1
|
Martínez-López W, Moreno-Ortega D, Valencia-Payan J, Sammader P, Meschini R, Palitti F. Influence of chromatin remodeling in the removal of UVC-induced damage in TCR proficient and deficient Chinese hamster cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:124-131. [DOI: 10.1016/j.mrgentox.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/12/2023]
|
2
|
Burgos-Morón E, Calderón-Montaño JM, Pastor N, Höglund A, Ruiz-Castizo Á, Domínguez I, López-Lázaro M, Hajji N, Helleday T, Mateos S, Orta ML. The Cockayne syndrome protein B is involved in the repair of 5-AZA-2'-deoxycytidine-induced DNA lesions. Oncotarget 2018; 9:35069-35084. [PMID: 30416680 PMCID: PMC6205548 DOI: 10.18632/oncotarget.26189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The Cockayne Syndrome Protein B (CSB) plays an essential role in Transcription-Coupled Nucleotide Excision Repair (TC-NER) by recruiting repair proteins once transcription is blocked with a DNA lesion. In fact, CSB-deficient cells are unable to recover from transcription-blocking DNA lesions. 5-Aza-2′-deoxycytidine (5-azadC) is a nucleoside analogue that covalently traps DNA methyltransferases (DNMTs) onto DNA. This anticancer drug has a double mechanism of action: it reverts aberrant hypermethylation in tumour-suppressor genes, and it induces DNA damage. We have recently reported that Homologous Recombination and XRCC1/PARP play an important role in the repair of 5-azadC-induced DNA damage. However, the mechanisms involved in the repair of the DNMT adducts induced by azadC remain poorly understood. In this paper, we show for the first time the importance of CSB in the repair of azadC-induced DNA lesions. We propose a model in which CSB initiates a signalling pathway to repair transcription blocks induced by incorporated 5-azadC. Indeed, CSB-deficient cells treated with 5-azadC show a delay in the repair of trapped DNMT1, increased levels of DNA damage and reduced survival.
Collapse
Affiliation(s)
- Estefanía Burgos-Morón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | | | - Nuria Pastor
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Andreas Höglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden.,Present address: Sprint Bioscience AB, 141 57 Huddinge, Sweden
| | - Ángel Ruiz-Castizo
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Inmaculada Domínguez
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Nabil Hajji
- Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London, Hammersmith Campus, London, W12 0NN UK
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| | - Santiago Mateos
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| |
Collapse
|
3
|
An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:240. [PMID: 30285798 PMCID: PMC6169080 DOI: 10.1186/s13046-018-0899-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 01/05/2023]
Abstract
Background Pancreatic cancer is a deadly disease with a very low 5-year patient survival rate of 6–8%. The major challenges of eliminating pancreatic cancer are treatment resistance and stromal barriers to optimal drug access within the tumor. Therefore, effective molecular targeting drugs with high intra-tumor access and retention are urgently needed for managing this devastating disease in the clinic. Methods This study has used the following in vitro and in vivo techniques for the investigation of exceptional anticancer drug FL118’s efficacy in treatment of resistant pancreatic cancer: cell culture; immunoblotting analysis to test protein expression; DNA sub-G1 flow cytometry analyses to test cell death; MTT assay to test cell viability; pancreatic cancer stem cell assays (fluorescence microscopy tracing; matrigel assay; CD44-positive cell colony formation assay); human luciferase-labeled pancreatic tumor orthotopic animal model in vivo imaging; pancreatic cancer patient-derived xenograft (PDX) animal models; and toxicology studies with immune-competent BALB/cj mice and beagle dogs. Results Our studies found that FL118 alone preferentially killed cisplatin-resistant cancer cells, while a combination of FL118 with cisplatin synergistically killed resistant pancreatic cancer cells and reduced spheroid formation of treatment-resistant pancreatic cancer stem-like cells. Furthermore, using in vivo-imaging, we found that FL118 in combination with cisplatin strongly inhibited both drug-resistant pancreatic xenograft tumor growth and metastasis. In PDX model, we demonstrated that FL118 alone effectively eliminated PDX tumors, while FL118 in combination with gemcitabine eliminated PDX tumors that showed relative resistance (less sensitivity) to treatment with FL118. These FL118 efficacy results are consistent with our molecular-targeting data showing that FL118 inhibited the expression of multiple antiapoptotic proteins (survivin, Mcl-1, XIAP, cIAP2) and ERCC6, a critical regulator of DNA repair, in treatment-resistant pancreatic stem-like cancer cells. Furthermore, FL118 toxicity studies in BALB/cj mice and beagle dogs indicated that FL118 exhibits favorable hematopoietic and biochemical toxicities. Conclusion Together, our studies suggest that FL118 is a promising anticancer drug for further clinical development to effectively treat drug-resistant pancreatic cancer alone or in combination with other pancreatic cancer chemotherapeutic drugs.
Collapse
|
4
|
Burns JA, Chowdhury MA, Cartularo L, Berens C, Scicchitano DA. Genetic instability associated with loop or stem-loop structures within transcription units can be independent of nucleotide excision repair. Nucleic Acids Res 2018; 46:3498-3516. [PMID: 29474673 PMCID: PMC5909459 DOI: 10.1093/nar/gky110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/04/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem-loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them.
Collapse
Affiliation(s)
- John A Burns
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Laura Cartularo
- Department of Biology, New York University, New York, NY 10003, USA
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Löffler-Institut, Jena, Germany
| | - David A Scicchitano
- Department of Biology, New York University, New York, NY 10003, USA
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Li F, Jiang T, Li Q, Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res 2017; 7:2350-2394. [PMID: 29312794 PMCID: PMC5752681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023] Open
Abstract
Camptothecin (CPT) was discovered from plant extracts more than 60 years ago. Since then, only two CPT analogues (irinotecan and topotecan) have been approved for cancer treatment, although several thousand CPT derivatives have been synthesized and many of them were actively studied in our research community over the past 6+ decades. In this review article, we briefly summarize: (1) the discovery and early development of CPTs, (2) the recognized CPT mechanism of action (MOA), (3) the synthesis of CPT and CPT analogues, and (4) the structure-activity relationship (SAR) of CPT and its analogues. Next, we provide evidence that certain CPT analogues can exert improved efficacy with low toxicity independently of topoisomerase I (Top1) inhibition; instead, these CPT analogues use novel MOAs by targeting important cancer survival-associated oncogenic proteins and/or by bypassing various treatment-resistant mechanisms. We then present a comprehensive review of the most advanced CPT analogues in clinical development, with the goal of resolving why no new CPTs have been FDA approved for cancer treatment, beyond irinotecan and topotecan. We argue that new CPT Top1 inhibitor drugs are unlikely being found to be significantly better than irinotecan and/or topotecan in terms of the overall antitumor activity and toxicity. The significance of CPT analogues that possess novel MOAs has not been sufficiently recognized so far. In our opinion, this is a research area with great potential to make a breakthrough for development of the next generation of CPT analogues that possess high efficacy (due to novel targets) and low toxicity (due to low inhibition of Top1 activity/function) for effective treatment of human disease, including cancer.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer InstituteBuffalo, New York, USA
| | - Tao Jiang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of TechnologyHangzhou, China
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Cancer InstituteBuffalo, New York, USA
- Canget BioTekpharmaBuffalo, New York, USA
| |
Collapse
|
6
|
Shehata L, Simeonov DR, Raams A, Wolfe L, Vanderver A, Li X, Huang Y, Garner S, Boerkoel CF, Thurm A, Herman GE, Tifft CJ, He M, Jaspers NGJ, Gahl WA. ERCC6 dysfunction presenting as progressive neurological decline with brain hypomyelination. Am J Med Genet A 2014; 164A:2892-900. [PMID: 25251875 DOI: 10.1002/ajmg.a.36709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022]
Abstract
Mutations in ERCC6 are associated with growth failure, intellectual disability, neurological dysfunction and deterioration, premature aging, and photosensitivity. We describe siblings with biallelic ERCC6 mutations (NM_000124.2:c. [543+4delA];[2008C>T]) and brain hypomyelination, microcephaly, cognitive decline, and skill regression but without photosensitivity or progeria. DNA repair assays on cultured skin fibroblasts confirmed a defect of transcription-coupled nucleotide excision repair and increased ultraviolet light sensitivity. This report expands the disease spectrum associated with ERCC6 mutations.
Collapse
Affiliation(s)
- Laila Shehata
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pan L, Penney J, Tsai LH. Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. J Mol Biol 2014; 426:3376-88. [PMID: 25128619 DOI: 10.1016/j.jmb.2014.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
Abstract
With the continued extension of lifespan, aging and age-related diseases have become a major medical challenge to our society. Aging is accompanied by changes in multiple systems. Among these, the aging process in the central nervous system is critically important but very poorly understood. Neurons, as post-mitotic cells, are devoid of replicative associated aging processes, such as senescence and telomere shortening. However, because of the inability to self-replenish, neurons have to withstand challenge from numerous stressors over their lifetime. Many of these stressors can lead to damage of the neurons' DNA. When the accumulation of DNA damage exceeds a neuron's capacity for repair, or when there are deficiencies in DNA repair machinery, genome instability can manifest. The increased mutation load associated with genome instability can lead to neuronal dysfunction and ultimately to neuron degeneration. In this review, we first briefly introduce the sources and types of DNA damage and the relevant repair pathways in the nervous system (summarized in Fig. 1). We then discuss the chromatin regulation of these processes and summarize our understanding of the contribution of genomic instability to neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Pan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Abstract
The integrity of our genetic material is under constant attack from numerous endogenous and exogenous agents. The consequences of a defective DNA damage response are well studied in proliferating cells, especially with regards to the development of cancer, yet its precise roles in the nervous system are relatively poorly understood. Here we attempt to provide a comprehensive overview of the consequences of genomic instability in the nervous system. We highlight the neuropathology of congenital syndromes that result from mutations in DNA repair factors and underscore the importance of the DNA damage response in neural development. In addition, we describe the findings of recent studies, which reveal that a robust DNA damage response is also intimately connected to aging and the manifestation of age-related neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ram Madabhushi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ling Pan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Deaconescu AM. RNA polymerase between lesion bypass and DNA repair. Cell Mol Life Sci 2013; 70:4495-509. [PMID: 23807206 PMCID: PMC11113250 DOI: 10.1007/s00018-013-1384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS029, Waltham, MA, 02454, USA,
| |
Collapse
|
10
|
Berquist BR, Canugovi C, Sykora P, Wilson DM, Bohr VA. Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation. Nucleic Acids Res 2012; 40:8392-405. [PMID: 22743267 PMCID: PMC3458532 DOI: 10.1093/nar/gks565] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cockayne syndrome (CS) is a rare human disorder characterized by pathologies of premature aging, neurological abnormalities, sensorineural hearing loss and cachectic dwarfism. With recent data identifying CS proteins as physical components of mitochondria, we sought to identify protein partners and roles for Cockayne syndrome group B (CSB) protein in this organelle. CSB was found to physically interact with and modulate the DNA-binding activity of the major mitochondrial nucleoid, DNA replication and transcription protein TFAM. Components of the mitochondrial transcription apparatus (mitochondrial RNA polymerase, transcription factor 2B and TFAM) all functionally interacted with CSB and stimulated its double-stranded DNA-dependent adenosine triphosphatase activity. Moreover, we found that patient-derived CSB-deficient cells exhibited a defect in efficient mitochondrial transcript production and that CSB specifically promoted elongation by the mitochondrial RNA polymerase in vitro. These observations provide strong evidence for the importance of CSB in maintaining mitochondrial function and argue that the pathologies associated with CS are in part, a direct result of the roles that CSB plays in mitochondria.
Collapse
Affiliation(s)
- Brian R Berquist
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
11
|
Yin Y, Tang L, Zhang J, Tang B, Li Z. Molecular cloning and gene expression analysis of Ercc6l in Sika deer (Cervus nippon hortulorum). PLoS One 2011; 6:e20929. [PMID: 21695076 PMCID: PMC3114858 DOI: 10.1371/journal.pone.0020929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/12/2011] [Indexed: 12/24/2022] Open
Abstract
Background One important protein family that functions in nucleotide excision repair (NER) factors is the SNF2 family. A newly identified mouse ERCC6-like gene, Ercc6l (excision repair cross-complementing rodent repair deficiency, complementation group 6-like), has been shown to be another developmentally related member of the SNF2 family. Methodology/Principal Findings In this study, Sika deer Ercc6l cDNA was first cloned and then sequenced. The full-length cDNA of the Sika deer Ercc6l gene is 4197 bp and contains a 3732 bp open reading frame that encodes a putative protein of 1243 amino acids. The similarity of Sika deer Ercc6l to Bos taurus Ercc6l is 94.05% at the amino acid sequence level. The similarity, however, is reduced to 68.42–82.21% when compared to Ercc6l orthologs in other mammals and to less than 50% compared to orthologs in Gallus gallus and Xenopus. Additionally, the expression of Ercc6l mRNA was investigated in the organs of fetal and adult Sika deer (FSD and ASD, respectively) by quantitative RT-PCR. The common expression level of Ercc6l mRNA in the heart, liver, spleen, lung, kidney, and stomach from six different developmental stages of 18 Sika deer were examined, though the expression levels in each organ varied among individual Sika deer. During development, there was a slight trend toward decreased Ercc61 mRNA expression. The highest Ercc6l expression levels were seen at 3 months old in every organ and showed the highest level of detection in the spleen of FSD. The lowest Ercc6l expression levels were seen at 3 years old. Conclusions/Significance We are the first to successfully clone Sika deer Ercc6l mRNA. Ercc6l transcript is present in almost every organ. During Sika deer development, there is a slight trend toward decreased Ercc61 mRNA expression. It is possible that Ercc6l has other roles in embryonic development and in maintaining the growth of animals.
Collapse
Affiliation(s)
- Yupeng Yin
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lina Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Ministry of Education Key Laboratory of Enzyme Engineering, College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jiabao Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Bo Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail: (ZL); (BT)
| | - Ziyi Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail: (ZL); (BT)
| |
Collapse
|
12
|
Leach DM, Rainbow AJ. Early host cell reactivation of an oxidatively damaged adenovirus-encoded reporter gene requires the Cockayne syndrome proteins CSA and CSB. Mutagenesis 2011; 26:315-21. [PMID: 21059811 PMCID: PMC3044198 DOI: 10.1093/mutage/geq096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/22/2010] [Accepted: 09/20/2010] [Indexed: 11/14/2022] Open
Abstract
Reduced host cell reactivation (HCR) of a reporter gene containing 8-oxoguanine (8-oxoG) lesions in Cockayne syndrome (CS) fibroblasts has previously been attributed to increased 8-oxoG-mediated inhibition of transcription resulting from a deficiency in repair. This interpretation has been challenged by a report suggesting reduced expression from an 8-oxoG containing reporter gene occurs in all cells by a mechanism involving gene inactivation by 8-oxoG DNA glycosylase and this inactivation is strongly enhanced in the absence of the CS group B (CSB) protein. The observation of reduced gene expression in the absence of CSB protein led to speculation that decreased HCR in CS cells results from enhanced gene inactivation rather than reduced gene reactivation. Using an adenovirus-based β-galactosidase (β-gal) reporter gene assay, we have examined the effect of methylene blue plus visible light (MB + VL)-induced 8-oxoG lesions on the time course of gene expression in normal and CSA and CSB mutant human SV40-transformed fibroblasts, repair proficient and CSB mutant Chinese hamster ovary (CHO) cells and normal mouse embryo fibroblasts. We demonstrate that MB + VL treatment of the reporter leads to reduced expression of the damaged β-gal reporter relative to control at early time points following infection in all cells, consistent with in vivo inhibition of RNA polII-mediated transcription. In addition, we have demonstrated HCR of reporter gene expression occurs in all cell types examined. A significant reduction in the rate of gene reactivation in human SV40-transformed cells lacking functional CSA or CSB compared to normal cells was found. Similarly, a significant reduction in the rate of reactivation in CHO cells lacking functional CSB (CHO-UV61) was observed compared to the wild-type parental counterpart (CHO-AA8). The data presented demonstrate that expression of an oxidatively damaged reporter gene is reactivated over time and that CSA and CSB are required for normal reactivation.
Collapse
Affiliation(s)
| | - Andrew J. Rainbow
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
13
|
Savolainen L, Cassel T, Helleday T. The XPD subunit of TFIIH is required for transcription-associated but not DNA double-strand break-induced recombination in mammalian cells. Mutagenesis 2010; 25:623-9. [PMID: 20833695 DOI: 10.1093/mutage/geq054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations in the XPD gene can give rise to three phenotypically distinct disorders: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) or combined XP and Cockayne syndrome (CS) (XP/CS). The role of Xeroderma Pigmentosum group D protein (XPD) in nucleotide excision repair explains the increased risk of skin cancer in XP patients but not all the clinical phenotypes found in XP/CS or TTD patients. Here, we describe that the XPD-defective UV5 cell line is impaired in transcription-associated recombination (TAR), which can be reverted by the introduction of the wild-type XPD gene expressed from a vector. UV5 cells are defective in TAR, despite having intact transcription and homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Interestingly, we find reduced spontaneous HR in XPD-defective cells, suggesting that transcription underlies a portion of spontaneous HR events. We also report that transcription-coupled repair (TCR)-defective cells, mutated in the Cockayne syndrome B (CSB) protein, have a defect in TAR, but not in DSB-induced HR. However, the TAR defect may be associated with a general transcription defect in CSB-deficient cells. In conclusion, we show a novel role for the XPD protein in TAR, linking TAR with TCR.
Collapse
Affiliation(s)
- Linda Savolainen
- Department of Genetics, Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Berquist BR, Wilson DM. Nucleic acid binding activity of human Cockayne syndrome B protein and identification of Ca(2+) as a novel metal cofactor. J Mol Biol 2009; 391:820-32. [PMID: 19580815 DOI: 10.1016/j.jmb.2009.06.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 01/23/2023]
Abstract
The Cockayne syndrome group B protein (CSB) is a member of the SWI/SNF2 subgroup of Superfamily 2 ATPases/nucleic acid translocases/helicases and is defective in the autosomal recessive segmental progeroid disorder Cockayne syndrome. This study examines the ATP-dependent and the ATP-independent biochemical functions of human CSB. We show that Ca(2+) is a novel metal cofactor of CSB for ATP hydrolysis, mainly through the enhancement of k(cat), and that a variety of biologically relevant model nucleic acid substrates can function to activate CSB ATPase activity with either Mg(2+) or Ca(2+) present. However, CSB lacked detectable ATP-dependent helicase and single- or double-stranded nucleic acid translocase activities in the presence of either divalent metal. CSB was found to support ATP-independent complementary strand annealing of DNA/DNA, DNA/RNA, and RNA/RNA duplexes, with Ca(2+) again promoting optimal activity. CSB formed a stable protein:DNA complex with a 34mer double-stranded DNA in electrophoretic mobility-shift assays, independent of divalent metal or nucleotide (e.g. ATP). Moreover, CSB was able to form a stable complex with a range of nucleic acid substrates, including bubble and "pseudo-triplex" double-stranded DNAs that resemble replication and transcription intermediates, as well as forked duplexes of DNA/DNA, DNA/RNA, and RNA/RNA composition, the latter two of which do not promote CSB ATPase activity. Association of CSB with DNA, independent of ATP binding or hydrolysis, was seemingly sufficient to displace or rearrange a stable pre-bound protein:DNA complex, a property potentially important for its roles in transcription and DNA repair.
Collapse
Affiliation(s)
- Brian R Berquist
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
15
|
Lin Z, Zhang X, Tuo J, Guo Y, Green B, Chan CC, Tan W, Huang Y, Ling W, Kadlubar FF, Lin D, Ning B. A variant of the Cockayne syndrome B gene ERCC6 confers risk of lung cancer. Hum Mutat 2008; 29:113-22. [PMID: 17854076 PMCID: PMC2441604 DOI: 10.1002/humu.20610] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome B protein (ERCC6) plays an essential role in DNA repair. However, the Cockayne syndrome caused by the ERCC6 defect has not been linked to cancer predisposition; likely due to the fact that cells with severe disruption of the ERCC6 function are sensitive to lesion-induced apoptosis, thus reducing the chance of tumorigenesis. The biological function and cancer susceptibility of a common variant rs3793784:C>G (c.-6530C>G) in the ERCC6 was examined. We show that the c.-6530C allele has lower binding affinity of Sp1 by EMSA and displays a lower transcriptional activity in vitro and in vivo. We then examined the contribution of this polymorphism to the risk of lung cancer in a case-control study with 1,000 cases and 1,000 controls. The case-control analysis revealed a 1.76-fold (P= x 10(-9)) excess risk of developing lung cancer for the c.-6530CC carriers compared with noncarriers. The c.-6530CC interacts with smoking to intensify lung cancer risk, with the odds ratio (OR)=9 for developing lung cancer among heavy smokers. Our data constituted strong evidence that ERCC6 rs3793784:C>G alters its transcriptional activity and may confer personalized susceptibility to lung cancer.
Collapse
Affiliation(s)
- Zhongning Lin
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xuemei Zhang
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingsheng Tuo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yongli Guo
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bridgett Green
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wen Tan
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Huang
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Wenhua Ling
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fred F. Kadlubar
- Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence to: Dongxin Lin, M.D., Department of Etiology and Carcinogenesis, Cancer Hospital & Institute, Chinese Academy of Medical Sciences, Beijing 100021, China. Fax: (86)10-67722460. E-mail: , Baitang Ning, Ph.D., 3900 NCTR Road, HFT-100, Jefferson, AR 72079. E-mail:
| | - Baitang Ning
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
- Correspondence to: Dongxin Lin, M.D., Department of Etiology and Carcinogenesis, Cancer Hospital & Institute, Chinese Academy of Medical Sciences, Beijing 100021, China. Fax: (86)10-67722460. E-mail: , Baitang Ning, Ph.D., 3900 NCTR Road, HFT-100, Jefferson, AR 72079. E-mail:
| |
Collapse
|
16
|
Liu L, Rainbow AJ. Pre-UV-Treatment of Cells Results in Enhanced Host Cell Reactivation of a UV Damaged Reporter Gene in CHO-AA8 Chinese Hamster Ovary Cells but Not in Transcription-Coupled Repair Deficient CHO-UV61 Cells. Biosci Rep 2005; 24:559-76. [PMID: 16158195 DOI: 10.1007/s10540-005-2792-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have used a non-replicating recombinant adenovirus, Ad5MCMVlacZ, which expresses the β-galactosidase reporter gene, to examine both constitutive and inducible repair of UV-damaged DNA in repair proficient CHO-AA8 Chinese hamster ovary cells and in mutant CHO-UV61 cells which are deficient in the transcription-coupled repair (TCR) pathway of nucleotide excision repair. Host cell reactivation (HCR) of β-galactosidase activity for UV-irradiated Ad5MCMVlacZ was significantly reduced in non-irradiated CHO-UV61 cells compared to that in non-irradiated CHO-AA8 cells suggesting that repair in the transcribed strand of the UV-damaged reporter gene in untreated cells utilizes TCR. Prior UV-irradiation of cells with low UV fluences resulted in a transient enhancement of HCR for expression of the UV-damaged reporter gene in CHO-AA8 cells but not in TCR deficient CHO-UV61 cells. These results suggest the presence of an inducible DNA pathway in CHO cells that results from an enhancement of TCR or a mechanism that involves the TCR pathway.
Collapse
Affiliation(s)
- Lili Liu
- Department of Biology, McMaster University, L8S 4K1, Hamilton, Ontario, Canada,
| | | |
Collapse
|
17
|
Xu Y, Chen X, Li Y. Ercc6l, a gene of SNF2 family, may play a role in the teratogenic action of alcohol. Toxicol Lett 2005; 157:233-9. [PMID: 15917148 DOI: 10.1016/j.toxlet.2005.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 11/29/2022]
Abstract
The expression profile of a newly identified mouse nucleotide excision repair (NER) gene, Ercc6l, was investigated in a mouse model of fetal alcohol syndrome (FAS). In test 1, whole-mount in situ hybridization showed Ercc6l expressed mainly in the neural tube and heart of 10.5-day embryo. However, the expressions in both of the two organs were significantly down regulated after in uterus alcohol exposure from embryonic day (ED) 6-10, which was in accordance with the result of semi-quantitative RT-PCR. In test 2, the dams were given alcohol intragastrically from ED 6-15, and Northern blot of Ercc6l mRNA was carried out with five major embryo organs on ED 15.5, which were heart, brain, kidney, liver and lung. Ercc6l expression in 15.5-day embryonic brain and heart, which are the most commonly affected organs of FAS, were both decreased by alcohol exposure. The expressions in the other three organs were unaffected. From the results, we considered that Ercc6l might play a role in the teratogenic action of alcohol.
Collapse
Affiliation(s)
- Yajun Xu
- Laboratory of Molecular Toxicology & Developmental Molecular Biology, Department of Nutrition & Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | | | | |
Collapse
|
18
|
Licht CL, Stevnsner T, Bohr VA. Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 2003; 73:1217-39. [PMID: 14639525 PMCID: PMC1180389 DOI: 10.1086/380399] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 10/01/2003] [Indexed: 01/17/2023] Open
Abstract
The devastating genetic disorder Cockayne syndrome (CS) arises from mutations in the CSA and CSB genes. CS is characterized by progressive multisystem degeneration and is classified as a segmental premature-aging syndrome. The CS complementation group B (CSB) protein is at the interface of transcription and DNA repair and is involved in transcription-coupled and global genome-DNA repair, as well as in general transcription. Recent structure-function studies indicate a process-dependent variation in the molecular mechanism employed by CSB and provide a starting ground for a description of the mechanisms and their interplay.
Collapse
Affiliation(s)
- Cecilie Löe Licht
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Tinna Stevnsner
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Vilhelm A. Bohr
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
19
|
Yang ZJ, Bao WL, Qiu MH, Zhang LM, Lu SD, Huang YL, Sun FY. Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia. J Neurosci Res 2002; 70:140-9. [PMID: 12271463 DOI: 10.1002/jnr.10380] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The antisense knockdown technique and confocal laser scanning microscopic analysis were used to elucidate vascular endothelial growth factor (VEGF) induction and its effect on DNA damage and repair in rat brain following a transient middle cerebral artery occlusion. Immunohistochemical study and in situ hybridization showed that the expression of VEGF and its mRNA was enhanced in the ischemic core and penumbra of ischemic brain. Western blot analysis further illustrated that VEGF induction was time-dependently changed in these areas. Double-staining analysis indicated that VEGF-positive staining existed in the neuron, but not in the glia, and it colocalized with excision repair cross-complementing group 6 (ERCC6) mRNA, a DNA repair factor. VEGF antisense oligodeoxynucleotide infusion reduced VEGF induction and resulted in an enlargement of infarct volume of the brain caused by ischemia. Moreover, it also increased the number of DNA damaged cells and lessened the induction of ERCC6 mRNA in ischemic brains. These results suggest that the induction of endogenous VEGF in ischemic neurons plays a neuroprotective role probably associated with the expression of ERCC6 mRNA.
Collapse
Affiliation(s)
- Zeng-Jin Yang
- National Key Laboratory of Medical Neurobiology, Fudan University, Shanghai Medical College, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Box 1, National Institute on Aging, GRC, NIH 5600 Nathan Shock Dr., Baltimore, MD 21224, USA.
| |
Collapse
|
21
|
Proietti De Santis L, Garcia CL, Balajee AS, Latini P, Pichierri P, Nikaido O, Stefanini M, Palitti F. Transcription coupled repair efficiency determines the cell cycle progression and apoptosis after UV exposure in hamster cells. DNA Repair (Amst) 2002; 1:209-23. [PMID: 12509253 DOI: 10.1016/s1568-7864(01)00017-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleotide excision repair (NER) is a major pathway for the removal of bulky adducts and helix distorting lesions from the genomic DNA. NER is highly heterogeneous across the genome and operates principally at different levels of hierarchy. Transcription coupled repair (TCR), a special sub-pathway of NER and base excision repair (BER), is critical for cellular resistance after UV irradiation in mammalian cells. In this study, we have investigated the effects of UV-C irradiation on cell cycle progression and apoptosis in G1 synchronised isogenic hamster cell lines that are deficient in TCR and NER pathways. Our results revealed the existence of two apoptotic modes at low UV (2-4J/m2) doses in TCR deficient (UV61) and NER deficient (UV5) cells: one occurring in the first G1 and the other in the second G1-phase following the first division. At high UV doses (8-32J/m2), UV61 and UV5 cells underwent apoptosis without entry into S-phase after a permanent arrest in the initial G1. In contrast to repair deficient cells, parental TCR proficient AA8 cells did not show a significant G1 arrest and apoptosis at doses below 8J/m2. UV61 (proficient in repair of 6-4 photoproducts (PPs)) and UV5 (deficient in 6-4 PP repair) cells showed similar patterns of cell cycle progression and apoptosis. Taken together, these results suggest that the persistence of 6-4 PP and the replication inhibition may not be critical for apoptotic response in hamster cells. Instead, the extent of transcription blockage resulting from the TCR deficiency constitutes the major determining factor for G1 arrest and apoptosis.
Collapse
Affiliation(s)
- Luca Proietti De Santis
- Laboratory of Molecular Cytogenetic and Mutagenesis, DABAC, Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Selzer RR, Nyaga S, Tuo J, May A, Muftuoglu M, Christiansen M, Citterio E, Brosh RM, Bohr VA. Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. Nucleic Acids Res 2002; 30:782-93. [PMID: 11809892 PMCID: PMC100288 DOI: 10.1093/nar/30.3.782] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Revised: 11/10/2001] [Accepted: 11/27/2001] [Indexed: 11/13/2022] Open
Abstract
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the transcribed strand of active genes, both after exposure to UV and in the presence of oxidative DNA lesions. A previous study has indicated that a conserved helicase ATPase motif II residue is essential for the function of the CSB protein in responding to UV-induced DNA damage in a hamster cell line. Due to the limitations in studying a complex human disorder in another species, this study introduced the site-directed mutation of the ATPase motif II in the human CSB gene in an isogenic human cell line. The CSB mutant allele was tested for genetic complementation of UV-sensitive phenotypes in the human CS-B cell line CS1AN.S3.G2. In addition, the incision of an 8-oxoguanine lesion by extracts of the CS-B cell lines stably transfected with the wild-type or ATPase mutant CSB gene has been investigated. The ATPase motif II point mutation (E646Q) abolished the function of the CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery and apoptosis. Interestingly, whole-cell extract prepared from these mutant cells retained wild-type incision activity on an oligonucleotide containing a single 8-oxoguanine lesion, whereas the absence of the CSB gene altogether resulted in reduced incision activity relative to wild-type. These results suggest damage-specific functional requirements for CSB in the repair of UV-induced and oxidative lesions in human cells. The transfection of the mutant or wild-type CSB gene into the CS1AN.S3.G2 cells did not alter the expression of the subset of genes examined by cDNA array analysis.
Collapse
Affiliation(s)
- Rebecca R Selzer
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Proietti De Santis L, Garcia CL, Balajee AS, Brea Calvo GT, Bassi L, Palitti F. Transcription coupled repair deficiency results in increased chromosomal aberrations and apoptotic death in the UV61 cell line, the Chinese hamster homologue of Cockayne's syndrome B. Mutat Res 2001; 485:121-32. [PMID: 11182543 DOI: 10.1016/s0921-8777(00)00065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription coupled repair (TCR), a special sub-pathway of nucleotide excision repair (NER), removes transcription blocking lesions rapidly from the transcribing strand of active genes. In this study, we have evaluated the importance of the TCR pathway in the induction of chromosomal aberrations and apoptosis in isogenic Chinese hamster cell lines, which differ in TCR efficiency. AA8 is the parental cell line, which is proficient in the genome overall repair of UV-C radiation induced 6-4 photoproducts (6-4 PP) and the repair of cyclobutane pyrimidine dimer (CPD) from the transcribing strand of active genes. UV61 cells (hamster homologue of human Cockayne's syndrome (CS) group B cells) originally isolated from AA8, exhibit proficient repair of 6-4 PP but are deficient in CPD removal by the TCR pathway. Upon UV-C irradiation of cells in G1-phase, UV61 showed a dramatic increase in apoptotic response as compared to AA8 cells. Abolition of TCR by treatment with alpha-amanitin (an inhibitor of RNA polymerase II) in AA8 cells also resulted in an elevated apoptotic response like that observed in UV61 cells treated with UV alone. This suggests that the lack of TCR is largely responsible for increased apoptotic response in UV61 cells. Furthermore, the chromosomal aberrations and sister chromatid exchange (SCE) induced by UV were also found to be higher in UV61 cells than in TCR proficient AA8 cells. This study shows that the increased chromosomal aberrations and apoptotic death in UV61 cells is due to their inability to remove CPD from the transcribing strand of active genes and suggests a protective role for TCR in the prevention of both chromosomal aberrations and apoptosis induced by DNA damage. Furthermore, flow cytometry analysis and time-course appearance of apoptotic cells suggest that the conversion of UV-DNA damage into chromosomal aberrations precedes and determines the apoptotic process.
Collapse
Affiliation(s)
- L Proietti De Santis
- Laboratory of Molecular Cytogenetic and Mutagenesis, DABAC, Università degli Studi della Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
24
|
DNA damage and its processing with aging: Human premature aging syndromes as model systems. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1566-3124(01)04033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Sunesen M, Selzer RR, Brosh RM, Balajee AS, Stevnsner T, Bohr VA. Molecular characterization of an acidic region deletion mutant of Cockayne syndrome group B protein. Nucleic Acids Res 2000; 28:3151-9. [PMID: 10931931 PMCID: PMC108419 DOI: 10.1093/nar/28.16.3151] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cockayne syndrome (CS) is a human genetic disorder characterized by post-natal growth failure, neurological abnormalities and premature aging. CS cells exhibit high sensitivity to UV light, delayed RNA synthesis recovery after UV irradiation and defective transcription-coupled repair (TCR). Two genetic complementation groups of CS have been identified, designated CS-A and CS-B. The CSB gene encodes a helicase domain and a highly acidic region N-terminal to the helicase domain. This study describes the genetic characterization of a CSB mutant allele encoding a full deletion of the acidic region. We have tested its ability to complement the sensitivity of UV61, the hamster homolog of human CS-B cells, to UV and the genotoxic agent N-acetoxy-2-acetylaminofluorene (NA-AAF). Deleting 39 consecutive amino acids, of which approximately 60% are negatively charged, did not impact on the ability of the protein to complement the sensitive phenotype of UV61 cells to either UV or NA-AAF. Our data indicate that the highly acidic region of CSB is not essential for the TCR and general genome repair pathways of UV- and NA-AAF-induced DNA lesions.
Collapse
Affiliation(s)
- M Sunesen
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Nucleotide excision repair (NER) is one of the major cellular pathways that removes bulky DNA adducts and helix-distorting lesions. The biological consequences of defective NER in humans include UV-light-induced skin carcinogenesis and extensive neurodegeneration. Understanding the mechanism of the NER process is of great importance as the number of individuals diagnosed with skin cancer has increased considerably in recent years, particularly in the United States. Rapid progress made in the DNA repair field since the early 1980s has revealed the complexity of NER, which operates differently in different genomic regions. The genomic heterogeneity of repair seems to be governed by the functional compartmentalization of chromatin into transcriptionally active and inactive domains in the nucleus. Two sub-pathways of NER remove UV-induced photolesions: (I) Global Genome Repair (GGR) and (II) Transcription Coupled Repair (TCR). GGR is a random process that occurs slowly, while the TCR, which is tightly linked to RNA polymerase II transcription, is highly specific and efficient. The efficiency of these pathways is important in avoiding cancer and genomic instability. Studies with cell lines derived from Cockayne syndrome (CS) and Xeroderma pigmentosum (XP) group C patients, that are defective in the NER sub-pathways, have yielded valuable information regarding the genomic heterogeneity of DNA repair. This review deals with the complexity of repair heterogeneity, its mechanism and interacting molecular pathways as well as its relevance in the maintenance of genomic integrity.
Collapse
Affiliation(s)
- A S Balajee
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
27
|
Balajee AS, Proietti De Santis L, Brosh RM, Selzer R, Bohr VA. Role of the ATPase domain of the Cockayne syndrome group B protein in UV induced apoptosis. Oncogene 2000; 19:477-89. [PMID: 10698517 DOI: 10.1038/sj.onc.1203372] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities. CS cells are defective in the transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes. The individuals suffering from CS do not generally develop cancer but show increased neurodegeneration. Two genetic complementation groups (CS-A and CS-B) have been identified. The lack of cancer formation in CS may be due to selective elimination of cells containing DNA damage by a suicidal pathway. In this study, we have evaluated the role of the CSB gene in UV induced apoptosis in human and hamster cells. The hamster cell line UV61 carries a mutation in the homolog of the human CSB gene. We show that both human CS-B and hamster UV61 cells display increased apoptotic response following UV exposure compared with normal cells. The increased sensitivity of UV61 cells to apoptosis is complemented by the transfection of the wild type human CSB gene. In order to determine which functional domain of the CSB gene participates in the apoptotic pathway, we constructed stable cell lines with different CSB domain disruptions. UV61 cells were stably transfected with the human CSB cDNA containing a point mutation in the highly conserved glutamic acid residue in ATPase motif II. This cell line (UV61/ pc3.1-CSBE646Q) showed the same increased apoptosis as the UV61 cells. In contrast, cells containing a deletion in the acidic domain at the N-terminal end of the CSB protein had no effect on apoptosis. This indicates that the integrity of the ATPase domain of CSB protein is critical for preventing the UV induced apoptotic pathway. In primary human CS-B cells, the induction and stabilization of the p53 protein seems to correlate with their increased apoptotic potential. In contrast, no change in the level of either p53 or activation of mdm2 protein by p53 was observed in hamster UV61 cells after UV exposure. This suggests that the CSB dependent apoptotic pathway can occur independently of the transactivation potential of p53 in hamster cells.
Collapse
Affiliation(s)
- A S Balajee
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
28
|
Brosh RM, Balajee AS, Selzer RR, Sunesen M, Proietti De Santis L, Bohr VA. The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Mol Biol Cell 1999; 10:3583-94. [PMID: 10564257 PMCID: PMC25641 DOI: 10.1091/mbc.10.11.3583] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.
Collapse
Affiliation(s)
- R M Brosh
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
29
|
Yin KJ, Sun FY. Effect of dextromethorphan, a NMDA antagonist, on DNA repair in rat photochemical thrombotic cerebral ischemia. Brain Res 1999; 815:29-35. [PMID: 9974119 DOI: 10.1016/s0006-8993(98)01071-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Photochemical thrombotic ischemia model was used to study the possible roles of excision repair cross-complementing group 6 (ERCC6), a DNA repair gene, in the neuroprotection of dextromethorphan (DM), a NMDA antagonist, in ischemic brain injury. The results showed that no obvious ERCC6 mRNA expression was found in the perifocal area of irradiated cerebral cortex before 24 h postischemia. Then, the number of ERCC6 mRNA positive cells gradually enhanced, and attained a peak value at 72 h after light irradiation, which followed a declined tendency at 7-day postlesion. These results suggest that DNA repair gene ERCC6 mRNA expression in the perifocal area may be involved in the pathophysiological processes following the photochemical thrombotic cerebral ischemia. By the administration of DM, we observed that it can significantly upregulate the expression of ERCC6 mRNA in the perifocal area at 48 h after ischemic event. The neuroprotective mechanisms of DM may be related to the upregulation of DNA repair gene ERCC6 mRNA.
Collapse
Affiliation(s)
- K J Yin
- Department of Neurobiology, Shanghai Medical University, China
| | | |
Collapse
|
30
|
Cappelli E, Carrozzino F, Abbondandolo A, Frosina G. The DNA helicases acting in nucleotide excision repair, XPD, CSB and XPB, are not required for PCNA-dependent repair of abasic sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:325-30. [PMID: 9914510 DOI: 10.1046/j.1432-1327.1999.00050.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA repair of abasic sites is accomplished in mammalian cells by two distinct base excision repair (BER) pathways: a single nucleotide insertion pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway involving a resynthesis patch of 2-10 nucleotides 3' to the lesion. The latter pathway shares some enzymatic components with the nucleotide excision repair (NER) pathway acting on damage induced by ultraviolet light: both pathways are strictly dependent on PCNA and several observations suggest that the polymerization and ligation phases may be carried out by common enzymatic activities (DNA polymerase delta/epsilon and DNA ligase I). Furthermore, it has been postulated that the transcription-NER coupling factor Cockayne syndrome B has a role in BER. We have investigated whether three NER proteins endowed with DNA helicase activities (the xeroderma pigmentosum D and B gene products and the Cockayne syndrome B gene product) may also be involved in repair of natural abasic sites, by using the Chinese hamster ovary mutant cell lines UV5, UV61 and 27-1. No defect of either the PCNA-dependent or the single nucleotide insertion pathways could be observed in UV5, UV61 or 27-1 mutant cell extracts, thus showing that the partial enzymatic overlap between PCNA-dependent BER and NER does not extend to DNA helicase activities.
Collapse
Affiliation(s)
- E Cappelli
- DNA Repair Unit, CSTA Laboratory - Instituto Nazionale Ricera Cancro, Genova, Italy
| | | | | | | |
Collapse
|
31
|
Balajee AS, May A, Dianova I, Bohr VA. Efficient PCNA complex formation is dependent upon both transcription coupled repair and genome overall repair. Mutat Res 1998; 409:135-46. [PMID: 9875289 DOI: 10.1016/s0921-8777(98)00051-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The protein proliferating cell nuclear antigen (PCNA) is an auxiliary factor for DNA polymerase delta and is involved in the resynthesis step of nucleotide excision repair (NER). After UV irradiation of quiescent cells, PCNA forms an insoluble complex with nuclear substructures. We have investigated associations between NER and its subcomponent pathway, transcription coupled repair (TCR) on PCNA complex formation using genetically related hamster cell lines with different repair characteristics. In DNA repair proficient cells, the PCNA complex was readily detectable within 30 min after UV irradiation by both immunofluorescence and western blot analyses. This complex formation after UV occurs efficiently in quiescent cells. In UV5 (human XP-D homolog) and UV 24 (human XP-B homolog) cells, which are totally deficient in NER, the PCNA complex was not detectable at 30 min after UV. The PCNA complex formation is restored to normal levels in UV5 cells after transfection with the human XPD gene, encoding a subunit of the basal transcription factor, TFIIH. In UV61 (Human CS-B homolog) cells, that are defective only in transcription coupled repair (TCR) of cyclobutane pyrimidine dimers (CPDs), the rate of PCNA complex formation was 2-fold slower than in repair proficient cells. This defect was complemented by transfection of the CSB gene into the UV61 cells. We thus conclude that efficient PCNA complex formation after UV is dependent upon both the NER and TCR pathways in hamster cells. The association of several other DNA repair proteins including XPA, RPA, TFIIH and p53 with the insoluble PCNA complex in UV treated cells suggests a central role for PCNA in different steps of NER.
Collapse
Affiliation(s)
- A S Balajee
- Laboratory of Molecular Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
32
|
Orren DK, Petersen LN, Bohr VA. Persistent DNA damage inhibits S-phase and G2 progression, and results in apoptosis. Mol Biol Cell 1997; 8:1129-42. [PMID: 9201721 PMCID: PMC305719 DOI: 10.1091/mbc.8.6.1129] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We used genetically related Chinese hamster ovary cell lines proficient or deficient in DNA repair to determine the direct role of UV-induced DNA photoproducts in inhibition of DNA replication and in induction of G2 arrest and apoptosis. UV irradiation of S-phase-synchronized cells causes delays in completion of the S-phase sometimes followed by an extended G2 arrest and apoptosis. The effects of UV irradiation during the S-phase on subsequent cell cycle progression are magnified in repair-deficient cells, indicating that these effects are initiated by persistent DNA damage and not by direct UV activation of signal transduction pathways. Moreover, among the lesions introduced by UV irradiation, persistence of (6-4) photoproducts inhibits DNA synthesis much more than persistence of cyclobutane pyrimidine dimers (which appear to be efficiently bypassed by the DNA replication apparatus). Apoptosis begins approximately 24 h after UV irradiation of S-phase-synchronized cells, occurs to a greater extent in repair-deficient cells, and correlates well with the inability to escape from an extended late S-phase-G2 arrest. We also find that nucleotide excision repair activity (including its coupling to transcription) is similar in the S-phase to what we have previously measured in G1 and G2.
Collapse
Affiliation(s)
- D K Orren
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|