1
|
Vitorino R. Transforming Clinical Research: The Power of High-Throughput Omics Integration. Proteomes 2024; 12:25. [PMID: 39311198 PMCID: PMC11417901 DOI: 10.3390/proteomes12030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
High-throughput omics technologies have dramatically changed biological research, providing unprecedented insights into the complexity of living systems. This review presents a comprehensive examination of the current landscape of high-throughput omics pipelines, covering key technologies, data integration techniques and their diverse applications. It looks at advances in next-generation sequencing, mass spectrometry and microarray platforms and highlights their contribution to data volume and precision. In addition, this review looks at the critical role of bioinformatics tools and statistical methods in managing the large datasets generated by these technologies. By integrating multi-omics data, researchers can gain a holistic understanding of biological systems, leading to the identification of new biomarkers and therapeutic targets, particularly in complex diseases such as cancer. The review also looks at the integration of omics data into electronic health records (EHRs) and the potential for cloud computing and big data analytics to improve data storage, analysis and sharing. Despite significant advances, there are still challenges such as data complexity, technical limitations and ethical issues. Future directions include the development of more sophisticated computational tools and the application of advanced machine learning techniques, which are critical for addressing the complexity and heterogeneity of omics datasets. This review aims to serve as a valuable resource for researchers and practitioners, highlighting the transformative potential of high-throughput omics technologies in advancing personalized medicine and improving clinical outcomes.
Collapse
Affiliation(s)
- Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Melo TS, Andrade BS. Advancing rational pesticide development against Drosophila suzukii: bioinformatics tools and applications-a systematic review. J Mol Model 2024; 30:319. [PMID: 39222282 DOI: 10.1007/s00894-024-06113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT Drosophila suzukii (Matsumura, 1931) is a widespread agricultural pest responsible for significant damage to various soft-skinned fruit hosts. The revolutionary potential of bioinformatics in agriculture emerges from its ability to provide extensive information on pests, fungi, chemical resistance, implications of non-target species, and other critical aspects. This wealth of information allows researchers to engage in projects and applied research in diverse agricultural domains that face these challenges. In this context, bioinformatics tools play a fundamental role. The negative impact of pests on crops, resulting in substantial economic losses, has highlighted the importance of in silico methods. METHODS To achieve this, we conducted a systematic search in scientific databases using as keywords "Drosophila suzukii," "biopesticides," "simulations computational," and "in-silico." After applying the filters of relevance and publication date, we organized the articles and prioritized those that directly addressed that matched the keywords and the use of bioinformatics tools. Additionally, we included studies focusing on in silico assays of biopesticides, such as molecular docking. Our review aimed to present a collection of recent literature on biopesticides against Drosophila suzukii, emphasizing bioinformatics methods. Through this work, we strive to contribute to the literature of new perspectives on the development and efficiency of biopesticides, along with to advance research that may improve pest control strategies. RESULTS In the results of the systematic review, we found 2734 articles related to the selected keywords. Six of these articles directly address Drosophila suzukii and the use of bioinformatics tools in the search for alternatives in pest control. In the selected studies, we observed that two articles tend to focus on phylogenetic approaches, searching for gene sequences, amino acids, and constructing phylogenetic trees. The other three articles used molecular modeling and docking of receptors such as GABA and TRP with plant-derived and synthetic compounds to study intermolecular interactions. However, we identified gaps in these studies that could lead to further research in the biorational development of biopesticides using bioinformatics tools.
Collapse
Affiliation(s)
- Tarcisio Silva Melo
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Bahia, Brazil.
- Graduate Program in Biotechnology, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil.
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Bahia, Brazil
- Graduate Program in Biotechnology, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| |
Collapse
|
3
|
Geng C, Meng K, Zhao B, Liu X, Tang Y. Causal relationships between type 1 diabetes mellitus and Alzheimer's disease and Parkinson's disease: a bidirectional two-sample Mendelian randomization study. Eur J Med Res 2024; 29:53. [PMID: 38229119 PMCID: PMC10790511 DOI: 10.1186/s40001-023-01628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Previous compelling evidence suggests an association between Type 2 diabetes (T2D) and neurodegenerative diseases. However, it remains uncertain whether Type 1 diabetes mellitus (T1DM) exerts a causal influence on the risk of Alzheimer's disease (AD) and Parkinson's disease (PD). Consequently, this study employed a bidirectional two-sample Mendelian Randomization (MR) approach to investigate the causal relationship between T1DM and the genetic susceptibility to AD and PD. METHODS We utilized large-scale cohorts derived from publicly available genome-wide association study datasets involving European populations to perform MR analyses. The primary analytical method employed was the inverse-variance weighted (IVW) approach. Furthermore, sensitivity analyses, including assessments of heterogeneity and horizontal pleiotropy, were carried out using Cochran's Q, MR-Egger intercept, and MR-PRESSO tests to enhance the robustness of our conclusions. RESULTS Using the IVW-based method, the MR analysis indicated no significant association between genetically determined T1DM and AD (OR = 0.984, 95% CI: 0.958-1.011, p = 0.247). Conversely, T1DM appeared to be associated with a reduced risk of genetic susceptibility to PD (IVW: OR = 0.958, 95% CI: 0.928-0.989, p = 0.001). In the reverse direction, no evidence of reverse causality was observed between AD (OR = 1.010, 95% CI: 0.911-1.116, p = 0.881) or PD (OR = 1.164, 95% CI: 0.686-2.025, p = 0.5202) and T1DM. Additionally, our analysis found no indications of the results being influenced by horizontal pleiotropy. CONCLUSION This MR study reveals that T1DM is associated with a reduced genetic susceptibility to PD, whereas no significant genetic susceptibility is observed between T1DM and AD. These findings suggest that T1DM may have a distinct role in the development of neurodegenerative diseases compared to T2D. Further investigations are warranted to elucidate the underlying mechanisms and provide a more comprehensive understanding of this relationship.
Collapse
Affiliation(s)
- Chaofan Geng
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China
| | - Ke Meng
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China
| | - Bo Zhao
- Department of Neurology, Rongcheng People's Hospital, The Affiliated Hospital of Jining Medical University, Weihai, China
| | - Xiaoduo Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
- Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China.
| |
Collapse
|
4
|
Liu Z, Wang H, Yang Z, Lu Y, Zou C. Causal associations between type 1 diabetes mellitus and cardiovascular diseases: a Mendelian randomization study. Cardiovasc Diabetol 2023; 22:236. [PMID: 37659996 PMCID: PMC10475187 DOI: 10.1186/s12933-023-01974-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND The presence of type 1 diabetes mellitus (T1DM) has been demonstrated to pose an increased risk for developing cardiovascular diseases (CVDs). However, the causal relationships between T1DM and CVDs remain unclear due to the uncontrolled confounding factors and reverse causation bias of the observational studies. METHODS Summary statistics of T1DM and seven CVDs from the largest available genome-wide association studies (GWAS) of European ancestry and FinnGen biobank were extracted for the primary MR analysis, and the analysis was replicated using UK biobank (UKBB) for validation. Three complementary methods: inverse variance weighted (IVW), weighted median, and MR-Egger were used for the MR estimates. The potential pleiotropic effects were assessed by MR-Egger intercept and MR-PRESSO global test. Additionally, multivariable MR (MVMR) analysis was performed to examine whether T1DM has independent effects on CVDs with adjustment of potential confounding factors. Moreover, a two-step MR approach was used to assess the potential mediating effects of these factors on the causal effects between T1DM and CVDs. RESULTS Causal effects of T1DM on peripheral atherosclerosis (odds ratio [OR] = 1.06, 95% confidence interval [CI]: 1.02-1.10; p = 0.002)] and coronary atherosclerosis (OR = 1.03, 95% CI: 1.01-1.05; p = 0.001) were found. The results were less likely to be biased by the horizontal pleiotropic effects (both p values of MR-Egger intercept and MR-PRESSO Global test > 0.05). In the following MVMR analysis, we found the causal effects of T1DM on peripheral atherosclerosis and coronary atherosclerosis remain significant after adjusting for a series of potential confounding factors. Moreover, we found that hypertension partly mediated the causal effects of T1DM on peripheral atherosclerosis (proportion of mediation effect in total effect: 11.47%, 95% CI: 3.23-19.71%) and coronary atherosclerosis (16.84%, 95% CI: 5.35-28.33%). We didn't find significant causal relationships between T1DM and other CVDs, including heart failure (HF), coronary artery disease (CAD), atrial fibrillation (AF), myocardial infarction (MI) and stroke. For the reverse MR from CVD to T1DM, no significant causal relationships were identified. CONCLUSION This MR study provided evidence supporting the causal effect of T1DM on peripheral atherosclerosis and coronary atherosclerosis, with hypertension partly mediating this effect.
Collapse
Affiliation(s)
- Zirui Liu
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China
| | - Haocheng Wang
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China
| | - Zhengkai Yang
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China
| | - Yu Lu
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China
| | - Cao Zou
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China.
| |
Collapse
|
5
|
Wang G, Sun D, Li W, Xin Y. CircRNA_100290 promotes GC cell proliferation and invasion via the miR-29b-3p/ITGA11 axis and is regulated by EIF4A3. Cancer Cell Int 2021; 21:324. [PMID: 34182990 PMCID: PMC8240270 DOI: 10.1186/s12935-021-01964-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been reported to be important regulators of the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and the possible underlying mechanism. Methods The expression of circRNA_100290 in GC cells and tissues was examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated in the AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assays, Western blot assays and qRT-PCR were used to explore the pathways downstream of circRNA_100290. The mechanism underlying the regulation of circRNA_100290 expression was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays. Results The expression of circRNA_100290 was significantly upregulated in GC cells and 102 GC tissues, and high circRNA_100290 expression in GC was closely related to Borrmann’s type, lymph node metastasis and tumour-node-metastasis stage. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, a dual-luciferase reporter assay confirmed the direct interaction between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene that is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, an RNA-binding protein (RBP), could inhibit the formation of circRNA_100290 by binding to the flanking sites of circRNA_100290. Low EIF4A3 expression in GC was related to a poor prognosis. Conclusions Elevated circRNA_100290 expression in GC promotes cell proliferation, invasion and EMT via the miR-29b-3p/ITGA11 axis and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy. Graphical abstract ![]()
Collapse
Affiliation(s)
- Gang Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China.,Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China
| | - Wenhui Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China.
| |
Collapse
|
6
|
Ponsero AJ, Bomhoff M, Blumberg K, Youens-Clark K, Herz NM, Wood-Charlson EM, Delong EF, Hurwitz BL. Planet Microbe: a platform for marine microbiology to discover and analyze interconnected 'omics and environmental data. Nucleic Acids Res 2021; 49:D792-D802. [PMID: 32735679 PMCID: PMC7778950 DOI: 10.1093/nar/gkaa637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022] Open
Abstract
In recent years, large-scale oceanic sequencing efforts have provided a deeper understanding of marine microbial communities and their dynamics. These research endeavors require the acquisition of complex and varied datasets through large, interdisciplinary and collaborative efforts. However, no unifying framework currently exists for the marine science community to integrate sequencing data with physical, geological, and geochemical datasets. Planet Microbe is a web-based platform that enables data discovery from curated historical and on-going oceanographic sequencing efforts. In Planet Microbe, each ‘omics sample is linked with other biological and physiochemical measurements collected for the same water samples or during the same sample collection event, to provide a broader environmental context. This work highlights the need for curated aggregation efforts that can enable new insights into high-quality metagenomic datasets. Planet Microbe is freely accessible from https://www.planetmicrobe.org/.
Collapse
Affiliation(s)
- Alise J Ponsero
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Matthew Bomhoff
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Kai Blumberg
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Ken Youens-Clark
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nina M Herz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Edward F Delong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI 96822, USA
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
7
|
Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O'Toole Á, Southgate J, Johnson R, Jackson B, Nascimento FF, Rey SM, Nicholls SM, Colquhoun RM, da Silva Filipe A, Shepherd J, Pascall DJ, Shah R, Jesudason N, Li K, Jarrett R, Pacchiarini N, Bull M, Geidelberg L, Siveroni I, Goodfellow I, Loman NJ, Pybus OG, Robertson DL, Thomson EC, Rambaut A, Connor TR. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 2021; 184:64-75.e11. [PMID: 33275900 PMCID: PMC7674007 DOI: 10.1016/j.cell.2020.11.020] [Citation(s) in RCA: 701] [Impact Index Per Article: 175.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.
Collapse
Affiliation(s)
- Erik Volz
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| | - Verity Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - John T McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Anna Price
- School of Biosciences, Cardiff University, Cardiff, UK
| | - David Jorgensen
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Áine O'Toole
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Joel Southgate
- School of Biosciences, Cardiff University, Cardiff, UK; Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
| | - Robert Johnson
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Ben Jackson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Fabricia F Nascimento
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Sara M Rey
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
| | - Samuel M Nicholls
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Rachel M Colquhoun
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - James Shepherd
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - David J Pascall
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, UK
| | - Rajiv Shah
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Kathy Li
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Ruth Jarrett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Matthew Bull
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
| | - Lily Geidelberg
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Igor Siveroni
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK; Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | | | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | - Thomas R Connor
- School of Biosciences, Cardiff University, Cardiff, UK; Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK; Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
8
|
Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9419264. [PMID: 29736181 PMCID: PMC5874985 DOI: 10.1155/2018/9419264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022]
Abstract
Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.
Collapse
|
9
|
Xu G, Liu X, Wang C, Li H, Zhang C, Chen J, Sun J. The Mechanisms of Shcisandrol A in Immune Function Modulation in Immunosuppressed Mice. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The population of people with immunodeficiency is increasing due to the accelerating pace of life, increase in work pressure, and lack of exercise, irregularity of diet and rest, and problems of environmental pollution. Chinese herbal medicines have been shown to improve immunity, with little to no side effects. In recent years, studies have shown that Shcisandrol A (Sch A) regulates immune functioning and inhibits inflammation of the nervous system. The current study used gene expression profiling of spleen tissue to screen differentially expressed genes related to Sch A treatment on cyclophosphamide (Cy)-induced immunosuppressed mice. The differentially expressed gene-related pathways were analyzed by gene ontology function cluster analysis and qPCR. Five genes related to immune functioning were found to be regulated by Sch A treatment: Mapk3, Pik3r1, Pik3r5, Ikbkg, and Cd247. qPCR analysis showed that all five genes were significantly down-regulated in mice treated with Sch A compared to untreated immunosuppressed mice. These results suggest potential mechanisms through which Sch A regulates immune functioning.
Collapse
Affiliation(s)
- Guangyu Xu
- College of Pharmacy, Beihua University, Jilin 132013, Jilin, China
| | - Xu Liu
- College of Pharmacy, Beihua University, Jilin 132013, Jilin, China
| | - Chunmei Wang
- College of Pharmacy, Beihua University, Jilin 132013, Jilin, China
| | - He Li
- College of Pharmacy, Beihua University, Jilin 132013, Jilin, China
| | - Chengyi Zhang
- College of Pharmacy, Beihua University, Jilin 132013, Jilin, China
| | - Jianguang Chen
- College of Pharmacy, Beihua University, Jilin 132013, Jilin, China
| | - Jinghui Sun
- College of Pharmacy, Beihua University, Jilin 132013, Jilin, China
| |
Collapse
|
10
|
Guo W, Feng X. OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism. PLoS One 2016; 11:e0154188. [PMID: 27100883 PMCID: PMC4839607 DOI: 10.1371/journal.pone.0154188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Constraint-based metabolic modeling such as flux balance analysis (FBA) has been widely used to simulate cell metabolism. Thanks to its simplicity and flexibility, numerous algorithms have been developed based on FBA and successfully predicted the phenotypes of various biological systems. However, their phenotype predictions may not always be accurate in FBA because of using the objective function that is assumed for cell metabolism. To overcome this challenge, we have developed a novel computational framework, namely omFBA, to integrate multi-omics data (e.g. transcriptomics) into FBA to obtain omics-guided objective functions with high accuracy. In general, we first collected transcriptomics data and phenotype data from published database (e.g. GEO database) for different microorganisms such as Saccharomyces cerevisiae. We then developed a “Phenotype Match” algorithm to derive an objective function for FBA that could lead to the most accurate estimation of the known phenotype (e.g. ethanol yield). The derived objective function was next correlated with the transcriptomics data via regression analysis to generate the omics-guided objective function, which was next used to accurately simulate cell metabolism at unknown conditions. We have applied omFBA in studying sugar metabolism of S. cerevisiae and found that the ethanol yield could be accurately predicted in most of the cases tested (>80%) by using transcriptomics data alone, and revealed valuable metabolic insights such as the dynamics of flux ratios. Overall, omFBA presents a novel platform to potentially integrate multi-omics data simultaneously and could be incorporated with other FBA-derived tools by replacing the arbitrary objective function with the omics-guided objective functions.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Nielsen TA, Nilsson H, Matheson T. A formal mathematical framework for physiological observations, experiments and analyses. J R Soc Interface 2011; 9:1040-50. [PMID: 21976637 DOI: 10.1098/rsif.2011.0616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experiments can be complex and produce large volumes of heterogeneous data, which make their execution, analysis, independent replication and meta-analysis difficult. We propose a mathematical model for experimentation and analysis in physiology that addresses these problems. We show that experiments can be composed from time-dependent quantities, and be expressed as purely mathematical equations. Our structure for representing physiological observations can carry information of any type and therefore provides a precise ontology for a wide range of observations. Our framework is concise, allowing entire experiments to be defined unambiguously in a few equations. In order to demonstrate that our approach can be implemented, we show the equations that we have used to run and analyse two non-trivial experiments describing visually stimulated neuronal responses and dynamic clamp of vertebrate neurons. Our ideas could provide a theoretical basis for developing new standards of data acquisition, analysis and communication in neurophysiology.
Collapse
|
12
|
Abstract
Protein databases have become a crucial part of modern biology. Huge amounts of data for protein structures, functions, and particularly sequences are being generated. Searching databases is often the first step in the study of a new protein. Comparison between proteins and between protein families in databases provides information about the relationship between proteins within a genome or across different species, and hence offers much more information than can be obtained by studying only an isolated protein. In addition, secondary databases derived from experimental databases are also widely available. These databases reorganize and annotate the data or provide predictions. The use of multiple databases often helps researchers understand the structure and function of proteins. Although some protein databases are widely known, they are far from being fully utilized in the protein science community. This unit provides a starting point for readers to explore the potential of protein databases on the Internet.
Collapse
Affiliation(s)
- Dong Xu
- Digital Biology Laboratory, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
13
|
Billoud B, De Paepe R, Baulcombe D, Boccara M. Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie 2005; 87:905-10. [PMID: 16005138 DOI: 10.1016/j.biochi.2005.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
Small non-coding RNAs (ncRNAs) have typically been searched in fully sequenced genomes using one of two approaches-experimental or computational. We developed a mixed method, using both types of information, which has the advantage of applying bio-computing methods to actually expressed sequences. Our method allowed the identification of new small ncRNAs in Arabidopsis thaliana and in the unfinished genome of Nicotiana tabacum. We constructed a N. tabacum cDNA library from small RNAs ranging from 20 to 30 nucleotides (nt). The sequences from 73 unique clones were compared to the A. thaliana genome and to all plant sequences using a pattern-matching approach (program Patbank). Thus, we selected 15 clones from the library corresponding mostly to A. thaliana or N. tabacum non-coding sequences. By Northern blot analyses, we confirmed the presence of most RNA candidates in Arabidopsis and in Nicotiana sylvestris with a size range of 21-100 nt. To gain more insight into the possible genesis of 21-24 nt sequences, stable folding of sRNAs with their flanking regions were predicted with the software MIRFOLD dedicated to the folding of microRNAs (miRNA). Stable hairpins structures were observed for some putative miRNAs.
Collapse
Affiliation(s)
- B Billoud
- Atelier de bio-informatique, université Pierre-et-Marie-Curie, 12, rue Cuvier, 75005 Paris, France
| | | | | | | |
Collapse
|
14
|
Giordanetto F, Fowler PW, Saqi M, Coveney PV. Large scale molecular dynamics simulation of native and mutant dihydropteroate synthase-sulphanilamide complexes suggests the molecular basis for dihydropteroate synthase drug resistance. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2005; 363:2055-73. [PMID: 16099766 DOI: 10.1098/rsta.2005.1629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antibiotic resistance is hampering the efficacy of drugs in the treatment of several pathological infections. Dihydropteroate synthase (DHPS) has been targeted by sulphonamide inhibitors for the past 60 years and has developed different amino acid mutations to survive sulpha drug action. We couple homology modelling techniques and massively parallel molecular dynamics simulations to study both the drug-bound and apo forms of native and mutant DHPS. Simulations of the complex between sulphanilamide and Streptomyces pneumoniae, DHPS shows how sulphanilamide is able to position itself close to 6-hydroxymethyl-7, 8-dihydropteridine-phosphate in a suitable position for the enzymatic transformation whereas in the mutant complex the sulpha drug is expelled from the catalytic site. Our simulations, therefore, provide insight into the molecular basis for drug resistance with S. pneumoniae DHPS.
Collapse
Affiliation(s)
- Fabrizio Giordanetto
- Centre for Computational Science, Department of Chemistry, University College London, Christopher Ingold Laboratories, UK
| | | | | | | |
Collapse
|
15
|
Xu D, Xu Y. Protein databases on the internet. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2004; Chapter 2:2.6.1-2.6.15. [PMID: 18429255 DOI: 10.1002/0471140864.ps0206s33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein databases have become a crucial part of modern biology. Huge amounts of data for protein structures, functions, and particularly sequences are being generated. Searching databases is often the first step in the study of a new protein. Comparison between proteins and between protein families in databases provides information about the relationship between proteins within a genome or across different species, and hence offers much more information than can be obtained by studying only an isolated protein. In addition, secondary databases derived from experimental databases are also widely available. These databases reorganize and annotate the data or provide predictions. The use of multiple databases often helps researchers understand the structure and function of proteins. Although some protein databases are widely known, they are far from being fully utilized in the protein science community. This unit provides a starting point for readers to explore the potential of protein databases on the Internet.
Collapse
Affiliation(s)
- Dong Xu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ying Xu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
16
|
Sambrook JG, Campbell RD, Elgar G. Characterisation of a gene cluster in Fugu rubripes containing the complement component C4 gene. Gene 2003; 312:73-83. [PMID: 12909342 DOI: 10.1016/s0378-1119(03)00602-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we describe the characterisation of the complement component C4 gene in Fugu rubripes. The Fugu C4 gene, orthologous to the tetrapod C4 gene, encompasses a genomic span of 9702 base pairs and contains 41 exons, encoding the typical C4 three-chain polypeptide. The gene encodes a protein containing 1703 amino acids. The Fugu C4 protein demonstrates the presence of 25 conserved cysteine residues, as well as conservation of the functionally important thioester site. Complete sequencing of one cosmid and sequence scans from a cluster of 18 overlapping BAC clones, centering around the C4 gene, have identified the short-range linkage with five orthologous human genes mapping to the Major Histocompatibility Complex (MHC) including: tenascin X (TNX); cytochrome P450, subfamily XXIA, polypeptide 2 (CYP21A2); allograft inflammatory factor 1 (AIF1) and casein kinase 2, beta polypeptide (CSNK2B), all found in the MHC class III region; and retinoid X receptor, beta (RXRB),which resides in the MHC extended class II region. To date, this syntenic association of the Fugu C4 and other MHC class III region genes has not been observed in other teleost fish. Data from the recent whole-genome shotgun assemblies reveal the Fugu MHC-related cluster of genes to be flanked predominantly by genes mapping to human chromosomes 7 and 19. All of the six identified Fugu MHC-related genes have been characterised at the genomic level.
Collapse
Affiliation(s)
- Jennifer G Sambrook
- Comparative Genomics, MRC UK HGMP Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK.
| | | | | |
Collapse
|
17
|
Treude N, Rosencrantz D, Liesack W, Schnell S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol 2003; 44:261-9. [DOI: 10.1016/s0168-6496(03)00048-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Smith SF, Snell P, Gruetzner F, Bench AJ, Haaf T, Metcalfe JA, Green AR, Elgar G. Analyses of the extent of shared synteny and conserved gene orders between the genome of Fugu rubripes and human 20q. Genome Res 2002; 12:776-84. [PMID: 11997344 PMCID: PMC186584 DOI: 10.1101/gr.221802] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cosmid and BAC contig maps have been constructed across two Fugu genomic regions containing the orthologs of human genes mapping to human chromosome 20q. Contig gene contents have been assessed by sample sequencing and comparative database analyses. Contigs are centered around two Fugu topoisomerase1 (top1) genes that were initially identified by sequence similarity to human TOP1 (20q12). Two other genes (SNAI1 and KRML) mapping to human chromosome 20 are also duplicated in Fugu. The two contigs have been mapped to separate Fugu chromosomes. Our data indicate that these linkage groups result from the duplication of an ancestral chromosome segment containing at least 40 genes that now map to the long arm of human chromosome 20. Although there is considerable conservation of synteny, gene orders are not well conserved between Fugu and human, with only very short sections of two to three adjacent genes being maintained in both organisms. Comparative analyses have allowed this duplication event to be dated before the separation of Fugu and zebrafish. Our data (which are best explained by regional duplication, followed by substantial gene loss) support the hypothesis that there have been a large number of gene and regional duplications (and corresponding gene loss) in the fish lineage, possibly resulting from a single whole genome duplication event.
Collapse
Affiliation(s)
- Sarah F Smith
- Fugu Genomics, United Kingdom Human Genome Mapping Project Resource Centre, Wellcome Genome Campus, Hinxton Hall, Hinxton, Cambridgeshire, CB10 1SB, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Greg Elgar
- United Kingdom Human Genome Mapping Project Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Zhang S, Van Pelt CK, Schultz GA. Electrospray ionization mass spectrometry-based genotyping: an approach for identification of single nucleotide polymorphisms. Anal Chem 2001; 73:2117-25. [PMID: 11354499 DOI: 10.1021/ac001549j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high frequency of single nucleotide polymorphisms (SNPs) in the human genome makes them ideal genetic markers for mapping, diagnosing disease-related alleles, and identifying SNPs that contribute to drug response differences between individuals. Here we report a novel assay utilizing a single nucleotide primer extension (SNuPE) and electrospray ionization mass spectrometry (ESI-MS) detection for the analysis of SNPs. In contrast to most SNuPE genotyping technologies that detect the extended primer product, the novel Survivor assay detects the unreacted dideoxynucleotides (ddNTPs) remaining or surviving in solution following a SNuPE. This assay involves a simple analysis of the same four ddNTP analytes, regardless of the SNP being investigated, and either single or double-stranded DNA can be used to genotype a SNP, without any labeling requirements of the ddNTPs or oligonucleotide primers. We have tested and blindly validated the Survivor assay by genotyping the C/T SNP at -857 of the human TNFalpha promoter gene. The results obtained are in agreement with the control sequencing data. The results demonstrate that the homogeneous Survivor assay with ESI-MS detection offers advantages in simplicity, accuracy, specificity, and sensitivity. Additional advantages of the method include enhanced hybridization efficiencies in this solution-phase assay and the elimination of immobilized primers for the isolation of single-stranded DNA. With a one-well reaction and an automation platform being developed, the Survivor assay provides a powerful new tool for large-scale SNP analysis and screening.
Collapse
Affiliation(s)
- S Zhang
- Advion BioSciences, Inc., Ithaca, New York 14850, USA
| | | | | |
Collapse
|
21
|
Clark MS, Pontarotti P, Gilles A, Kelly A, Elgar G. Identification and characterization of a beta proteasome subunit cluster in the Japanese pufferfish (Fugu rubripes). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4446-52. [PMID: 11035083 DOI: 10.4049/jimmunol.165.8.4446] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low molecular mass polypeptide (LMP2, LMP7, and MECL-1) genes code for beta-type subunits of the proteasome, a multimeric complex that degrades proteins into peptides as part of the MHC class I-mediated Ag-presenting pathway. These gene products are up-regulated in response to infection by IFN-gamma and replace the corresponding constitutively expressed subunits (X, Y, and Z) during the immune response. In humans, the LMP2 and LMP7 genes both reside within the class II region of the MHC (6p21.3), while MECL-1 is located at 16q22.1. In the present study, we have identified all three IFN-gamma-regulated beta-type proteasome subunits in Fugu, which are present as a cluster within the Fugu MHC class I region. We show that in this species, LMP7, LMP2, and MECL-1 are linked. Also within this cluster is an LMP2-like subunit (which seems specific to all teleosts tested to date) and a closely linked LMP7 pseudogene, indicating that within Fugu and potentially other teleosts, there has been an additional regional duplication involving these genes.
Collapse
Affiliation(s)
- M S Clark
- Fugu Genomics, HGMP Resource Centre, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Smith S, Metcalfe JA, Elgar G. Identification and analysis of two snail genes in the pufferfish (Fugu rubripes) and mapping of human SNA to 20q. Gene 2000; 247:119-28. [PMID: 10773451 DOI: 10.1016/s0378-1119(00)00110-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All members of the snail gene family are zinc-finger transcription factors expressed early in embryonic development and are involved in the formation of tissues such as mesoderm and presumptive neural crest. Here, we report the identification and structural organisation of two snail genes in the compact genome of the pufferfish Fugu rubripes, and examine the phylogenetic relationships between these and other members of the snail gene family. Both genes have a three exon, two intron structure similar to that previously reported for human SLUG. While human SLUG has been mapped to 8q (Cohen, M.E., Yin, M., Paznekas, W.A., Schertzer, M., Wood, S., Jabs, E.W., 1998. Human SLUG organisation, expression and chromosome map location on 8q. Genomics 51, 468-471), the human sna gene SNA, was previously unmapped. We have used sequence similarity to the Fugu genes to identify a human SNA EST and mapped this by radiation hybrid and physical mapping to the distal end of human 20q. This is likely to be the mapping location of the human sna gene (SNA).
Collapse
Affiliation(s)
- S Smith
- UK Human Genome Mapping Project Resource Centre, Wellcome Trust Genome Campus, Hinxton Hall, Hinxton, Cambridge, UK.
| | | | | |
Collapse
|
23
|
Lüdemann H, Arth I, Liesack W. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol 2000; 66:754-62. [PMID: 10653747 PMCID: PMC91892 DOI: 10.1128/aem.66.2.754-762.2000] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular ecology techniques were applied to assess changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Microsensor measurements showed that oxygen was depleted from 140 microM at the floodwater/soil interface to nondetectable amounts at a depth of approximately 2.0 mm and below. Bacterial 16S rRNA gene (rDNA)-based community fingerprint patterns were obtained from 200-microm-thick soil slices of both the oxic and anoxic zones by using the T-RFLP (terminal restriction fragment length polymorphism) technique. The fingerprints revealed a tremendous shift in the community patterns in correlation to the oxygen depletion measured with depth. 16S rDNA clone sequences recovered from the oxic or anoxic zone directly corresponded to those terminal restriction fragments which were highly characteristic of the respective zone. Comparative sequence analysis of these clones identified members of the alpha and beta subclasses of Proteobacteria as the abundant populations in the oxic zone. In contrast, members of clostridial cluster I were determined to be the predominant bacterial group in the oxygen-depleted soil. The extraction of total RNA followed by reverse transcription-PCR of the bacterial 16S rRNA and T-RFLP analysis resulted for both oxic and anoxic zones of flooded soil cores in community fingerprint patterns similar to those obtained by the rDNA-based analysis. This finding suggests that the microbial groups detected on the rDNA level are the metabolically active populations within the oxic and anoxic soil slices examined.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- Biosensing Techniques
- Cloning, Molecular
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- Ecosystem
- Genes, rRNA
- Molecular Sequence Data
- Oxidation-Reduction
- Oxygen/metabolism
- Phylogeny
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Soil Microbiology
- Water
Collapse
Affiliation(s)
- H Lüdemann
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | |
Collapse
|
24
|
Lobzin VV, Chechetkin VR. Order and correlations in genomic DNA sequences. The spectral approach. ACTA ACUST UNITED AC 2000. [DOI: 10.3367/ufnr.0170.200001c.0057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
25
|
Hengstmann U, Chin KJ, Janssen PH, Liesack W. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl Environ Microbiol 1999; 65:5050-8. [PMID: 10543822 PMCID: PMC91680 DOI: 10.1128/aem.65.11.5050-5058.1999] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1999] [Accepted: 08/05/1999] [Indexed: 11/20/2022] Open
Abstract
We used both cultivation and direct recovery of bacterial 16S rRNA gene (rDNA) sequences to investigate the structure of the bacterial community in anoxic rice paddy soil. Isolation and phenotypic characterization of 19 saccharolytic and cellulolytic strains are described in the accompanying paper (K.-J. Chin, D. Hahn, U. Hengstmann, W. Liesack, and P. H. Janssen, Appl. Environ. Microbiol. 65:5042-5049, 1999). Here we describe the phylogenetic positions of these strains in relation to 57 environmental 16S rDNA clone sequences. Close matches between the two data sets were obtained for isolates from the culturable populations determined by the most-probable-number counting method to be large (3 x 10(7) to 2.5 x 10(8) cells per g [dry weight] of soil). This included matches with 16S rDNA similarity values greater than 98% within distinct lineages of the division Verrucomicrobia (strain PB90-1) and the Cytophaga-Flavobacterium-Bacteroides group (strains XB45 and PB90-2), as well as matches with similarity values greater than 95% within distinct lines of descent of clostridial cluster XIVa (strain XB90) and the family Bacillaceae (strain SB45). In addition, close matches with similarity values greater than 95% were obtained for cloned 16S rDNA sequences and bacteria (strains DR1/8 and RPec1) isolated from the same type of rice paddy soil during previous investigations. The correspondence between culture methods and direct recovery of environmental 16S rDNA suggests that the isolates obtained are representative geno- and phenotypes of predominant bacterial groups which account for 5 to 52% of the total cells in the anoxic rice paddy soil. Furthermore, our findings clearly indicate that a dual approach results in a more objective view of the structural and functional composition of a soil bacterial community than either cultivation or direct recovery of 16S rDNA sequences alone.
Collapse
Affiliation(s)
- U Hengstmann
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Elgar G, Clark MS, Meek S, Smith S, Warner S, Edwards YJ, Bouchireb N, Cottage A, Yeo GS, Umrania Y, Williams G, Brenner S. Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. Genome Res 1999; 9:960-71. [PMID: 10523524 PMCID: PMC310822 DOI: 10.1101/gr.9.10.960] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have generated and analyzed >50,000 shotgun clones from 1059 Fugu cosmid clones. All sequences have been minimally edited and searched against protein and DNA databases. These data are all displayed on a searchable, publicly available web site at. With an average of 50 reads per cosmid, this is virtually nonredundant sequence skimming, covering 30%-50% of each clone. This essentially random data set covers nearly 25 Mb (>6%) of the Fugu genome and forms the basis of a series of whole genome analyses which address questions regarding gene density and distribution in the Fugu genome and the similarity between Fugu and mammalian genes. The Fugu genome, with eight times less DNA but a similar gene repertoire, is ideally suited to this type of study because most cosmids contain more than one identifiable gene. General features of the genome are also discussed. We have made some estimation of the syntenic relationship between mammals and Fugu and looked at the efficacy of ORF prediction from short, unedited Fugu genomic sequences. Comparative DNA sequence analyses are an essential tool in the functional interpretation of complex vertebrate genomes. This project highlights the utility of using the Fugu genome in this kind of study.
Collapse
Affiliation(s)
- G Elgar
- UK Human Genome Mapping Project (HGMP) Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SB, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chin KJ, Lukow T, Conrad R. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl Environ Microbiol 1999; 65:2341-9. [PMID: 10347011 PMCID: PMC91346 DOI: 10.1128/aem.65.6.2341-2349.1999] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.
Collapse
Affiliation(s)
- K J Chin
- Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg/Lahn, Germany
| | | | | |
Collapse
|
28
|
Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R. High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 1999; 65:1009-14. [PMID: 10049856 PMCID: PMC91137 DOI: 10.1128/aem.65.3.1009-1014.1999] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophic bacteria in an organic soil were enriched on gaseous mixing ratios of <275 parts per million of volume (ppmv) of methane (CH4). After 4 years of growth and periodic dilution (>10(20) times the initial soil inoculum), a mixed culture was obtained which displayed an apparent half-saturation constant [Km(app)] for CH4 of 56 to 186 nM (40 to 132 ppmv). This value was the same as that measured in the soil itself and about 1 order of magnitude lower than reported values for pure cultures of methane oxidizers. However, the Km(app) increased when the culture was transferred to higher mixing ratios of CH4 (1,000 ppmv, or 1%). Denaturing gradient gel electrophoresis of the enrichment grown on <275 ppmv of CH4 revealed a single gene product of pmoA, which codes for a subunit of particulate methane monooxygenase. This suggested that only one methanotroph species was present. This organism was isolated from a sample of the enrichment culture grown on 1% CH4 and phylogenetically positioned based on its 16S rRNA, pmoA, and mxaF gene sequences as a type II strain of the Methylocystis/Methylosinus group. A coculture of this strain with a Variovorax sp., when grown on <275 ppmv of CH4, had a Km(app) (129 to 188 nM) similar to that of the initial enrichment culture. The data suggest that the affinity of methanotrophic bacteria for CH4 varies with growth conditions and that the oxidation of atmospheric CH4 observed in this soil is carried out by type II methanotrophic bacteria which are similar to characterized species.
Collapse
Affiliation(s)
- P F Dunfield
- Max-Planck-Institut für terrestrische Mikrobiologie, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Clark MS, Edwards YJ, McQueen HA, Meek SE, Smith S, Umrania Y, Warner S, Williams G, Elgar G. Sequence scanning chicken cosmids: a methodology for genome screening. Gene 1999; 227:223-30. [PMID: 10023066 DOI: 10.1016/s0378-1119(98)00610-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chicken genome is relatively poorly studied at the molecular level. The karyotype 2n=78 is divided into three main chromosomal sub-groups: the macrochromosomes (six pairs), the intermediate microchromosomes (four pairs) and the microchromosomes (29 pairs). Whilst the microchromosome group comprise only 25% of the DNA, increasing evidence is proving that this is disproportionate to their gene content. This paper demonstrates the utility of cosmid sequence scanning as a potential method for analysing the chicken genome, providing an economical method for the production of a molecular map. The GC content, gene density and repeat distribution are analysed relative to chromosomal origin. Results indicate that gene density is higher on the microchromosomes. During the scanning process an example of conserved linkage between chicken and human (12q34.2) has been demonstrated.
Collapse
Affiliation(s)
- M S Clark
- HGMP Resource Centre, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Washio T, Sasayama J, Tomita M. Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res 1998; 26:5456-63. [PMID: 9826772 PMCID: PMC148011 DOI: 10.1093/nar/26.23.5456] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Free energy values of mRNA tertiary structures around stop codons were systematically calculated to surmise the hairpin-forming potential for all genes in each of the 16 complete prokaryote genomes. Instead of trying to detect each individual hairpin, we averaged the free energy values around the stop codons over the entire genome to predict how extensively the organism relies on hairpin formation in the process of transcription termination. The free energy values of Escherichia coli K-12 shows a sharp drop, as expected, at 30 bp downstream of the stop codon, presumably due to hairpin-forming sequences. Similar drops are observed for Haemophilus influenzae Rd, Bacillus subtilis and Chlamydia trachomatis, suggesting that these organisms also form hairpins at their transcription termination sites. On the other hand, 12 other prokaryotes- Mycoplasma genitalium, Mycoplasma pneumoniae, Synechocystis PCC6803, Helicobacter pylori, Borrelia burgdorferi, Methanococcus jannaschii, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum, Aquifex aeolicus, Pyrococcus horikoshii, Mycobacterium tuberculosis and Treponema pallidum -show no apparent decrease in free energy value at the corresponding regions. This result suggests that these prokaryotes, or at least some of them, may never form hairpins at their transcription termination sites.
Collapse
Affiliation(s)
- T Washio
- Laboratory for Bioinformatics, Graduate School of Media and Governance and Department of Environmental Information, Keio University, 5322 Endo, Fujisawa 252, Japan
| | | | | |
Collapse
|
31
|
Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 1998; 64:4983-9. [PMID: 9835592 PMCID: PMC90952 DOI: 10.1128/aem.64.12.4983-4989.1998] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because excised, washed roots of rice (Oryza sativa) immediately produce CH4 when they are incubated under anoxic conditions (P. Frenzel and U. Bosse, FEMS Microbiol. Ecol. 21:25-36, 1996), we employed a culture-independent molecular approach to identify the methanogenic microbial community present on roots of rice plants. Archaeal small-subunit rRNA-encoding genes were amplified directly from total root DNA by PCR and then cloned. Thirty-two archaeal rice root (ARR) gene clones were randomly selected, and the amplified primary structures of ca. 750 nucleotide sequence positions were compared. Only 10 of the environmental sequences were affiliated with known methanogens; 5 were affiliated with Methanosarcina spp., and 5 were affiliated with Methanobacterium spp. The remaining 22 ARR gene clones formed four distinct lineages (rice clusters I through IV) which were not closely related to any known cultured member of the Archaea. Rice clusters I and II formed distinct clades within the phylogenetic radiation of the orders "Methanosarcinales" and Methanomicrobiales. Rice cluster I was novel, and rice cluster II was closely affiliated with environmental sequences obtained from bog peat in northern England. Rice cluster III occurred on the same branch as Thermoplasma acidophilum and marine group II but was only distantly related to these taxa. Rice cluster IV was a deep-branching crenarchaeotal assemblage that was closely related to clone pGrfC26, an environmental sequence recovered from a temperate marsh environment. The use of a domain-specific oligonucleotide probe in a fluorescent in situ hybridization analysis revealed that viable members of the Archaea were present on the surfaces of rice roots. In addition, we describe a novel euryarchaeotal main line of descent, designated rice cluster V, which was detected in anoxic rice paddy soil. These results indicate that there is an astonishing richness of archaeal diversity present on rice roots and in the surrounding paddy soil.
Collapse
|
32
|
Sass H, Berchtold M, Branke J, König H, Cypionka H, Babenzien HD. Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 1998; 21:212-9. [PMID: 9704109 DOI: 10.1016/s0723-2020(98)80025-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most abundant culturable sulfate-reducing bacteria were isolated from the littoral sediment of the oligotrophic Lake Stechlin. The strains STL1 and STL4 were obtained from the oxic uppermost layer, while strain STL6 was isolated from the anoxic zone in 20 to 30 mm depth. The isolates showed a striking morphological feature in tapering off at one end of the cell. Physiological characteristics related them to the genus Desulfovibrio. They contained desulfoviridin. H2, formate, pyruvate, lactate, and fumarate were utilized with sulfate, sulfite, thiosulfate, or elemental sulfur as electron acceptors. All isolates were able to reduce oxygen and survived 120 h of aeration. However, aerobic growth was not observed. The isolates were psychrotolerant, and grew with rates of up to 0.29 d-1 at 4 degrees C. Analysis of the 16S rDNA confirmed that the strains belong to the genus Desulfovibrio. However, they were not closely related to any known member of this genus and formed a new cluster with at least two new species. Strain STL1 and STL4, exhibiting 99.7% sequence similarity in 16S rRNA, are proposed as the new species Desulfovibrio cuneatus sp. nov., while strain STL6 is assigned to the new species Desulfovibrio litoralis sp. nov.
Collapse
Affiliation(s)
- H Sass
- Institut für Gewässerökologie und Binnenfischerei, Abteilung Limnologie Geschichteter Seen, Neuglobsow, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Chamberlain JR, Lee Y, Lane WS, Engelke DR. Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev 1998; 12:1678-90. [PMID: 9620854 PMCID: PMC316871 DOI: 10.1101/gad.12.11.1678] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1998] [Accepted: 04/03/1998] [Indexed: 02/07/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that cleaves precursor tRNA transcripts to give mature 5' ends. RNase P in eubacteria has a large, catalytic RNA subunit and a small protein subunit that are required for precursor tRNA cleavage in vivo. Although the eukaryotic holoenzymes have similar, large RNA subunits, previous work in a number of systems has suggested that the eukaryotic enzymes require a greater protein content. We have purified the Saccharomyces cerevisiae nuclear RNase P to apparent homogeneity, allowing the first comprehensive analysis of an unexpectedly complex subunit composition. Peptide sequencing by ion trap mass spectrometry identifies nine proteins that copurify with the nuclear RNase P RNA subunit, totaling 20-fold more protein than in the bacterial enzyme. All of these proteins are encoded by genes essential for RNase P activity and for cell viability. Previous genetic studies suggested that four proteins might be subunits of both RNase P and RNase MRP, the related rRNA processing enzyme. We demonstrate that all four of these proteins, Pop1p, Pop3p, Pop4p, and Rpp1p, are integral subunits of RNase P. In addition, four of the five newly identified protein subunits, Pop5p, Pop6p, Pop7p, and Pop8p, also appear to be shared between RNase P and RNase MRP. Only one polypeptide, Rpr2p, is unique to the RNase P holoenzyme by genetic depletion and immunoprecipitation studies. The large increase in the number of protein subunits over eubacterial RNase P is consistent with an increase in functional complexity in eukaryotes. The degree of structural similarity between nuclear RNase P and RNase MRP suggests that some aspects of their functions in pre-tRNA and pre-rRNA processing pathways might overlap or be coordinated.
Collapse
Affiliation(s)
- J R Chamberlain
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606 USA
| | | | | | | |
Collapse
|
34
|
O'Donovan C, Mitaritonna N. Glycosyltransferases in SWISS-PROT. Glycoconj J 1998; 15:507-9. [PMID: 9881753 DOI: 10.1023/a:1006991121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SWISS-PROT is a curated protein sequence database with a high level of annotation (such as description of the function of a protein, its domain structure, post-translational modification, variants, etc), a minimal level of redundancy and a high level of integration with other databases. An ongoing project is to maintain the glycosyltransferase family of enzymes with comprehensive annotation and documentation in the SWISS-PROT database and to represent the most recent research developments.
Collapse
Affiliation(s)
- C O'Donovan
- The EMBL Outstation-The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | |
Collapse
|
35
|
Van den Wyngaert I, Sprengel J, Kass SU, Luyten WH. Cloning and analysis of a novel human putative DNA methyltransferase. FEBS Lett 1998; 426:283-9. [PMID: 9599025 DOI: 10.1016/s0014-5793(98)00362-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation is intricately involved in a variety of cellular processes, such as differentiation, cell cycle progression, X-chromosome inactivation and genomic imprinting. However, little is known about how specific DNA methylation patterns are established and maintained. Previously one mammalian DNA methyltransferase has been described, but there has been considerable speculation about the presence of a second activity capable of methylation. Here we report the identification and characterization of a novel human putative DNA methyltransferase. Using a bioinformatics screen we have identified several expressed sequence tags which show high sequence similarity to the Schizosaccharomyces pombe gene pmt1+. The cDNA for PuMet (for putative DNA methyltransferase) was cloned and the predicted amino acid sequence deduced. The gene is ubiquitously expressed, albeit at low levels. Like several other DNA methyltransferases, the bacterially overexpressed protein is not active in methylation assays.
Collapse
Affiliation(s)
- I Van den Wyngaert
- Department of Experimental Molecular Biology, Janssen Research Foundation, Beerse, Belgium
| | | | | | | |
Collapse
|
36
|
Grosskopf R, Janssen PH, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 1998; 64:960-9. [PMID: 9501436 PMCID: PMC106352 DOI: 10.1128/aem.64.3.960-969.1998] [Citation(s) in RCA: 429] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1997] [Accepted: 12/17/1997] [Indexed: 02/06/2023] Open
Abstract
A dual approach consisting of cultivation and molecular retrieval of partial archaeal 16S rRNA genes was carried out to characterize the diversity and structure of the methanogenic community inhabiting the anoxic bulk soil of flooded rice microcosms. The molecular approach identified four groups of known methanogens. Three environmental sequences clustered with Methanobacterium bryantii and Methanobacterium formicicum, six were closely related but not identical to those of strains of Methanosaeta concilii, two grouped with members of the genus Methanosarcina, and two were related to the methanogenic endosymbiont of Plagiopyla nasuta. The cultivation approach via most-probable-number counts with a subsample of the same soil as an inoculum yielded cell numbers of up to 10(7) per g of dry soil for the H2-CO2-utilizing methanogens and of up to 10(6) for the acetate-utilizing methanogens. Strain VeH52, isolated from the terminal positive dilution on H2-CO2, grouped within the phylogenetic radiation characterized by M. bryantii and M. formicicum and the environmental sequences of the Methanobacterium-like group. A consortium of two distinct methanogens grew in the terminal positive culture on acetate. These two organisms showed absolute 16S rRNA gene identities with environmental sequences of the novel Methanosaeta-like group and the Methanobacterium-like group. Methanosarcina spp. were identified only in the less-dilute levels of the same dilution series on acetate. These data correlate well with acetate concentrations of about 11 microM in the pore water of this rice paddy soil. These concentrations are too low for the growth of known Methanosarcina spp. but are at the acetate utilization threshold of Methanosaeta spp. Thus, our data indicated Methanosaeta spp. and Methanobacterium spp. to be the dominant methanogenic groups in the anoxic rice soil, whereas Methanosarcina spp. appeared to be less abundant.
Collapse
Affiliation(s)
- R Grosskopf
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | | | | |
Collapse
|
37
|
Gonzalez-Fernandez F, Kaltreider SA, Patnaik BD, Retief JD, Bao Y, Newman S, Stoler MH, Levine PA. Sebaceous carcinoma. Tumor progression through mutational inactivation of p53. Ophthalmology 1998; 105:497-506. [PMID: 9499782 DOI: 10.1016/s0161-6420(98)93034-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sebaceous carcinoma may masquerade for years as an inflammatory condition. In many cases, this may be because of the presence of longstanding intraepithelial disease (e.g., dysplasia or carcinoma in situ), which eventually progresses to invasive carcinoma recognized through tumefaction and a worsening clinical presentation. The mechanism for this tumor progression is unknown. In the Far East, human papilloma virus (HPV) has been suggested to play a role in the development of sebaceous carcinoma by inactivating tumor suppressor gene p53. Here, the authors explore the molecular basis of the progression of ocular sebaceous carcinoma. METHODS Cases of sebaceous carcinoma seen at the University of Virginia, Department of Ophthalmology, during the period from 1989 to 1996 were analyzed for HPV infection by in situ hybridization and polymerase chain reaction. The expression of p53, p21WAF-1, Bcl-2, and epithelial membrane antigen was examined by immunohistochemistry. In one of the cases, frozen tumor was available, allowing exons 5 through 9 of the p53 gene to be sequenced. RESULTS Seven cases were identified, all of which were from women. All were negative for HPV. In cases in which disease was restricted to dysplasia (carcinoma in situ), p53 but not p21WAF-1 was negative. In contrast, cases that contained a component of invasive or metastatic carcinoma showed striking hyperexpression of nuclear p53 in all of the malignant cells. In one of these cases, a G:C-->T:A transversion was found in the p53 gene. This mutation, characteristic of bulky carcinogens, substituted phenylalanine for cysteine 277, a residue that participates in hydrogen bonding to the p53 DNA binding consensus sequence. CONCLUSIONS Mutational inactivation of p53 may be involved in the progression of sebaceous carcinoma.
Collapse
Affiliation(s)
- F Gonzalez-Fernandez
- Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Benton D. Integrated access to genomic and other bioinformation: an essential ingredient of the drug discovery process. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 1998; 8:121-155. [PMID: 9522473 DOI: 10.1080/10629369808039138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Due to the high rate of data production and the need of researchers to have rapid access to new data, public databases have become the major medium through which genome mapping and sequencing data as well as macromolecular structural data are published. There are now more than 250 databases of biomolecular, structural, genetic, or phenotypic data, many of which are doubling in size annually. These databases, many of which were created and are maintained by experimentalists for their own research use, provide valuable collections of organized, validated data. However, the very number and diversity of databases now make efficient data resource discovery as important as effective data resource use. Existing autonomous biological databases contain related data which are more valuable when interconnected than when isolated. Political and scientific realities dictate that these databases will be built by different teams, in different locations, for different purposes, and using different data models and supporting DBMSs. As a consequence, connecting the related data they contain is not straightforward. Experience with existing biological databases indicates that it is possible to form useful queries across these databases, but that doing so usually requires expertise in the semantic structure of each source database. Advancing to the next level of integration among biological information resources poses significant technical and sociological challenges.
Collapse
Affiliation(s)
- D Benton
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-6050, USA
| |
Collapse
|
39
|
Finster K, Liesack W, Thamdrup B. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 1998; 64:119-25. [PMID: 9435068 PMCID: PMC124681 DOI: 10.1128/aem.64.1.119-125.1998] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was observed exclusively in the presence of a hydrogen sulfide scavenger, e.g., ferrihydrite. In the absence of a scavenger, sulfide and sulfate production were observed but no growth occurred. Strain SB164P1 grew also by disproportionation of thiosulfate and sulfite. With thiosulfate, the growth efficiency was higher in ferrihydrite-supplemented media than in media without ferrihydrite. Growth coupled to sulfate reduction was not observed. However, a slight sulfide production occurred in cultures incubated with formate and sulfate. Strain SB164P1 is the first bacterium described that grows chemolithoautotrophically exclusively by the disproportionation of inorganic sulfur compounds. Comparative 16S rDNA sequencing analysis placed strain SB164P1 into the delta subclass of the class Proteobacteria. Its closest relative is Desulfocapsa thiozymogenes, and slightly more distantly related are Desulfofustis glycolicus and Desulforhopalus vacuolatus. This phylogenetic cluster of organisms, together with members of the genus Desulfobulbus, forms one of the main lines of descent within the delta subclass of the Proteobacteria. Due to the common phenotypic characteristics and the phylogenetic relatedness to Desulfocapsa thiozymogenes, we propose that strain SB164P1 be designated the type strain of Desulfocapsa sulfoexigens sp. nov.
Collapse
Affiliation(s)
- K Finster
- Department of Microbial Ecology, University of Aarhus, Denmark.
| | | | | |
Collapse
|
40
|
Jarvis GN, Thiele JH, Strömpl C, Moore ERB. Isolation and characterization of glycerol-fermenting bacteria from the rumen of red deer. Can J Microbiol 1997. [DOI: 10.1139/m97-158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rumen contents of juvenile red deer (Cervus elaphus) were used as a source for the enrichment of obligately anaerobic glycerol-fermenting bacteria. Three bacterial strains were isolated from the 10−4 dilution (isolates DR6A and DR6B) and 10−9 dilution (isolate DR7) of the deer rumen contents. The isolates DR6A, DR6B, and DR7 produced ethanol (42 mM) and acetate (5 mM), propionate (31 mM) and acetate (42 mM), and formate (25 mM) and ethanol (38 mM), respectively, as the major glycerol fermentation products. Interestingly, acetate, propionate, and formate were observed to be the major glycerol fermentation products in mixed cultures obtained from the deer rumen. The three isolates were all shown to be related phylogenetically to the ruminal species Clostridium clostridiiforme, Clostridium celerecrescens, and Clostridium aerotolerans within the clostridial taxonomic cluster XIVa, on the basis of 16S rRNA gene sequence comparisons. But, because of phenotypic differences, each isolate is considered to be a new species within the genus Clostridium, which has not been previously described or isolated from the rumen ecosystem.Key words: red deer, ecology, glycerol fermentation, Clostridium, rumen, 16S rRNA.
Collapse
|
41
|
Moore ER, Krüger AS, Hauben L, Seal SE, Daniels MJ, De Baere R, De Wachter R, Timmis KN, Swings J. 16S rRNA gene sequence analyses and inter- and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia. FEMS Microbiol Lett 1997; 151:145-53. [PMID: 9228747 DOI: 10.1111/j.1574-6968.1997.tb12563.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nearly complete, PCR-amplified, 16S rRNA gene sequences have been determined from the representative type strains of eight xanthomonad phena, including six validly described species of the genus Xanthomonas and Stenotrophomonas maltophilia. Pairwise sequence comparisons and phylogenetic analysis demonstrated that the xanthomonads comprise a monophyletic lineage-within the gamma-subclass of the Proteobacteria. Although the genus Xanthomonas was observed to comprise a cluster of very closely related species, the observed species-specific primary sequence differences were confirmed through sequencing additional strains belonging to the respective species.
Collapse
Affiliation(s)
- E R Moore
- Bereich Mikrobiologie, GBF-Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Voss H, Benes V, Andrade MA, Valencia A, Rechmann S, Teodoru C, Schwager C, Paces V, Sander C, Ansorge W. DNA sequencing and analysis of 130 kb from yeast chromosome XV. Yeast 1997; 13:655-72. [PMID: 9200815 DOI: 10.1002/(sici)1097-0061(19970615)13:7<655::aid-yea120>3.0.co;2-i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have determined the nucleotide sequence of 129,524 bases of yeast (Saccharomyces cerevisiae) chromosome XV. Sequence analysis revealed the presence of 59 non-overlapping open reading frames (ORFs) of length > 300 bp, three tRNA genes, four delta elements and one Ty-element. Among the 21 previously known yeast genes (36% of all ORFs in this fragment) were nucleoporin (NUP1), ras protein (RAS1), RNA polymerase III (RPC1) and elongation factor 2 (EF2). Further, 31 ORFs (53% of the total) were found to be homologous to known protein or DNA sequences, or sequence patterns. For seven ORFs (11% of the total) no homology was found. Among the most interesting protein identification in this DNA fragment are an inositol polyphosphatase, the second gene of this type found in yeast (homologous to the human OCRL gene involved in Lowe's syndrome), a new ADP ribosylation factor of the arf6 subfamily, the first protein containing three C2 domains, and an ORF similar to a Bacillus subtilis cell-cycle related protein. For each ORF detailed sequence analysis was carried out, with a full consideration of its biological function and pointing out key regions of interest for further functional analysis.
Collapse
Affiliation(s)
- H Voss
- Biochemical Instrumentation Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mitsui Y, Senda T. Elucidation of the basic three-dimensional structure of type I interferons and its functional and evolutionary implications. J Interferon Cytokine Res 1997; 17:319-26. [PMID: 9197998 DOI: 10.1089/jir.1997.17.319] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The scientific and personal backgrounds of the crystallographic elucidation of the three-dimensional structure of murine interferon-beta (Mu-IFN-beta) are described. This structure, elucidated in 1990, is still the only experimentally determined structure for type I IFNs. Model-building studies for various type I IFNs based on the Mu-IFN-beta structure and the arguments on the receptor-binding epitopes appearing since then are reviewed. An updated set of a table and a figure demonstrating a strong correlation between the degree of amino acid sequence variation in various cytokine proteins and that in their cognate receptor proteins is given. The origin of a remarkably larger rate of evolutionary change in amino acid sequences of cytokine proteins despite their physiologic significance is discussed in view of the cytokine network and the neutral theory of evolution.
Collapse
Affiliation(s)
- Y Mitsui
- Nagaoka University of Technology, Niigata, Japan
| | | |
Collapse
|
44
|
Pospísilová S, Kypr J. UV light-induced crosslinking of the complementary strands of plasmid pUC19 DNA restriction fragments. Photochem Photobiol 1997; 65:945-8. [PMID: 9188274 DOI: 10.1111/j.1751-1097.1997.tb07952.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Restriction fragments of pUC19 DNA were irradiated by various doses of UV light and analyzed by denaturing (alkaline) agarose gel electrophoresis. The irradiation generated retarded species whose mobility indicated two crosslinked DNA strands. Quantitative analysis of the experimental data provided an empirical equation relating the fraction of crosslinked DNA molecules to their length and to the dose of their irradiation by UV light. This equation can be used to predict the crosslinking behavior of pUC19-like DNA molecules whose primary structures do not much differ from a random nucleotide sequence. The amount of interstrand crosslinks increased with the (A+T) content of the pUC19 DNA fragments but the dependence was not clear-cut to indicate that oligonucleotide composition of DNA played a significant role as well.
Collapse
Affiliation(s)
- S Pospísilová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | |
Collapse
|
45
|
Gopalan V, Baxevanis AD, Landsman D, Altman S. Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. J Mol Biol 1997; 267:818-29. [PMID: 9135114 DOI: 10.1006/jmbi.1997.0906] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The processing of precursor tRNAs and some other small cellular RNAs by M1 RNA, the catalytic subunit of Escherichia coli ribonuclease P, is accelerated by C5 protein (the protein cofactor) both in vitro and in vivo. In an effort to understand the mechanism by which the protein cofactor promotes and stabilizes certain conformations of M1 RNA that are most efficient for RNase P catalysis, we have used site-directed mutagenesis to generate mutant derivatives of C5 protein and assessed their ability to promote RNase P catalysis in vivo and in vitro. Our results indicate that certain conserved hydrophobic and basic residues in C5 protein are important for its function and that single amino acid residue changes in C5 protein can alter the substrate specificity of the RNase P holoenzyme.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Base Sequence
- Coenzymes/metabolism
- Conserved Sequence/physiology
- Endoribonucleases/chemistry
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli Proteins
- Genetic Complementation Test
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Structure, Secondary
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/metabolism
- Ribonuclease P
- Sequence Alignment
- Substrate Specificity
Collapse
Affiliation(s)
- V Gopalan
- Department of Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | |
Collapse
|
46
|
Berg OG, Silva PJ. Codon bias in Escherichia coli: the influence of codon context on mutation and selection. Nucleic Acids Res 1997; 25:1397-404. [PMID: 9060435 PMCID: PMC146607 DOI: 10.1093/nar/25.7.1397] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The codon bias in Escherichia coli for all two-fold degenerate amino acids was studied as dependent on the context from the six bases in the nearest surrounding codons. By comparing the results in genes at different expression levels, effects that are due to differences in mutation rates can be distinguished from those that are due to selection. Selective effects on the codon bias is found mostly from the first neighbouring base in the 3'direction, while neighbouring bases further away influence mostly the mutational bias. In some cases it is also possible to identify specific molecular processes, repair or avoidance of frame shift, that lead to the context dependence of the bias.
Collapse
Affiliation(s)
- O G Berg
- Department of Molecular Biology, University of Uppsala Biomedical Center, Box 590, S-75124, Uppsala, Sweden.
| | | |
Collapse
|
47
|
Abstract
In the context of the international project aiming at sequencing the whole genome of Bacillus subtilis we have developed NRSub, a non-redundant database of sequences from this organism. Starting from the B.subtilis sequences available in the repository collections we have removed all encountered duplications, then we have added extra annotations to the sequences (e.g. accession numbers for the genes, locations on the genetic map, codon usage index). We have also added cross-references with EMBL/GenBank/DDBJ, MEDLINE, SWISS-PROT and ENZYME databases. NRSub is distributed through anonymous FTP as a text file in EMBL format and as an ACNUC database. It is also possible to access the database through two dedicated World Wide Web servers located in France (http://acnuc.univ-lyon1.fr/nrsub/nrsub.++ +html ) and in Japan (http://ddbjs4h.genes.nig.ac.jp/ ).
Collapse
Affiliation(s)
- G Perrière
- Laboratoire de Biométrie, Génétique et Biologie des Populations, Université Claude Bernard, Lyon 1, 43, bd. du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
48
|
Van de Peer Y, Jansen J, De Rijk P, De Wachter R. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 1997; 25:111-6. [PMID: 9016516 PMCID: PMC146374 DOI: 10.1093/nar/25.1.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Antwerp database on small ribosomal subunit RNA now offers more than 6000 nucleotide sequences (August 1996). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. For ease of use, the complete database is made available to the scientific community via World Wide Web at URL http://rrna.uia.ac.be/ssu/ .
Collapse
Affiliation(s)
- Y Van de Peer
- Departement Biochemie, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | | | |
Collapse
|
49
|
Blake JA, Richardson JE, Davisson MT, Eppig JT. The Mouse Genome Database (MGD). A comprehensive public resource of genetic, phenotypic and genomic data. The Mouse Genome Informatics Group. Nucleic Acids Res 1997; 25:85-91. [PMID: 9045213 PMCID: PMC146406 DOI: 10.1093/nar/25.1.85] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Mouse Genome Database (MGD) is a comprehensive community resource of mouse genetic and biological information populated both with data from published literature and with data electronically submitted from the research community. MGD stores genetic, physical and comparative mapping data, clones/probes/PCR information, and phenotype descriptions for genes, mutations and mouse strains. Supporting software for importation, analysis, display and distribution of mouse genetic data have been developed. User support is provided through dedicated staff providing documentation, training, and response to individual user queries. MGD is accessible over the Internet at URL http://www.informatics.jax.org.
Collapse
Affiliation(s)
- J A Blake
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
50
|
Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucleic Acids Res 1997; 25:31-6. [PMID: 9016499 PMCID: PMC146382 DOI: 10.1093/nar/25.1.31] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SWISS-PROT is a curated protein sequence database which strives to provide a high level of annotations (such as the description of the function of a protein, structure of its domains, post-translational modifications, variants, etc.), a minimal level of redundancy and high level of integration with other databases. Recent developments of the database include: an increase in the number and scope of model organisms; cross-references to two additional databases; a variety of new documentation files and the creation of TrEMBL, a computer annotated supplement to SWISS-PROT. This supplement consists of entries in SWISS-PROT-like format derived from the translation of all coding sequences (CDS) in the EMBL nucleotide sequence database, except the CDS already included in SWISS-PROT.
Collapse
Affiliation(s)
- A Bairoch
- Department of Medical Biochemistry, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|