucleosome formation. Irradiation at either 500 or 2500 J/m2 of UV light [0.6 and 0.8 cyclobutane pyrimidine dimer/146 bp (on average), respectively] results in respective changes of +130 and +250 cal/mol. This translates to decreases in core histone binding to irradiated 5S DNA (K(a)) of 1.2- and 1.5-fold compared with undamaged DNA. These results indicate that nucleosome stability can be markedly affected by the formation of certain DNA lesions. Such changes could have major effects on the kinetics of DNA processing events.
Collapse
Affiliation(s)
- D B Mann
- Department of Biochemistry and Biophysics, Washington State University, Pullman, WA 99164-4660, USA
| | | | | |
Collapse
|
15
|
MacLeod MC, Powell KL, Kuzmin VA, Kolbanovskiy A, Geacintov NE. Interference of benzo[a]pyrene diol epoxide-deoxyguanosine adducts in a GC box with binding of the transcription factor Sp1. Mol Carcinog 1996; 16:44-52. [PMID: 8634093 DOI: 10.1002/(sici)1098-2744(199605)16:1<44::aid-mc6>3.0.co;2-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies indicated that DNA adducts formed by the carcinogenic diol epoxide 7r,8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) can increase the affinity of the transcription factor Sp1 for DNA sequences that are not normally specific binding sites. Whether adducts that form in the normal binding site, the GC box sequence, increase the affinity of Sp1 for the modified GC-box was not determined. Starting with a 23-nt sequence that contains two natural GC box sequences, site-specifically modified oligonucleotides were prepared with a single(+)-BPDE-deoxyguanosine adduct at one of three positions: the center of each GC-box or in between the two boxes. Four modified oligonucleotides were studied, two derived from cis addition of BPDE to the exocyclic amino group and two from trans addition. For three of these site-specifically modified oligonucleotides, there was a diminution in Sp1 affinity, whereas Sp1 binding to the fourth modified oligonucleotide was abolished. Furthermore, random modification of the oligonucleotide to a level of about 1 BPDE adduct per fragment slightly decreased the affinity for Sp1, and no evidence was found for a subpopulation of molecules with high affinity. These findings suggest that BPDE modification of the GC box does not lead to an increased affinity for Sp1. This is consistent with a model in which a BPDE-induced bend in the DNA mimics the conformation of the normal GC box:Sp1 complex, leading to high-affinity binding of Sp1 to non-Gc box sites.
Collapse
Affiliation(s)
- M C MacLeod
- Department of Carcinogensis, University of Texas M. D. Anderson Cancer Center, Smithville 78957, USA
| | | | | | | | | |
Collapse
|