1
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
2
|
Casy W, Prater AR, Cornish PV. Operative Binding of Class I Release Factors and YaeJ Stabilizes the Ribosome in the Nonrotated State. Biochemistry 2018; 57:1954-1966. [PMID: 29499110 DOI: 10.1021/acs.biochem.7b00824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During translation, the small subunit of the ribosome rotates with respect to the large subunit primarily between two states as mRNA is being translated into a protein. At the termination of bacterial translation, class I release factors (RFs) bind to a stop codon in the A-site and catalyze the release of the peptide chain from the ribosome. Periodically, mRNA is truncated prematurely, and the translating ribosome stalls at the end of the mRNA forming a nonstop complex requiring one of several ribosome rescue factors to intervene. One factor, YaeJ, is structurally homologous with the catalytic region of RFs but differs by binding to the ribosome directly through its C-terminal tail. Structures of the ribosome show that the ribosome adopts the nonrotated state conformation when these factors are bound. However, these studies do not elucidate the influence of binding to cognate or noncognate codons on the dynamics of intersubunit rotation. Here, we investigate the effects of wild-type and mutant forms of RF1, RF2, and YaeJ binding on ribosome intersubunit rotation using single-molecule Förster resonance energy transfer. We show that both RF1 binding and RF2 binding are sufficient to shift the population of posthydrolysis ribosome complexes from primarily the rotated to the nonrotated state only when a cognate stop codon is present in the A-site. Similarly, YaeJ binding stabilizes nonstop ribosomal complexes in the nonrotated state. Along with previous studies, these results are consistent with the idea that directed conformational changes and binding of subsequent factors to the ribosome are requisite for efficient termination and ribosome recycling.
Collapse
Affiliation(s)
- Widler Casy
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Austin R Prater
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Peter V Cornish
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
3
|
Wei Y, Wang J, Xia X. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species. Mol Biol Evol 2016; 33:2357-67. [PMID: 27297468 PMCID: PMC4989110 DOI: 10.1093/molbev/msw107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three stop codons in bacteria represent different translation termination signals, and their usage is expected to depend on their differences in translation termination efficiency, mutation bias, and relative abundance of release factors (RF1 decoding UAA and UAG, and RF2 decoding UAA and UGA). In 14 bacterial species (covering Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria and Spirochetes) with cellular RF1 and RF2 quantified, UAA is consistently over-represented in highly expressed genes (HEGs) relative to lowly expressed genes (LEGs), whereas UGA usage is the opposite even in species where RF2 is far more abundant than RF1. UGA usage relative to UAG increases significantly with PRF2 [=RF2/(RF1 + RF2)] as expected from adaptation between stop codons and their decoders. PRF2 is > 0.5 over a wide range of AT content (measured by PAT3 as the proportion of AT at third codon sites), but decreases rapidly toward zero at the high range of PAT3. This explains why bacterial lineages with high PAT3 often have UGA reassigned because of low RF2. There is no indication that UAG is a minor stop codon in bacteria as claimed in a recent publication. The claim is invalid because of the failure to apply the two key criteria in identifying a minor codon: (1) it is least preferred by HEGs (or most preferred by LEGs) and (2) it corresponds to the least abundant decoder. Our results suggest a more plausible explanation for why UAA usage increases, and UGA usage decreases, with PAT3, but UAG usage remains low over the entire PAT3 range.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Juan Wang
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON, Canada Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| |
Collapse
|
4
|
Singer HM, Erhardt M, Hughes KT. Comparative analysis of the secretion capability of early and late flagellar type III secretion substrates. Mol Microbiol 2014; 93:505-20. [PMID: 24946091 DOI: 10.1111/mmi.12675] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 11/28/2022]
Abstract
A remarkable feature of the flagellar-specific type III secretion system (T3SS) is the selective recognition of a few substrate proteins among the many thousand cytoplasmic proteins. Secretion substrates are divided into two specificity classes: early substrates secreted for hook-basal body (HBB) construction and late substrates secreted after HBB completion. Secretion was reported to require a disordered N-terminal secretion signal, mRNA secretion signals within the 5'-untranslated region (5'-UTR) and for late substrates, piloting proteins known as the T3S chaperones. Here, we utilized translational β-lactamase fusions to probe the secretion efficacy of the N-terminal secretion signal of fourteen secreted flagellar substrates in Salmonella enterica. We observed a surprising variety in secretion capability between flagellar proteins of the same secretory class. The peptide secretion signals of the early-type substrates FlgD, FlgF, FlgE and the late-type substrate FlgL were analysed in detail. Analysing the role of the 5'-UTR in secretion of flgB and flgE revealed that the native 5'-UTR substantially enhanced protein translation and secretion. Based on our data, we propose a multicomponent signal that drives secretion via the flagellar T3SS. Both mRNA and peptide signals are recognized by the export apparatus and together with substrate-specific chaperones allowing for targeted secretion of flagellar substrates.
Collapse
Affiliation(s)
- Hanna M Singer
- Microbiologie, Département de Médecine, Université de Fribourg, Fribourg, Switzerland
| | | | | |
Collapse
|
5
|
Seidman JS, Janssen BD, Hayes CS. Alternative fates of paused ribosomes during translation termination. J Biol Chem 2011; 286:31105-12. [PMID: 21757758 DOI: 10.1074/jbc.m111.268201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial tmRNA·SmpB system facilitates recycling of stalled translational complexes in a process termed "ribosome rescue." During ribosome rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which targets the tagged polypeptide for degradation. Translational pausing also induces a variety of recoding events such as frameshifts, ribosome hops, and stop codon readthrough. To examine the interplay between recoding and ribosome rescue, we determined the various fates of ribosomes that pause during translation termination. We expressed a model protein containing the C-terminal Asp-Pro nascent peptide motif (which interferes with translation termination) and quantified the protein chains produced by recoding and ssrA-peptide tagging. The nature and extent of translational recoding depended upon the codon for the C-terminal Pro residue, with CCU and CCC promoting efficient +1 frameshifting. In contrast, ssrA-peptide tagging was unaffected by C-terminal Pro coding. Moreover, +1 frameshifting was not suppressed by tmRNA·SmpB activity, suggesting that recoding and ribosome rescue are not competing events. However, cells lacking ribosomal protein L9 (ΔL9) exhibited a significant increase in recoding and a concomitant decrease in ssrA-peptide tagging. Pulse-chase analysis revealed that pre-termination ribosomes turn over more rapidly in ΔL9 cells, suggesting that increased recoding alleviates the translational arrest. Together, these results indicate that tmRNA·SmpB does not suppress transient ribosome pauses, but responds to prolonged translational arrest.
Collapse
Affiliation(s)
- Jason S Seidman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-9625, USA
| | | | | |
Collapse
|
6
|
Bugaeva EY, Surkov S, Golovin AV, Ofverstedt LG, Skoglund U, Isaksson LA, Bogdanov AA, Shpanchenko OV, Dontsova OA. Structural features of the tmRNA-ribosome interaction. RNA (NEW YORK, N.Y.) 2009; 15:2312-2320. [PMID: 19861420 PMCID: PMC2779675 DOI: 10.1261/rna.1584209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.
Collapse
MESH Headings
- Base Sequence
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/ultrastructure
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Elizaveta Y Bugaeva
- Belozersky Institute, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C. Design parameters to control synthetic gene expression in Escherichia coli. PLoS One 2009; 4:e7002. [PMID: 19759823 PMCID: PMC2736378 DOI: 10.1371/journal.pone.0007002] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/17/2009] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Production of proteins as therapeutic agents, research reagents and molecular tools frequently depends on expression in heterologous hosts. Synthetic genes are increasingly used for protein production because sequence information is easier to obtain than the corresponding physical DNA. Protein-coding sequences are commonly re-designed to enhance expression, but there are no experimentally supported design principles. PRINCIPAL FINDINGS To identify sequence features that affect protein expression we synthesized and expressed in E. coli two sets of 40 genes encoding two commercially valuable proteins, a DNA polymerase and a single chain antibody. Genes differing only in synonymous codon usage expressed protein at levels ranging from undetectable to 30% of cellular protein. Using partial least squares regression we tested the correlation of protein production levels with parameters that have been reported to affect expression. We found that the amount of protein produced in E. coli was strongly dependent on the codons used to encode a subset of amino acids. Favorable codons were predominantly those read by tRNAs that are most highly charged during amino acid starvation, not codons that are most abundant in highly expressed E. coli proteins. Finally we confirmed the validity of our models by designing, synthesizing and testing new genes using codon biases predicted to perform well. CONCLUSION The systematic analysis of gene design parameters shown in this study has allowed us to identify codon usage within a gene as a critical determinant of achievable protein expression levels in E. coli. We propose a biochemical basis for this, as well as design algorithms to ensure high protein production from synthetic genes. Replication of this methodology should allow similar design algorithms to be empirically derived for any expression system.
Collapse
|
8
|
Garza-Sánchez F, Shoji S, Fredrick K, Hayes CS. RNase II is important for A-site mRNA cleavage during ribosome pausing. Mol Microbiol 2009; 73:882-97. [PMID: 19627501 DOI: 10.1111/j.1365-2958.2009.06813.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Escherichia coli, translational arrest can elicit cleavage of codons within the ribosomal A site. This A-site mRNA cleavage is independent of RelE, and has been proposed to be an endonucleolytic activity of the ribosome. Here, we show that the 3'-->5' exonuclease RNase II plays an important role in RelE-independent A-site cleavage. Instead of A-site cleavage, translational pausing in DeltaRNase II cells produces transcripts that are truncated +12 and +28 nucleotides downstream of the A-site codon. Deletions of the genes encoding polynucleotide phosphorylase (PNPase) and RNase R had little effect on A-site cleavage. However, PNPase overexpression restored A-site cleavage activity to DeltaRNase II cells. Purified RNase II and PNPase were both unable to directly catalyse A-site cleavage in vitro. Instead, these exonucleases degraded ribosome-bound mRNA to positions +18 and +24 nucleotides downstream of the ribosomal A site respectively. Finally, a stable structural barrier to exoribonuclease activity inhibited A-site cleavage when introduced immediately downstream of paused ribosomes. These results demonstrate that 3'-->5' exonuclease activity is an important prerequisite for efficient A-site cleavage. We propose that RNase II degrades mRNA to the downstream border of paused ribosomes, facilitating cleavage of the A-site codon by an unknown RNase.
Collapse
Affiliation(s)
- Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | | | |
Collapse
|
9
|
Dreyfus M. Killer and protective ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:423-66. [PMID: 19215779 DOI: 10.1016/s0079-6603(08)00811-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In prokaryotes, translation influences mRNA decay. The breakdown of most Escherichia coli mRNAs is initiated by RNase E, a 5'-dependent endonuclease. Some mRNAs are protected by ribosomes even if these are located far upstream of cleavage sites ("protection at a distance"), whereas others require direct shielding of these sites. I argue that these situations reflect different modes of interaction of RNase E with mRNAs. Protection at a distance is most impressive in Bacilli, where ribosomes can protect kilobases of unstable downstream sequences. I propose that this protection reflects the role in mRNA decay of RNase J1, a 5'-->3' exonuclease with no E. coli equivalent. Finally, recent years have shown that besides their protective role, ribosomes can also cleave their mRNA under circumstances that cause ribosome stalling. The endonuclease associated with this "killing" activity, which has a eukaryotic counterpart ("no-go decay"), is not characterized; it may be borne by the distressed ribosome itself.
Collapse
|
10
|
Garza-Sánchez F, Gin JG, Hayes CS. Amino acid starvation and colicin D treatment induce A-site mRNA cleavage in Escherichia coli. J Mol Biol 2008; 378:505-19. [PMID: 18377929 DOI: 10.1016/j.jmb.2008.02.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/09/2008] [Indexed: 10/22/2022]
Abstract
Escherichia coli possesses a unique RNase activity that cleaves stop codons in the ribosomal aminoacyl-tRNA binding site (A-site) during inefficient translation termination. This A-site mRNA cleavage allows recycling of arrested ribosomes by facilitating recruitment of the tmRNA*SmpB ribosome rescue system. To test whether A-site nuclease activity also cleaves sense codons, we induced ribosome pausing at each of the six arginine codons using three strategies; rare codon usage, arginine starvation, and inactivation of arginine tRNAs with colicin D. In each instance, ribosome pausing induced mRNA cleavage within the target arginine codons, and resulted in tmRNA-mediated SsrA-peptide tagging of the nascent polypeptide. A-site mRNA cleavage did not require the stringent factor ppGpp, or bacterial toxins such as RelE, which mediates a similar nuclease activity. However, the efficiency of A-site cleavage was modulated by the identity of the two codons immediately upstream (5' side) of the A-site codon. Starvation for histidine and tryptophan also induced A-site cleavage at histidine and tryptophan codons, respectively. Thus, A-site mRNA cleavage is a general response to ribosome pausing, capable of cleaving a variety of sense and stop codons. The induction of A-site cleavage during amino acid starvation suggests this nuclease activity may help to regulate protein synthesis during nutritional stress.
Collapse
Affiliation(s)
- Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
11
|
Haraguchi Y, Kadokura Y, Nakamoto M, Onouchi H, Naito S. Ribosome stacking defines CGS1 mRNA degradation sites during nascent peptide-mediated translation arrest. PLANT & CELL PHYSIOLOGY 2008; 49:314-323. [PMID: 18184691 DOI: 10.1093/pcp/pcn005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Expression of the Arabidopsis CGS1 gene that codes for cystathionine gamma-synthase is feedback-regulated at the step of mRNA degradation in response to S-adenosyl-L-methionine (AdoMet). This regulation occurs during translation and involves AdoMet-induced temporal translation arrest prior to the mRNA degradation. Here, we have identified multiple intermediates of CGS1 mRNA degradation with different 5' ends that are separated by approximately 30 nucleotides. Longer intermediates were found to be produced as the number of ribosomes loaded on mRNA was increased. Sucrose density gradient centrifugation experiments showed that the shortest mRNA degradation intermediate was associated with monosomes, whereas longer degradation intermediates were associated with multiple ribosomes. Immunoblot analyses revealed a ladder of premature polypeptides whose molecular weights corresponded to products of ribosomes in a stalled stack. An increase in smaller premature polypeptides was observed as the number of ribosomes loaded on mRNA increased. These results show that AdoMet induces the stacking of ribosomes on CGS1 mRNA and that multiple mRNA degradation sites probably correspond to each stacked ribosome.
Collapse
Affiliation(s)
- Yuhi Haraguchi
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
12
|
Sanders CL, Curran JF. Genetic analysis of the E site during RF2 programmed frameshifting. RNA (NEW YORK, N.Y.) 2007; 13:1483-91. [PMID: 17660276 PMCID: PMC1950767 DOI: 10.1261/rna.638707] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The roles of the ribosomal E site are not fully understood. Prior evidence suggests that deacyl-tRNA in the E site can prevent frameshifting. We hypothesized that if the E-site codon must dissociate from its tRNA to allow for frameshifting, then weak codon:anticodon duplexes should allow for greater frameshifting than stronger duplexes. Using the well-characterized Escherichia coli RF2 (prfB) programmed frameshift to study frameshifting, we mutagenized the E-site triplet to all Unn and Cnn codons. Those variants should represent a very wide range of duplex stability. Duplex stability was estimated using two different methods. Frameshifting is inversely correlated with stability, as estimated by either method. These findings indicate that pairing between the deacyl-tRNA and the E-site codon opposes frameshifting. We discuss the implications of these findings on frame maintenance and on the RF2 programmed frameshift mechanism.
Collapse
|
13
|
Li X, Yokota T, Ito K, Nakamura Y, Aiba H. Reduced action of polypeptide release factors induces mRNA cleavage and tmRNA tagging at stop codons in Escherichia coli. Mol Microbiol 2007; 63:116-26. [PMID: 17229209 DOI: 10.1111/j.1365-2958.2006.05498.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Certain C-terminal sequences of nascent peptide cause an efficient protein tagging by tmRNA system at stop codons in Escherichia coli. Here, we demonstrate that both mRNA cleavage and tmRNA tagging occur at UAG stop codon recognized specifically by polypeptide release factor 1 (RF-1) when the activity of RF-1 is reduced by a mutation in the prfA gene without requirement of particular C-terminal sequences of nascent peptide. The tmRNA tagging and mRNA cleavage in the prfA mutant were eliminated when the wild-type RF-1 but not RF-2 was supplied from plasmid. In addition, depletion of either RF-1 or RF-2 induces endonucleolytic cleavage and tmRNA tagging at UAG or UGA stop codons respectively. We conclude that ribosome stalling at the cognate stop codon caused by reduced activity or expression of RF-1 or RF-2 is responsible for mRNA cleavage. The present data along with our previous studies strongly suggest that ribosome stalling leads to endonucleolytic cleavage of mRNA in general resulting in non-stop mRNA and that the 3' end of non-stop mRNA is probably only target for the tmRNA system.
Collapse
Affiliation(s)
- Xia Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
14
|
Shpanchenko OV, Zvereva MI, Ivanov PV, Bugaeva EY, Rozov AS, Bogdanov AA, Kalkum M, Isaksson LA, Nierhaus KH, Dontsova OA. Stepping transfer messenger RNA through the ribosome. J Biol Chem 2005; 280:18368-74. [PMID: 15713678 DOI: 10.1074/jbc.m409094200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tmRNA (transfer messenger RNA) is a unique molecule used by all bacteria to rescue stalled ribosomes and to mark unfinished peptides with a specific degradation signal. tmRNA is recruited by arrested ribosomes in which it facilitates the translational switch from cellular mRNA to the mRNA part of tmRNA. Small protein B (SmpB) is a key partner for the trans-translation activity of tmRNA both in vivo and in vitro. It was shown that SmpB acts at the initiation step of the trans-translation process by facilitating tmRNA aminoacylation and binding to the ribosome. Little is known about the subsequent steps of trans-translation. Here we demonstrated the first example of an investigation of tmRNA.ribosome complexes at different stages of trans-translation. Our results show that the structural element at the position of tmRNA pseudoknot 3 remains intact during the translation of the mRNA module of tmRNA and that it is localized on the surface of the ribosome. At least one SmpB molecule remains bound to a ribosome.tmRNA complex isolated from the cell when translation is blocked at different positions within the mRNA part of tmRNA.
Collapse
Affiliation(s)
- Olga V Shpanchenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119899, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sunohara T, Jojima K, Tagami H, Inada T, Aiba H. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J Biol Chem 2004; 279:15368-75. [PMID: 14744860 DOI: 10.1074/jbc.m312805200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, it has been found that ribosome pausing at stop codons caused by certain nascent peptides induces cleavage of mRNA in Escherichia coli cells (1, 2). The question we addressed in the present study is whether mRNA cleavage occurs when translation elongation is prevented. We focused on a specific peptide sequence (AS17), derived from SecM, that is known to cause elongation arrest. When the crp-crr fusion gene encoding CRP-AS17-IIA(Glc) was expressed, cAMP receptor protein (CRP) proteins truncated around the arrest sequence were efficiently produced, and they were tagged by the transfer-messenger RNA (tmRNA) system. Northern blot analysis revealed that both truncated upstream crp and downstream crr mRNAs were generated along with reduced amounts of the full-length crp-crr mRNA. The truncated crp mRNA dramatically decreased in the presence of tmRNA due to rapid degradation. The 3' ends of truncated crp mRNA correspond well to the C termini of the truncated CRP proteins. We conclude that ribosome stalling by the arrest sequence induces mRNA cleavage near the arrest point, resulting in nonstop mRNAs that are recognized by tmRNA. We propose that the mRNA cleavage induced by ribosome stalling acts in concert with the tmRNA system as a way to ensure quality control of protein synthesis and possibly to regulate the expression of certain genes.
Collapse
Affiliation(s)
- Takafumi Sunohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
16
|
Hayes CS, Sauer RT. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol Cell 2003; 12:903-11. [PMID: 14580341 DOI: 10.1016/s1097-2765(03)00385-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cells employ many mechanisms to ensure quality control during protein biosynthesis. Here, we show that, during the pausing of a bacterial ribosome, the mRNA being translated is cleaved at a site within or immediately adjacent to the A site codon. The extent of this A site mRNA cleavage is correlated with the extent of ribosome pausing as assayed by tmRNA-mediated tagging of the nascent polypeptide. Cleavage does not require tmRNA, the ribosomal alarmone (p)ppGpp, or bacterial toxins such as RelE which have been shown to stimulate a similar activity. Translation is required for cleavage, suggesting that the ribosome participates in the reaction in some fashion. When normal protein synthesis is compromised, A site mRNA cleavage and the tmRNA system provide a mechanism for reducing translational errors and the production of aberrant and potentially harmful polypeptides.
Collapse
Affiliation(s)
- Christopher S Hayes
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
17
|
Jin H, Björnsson A, Isaksson LA. Cis control of gene expression in E.coli by ribosome queuing at an inefficient translational stop signal. EMBO J 2002; 21:4357-67. [PMID: 12169638 PMCID: PMC126163 DOI: 10.1093/emboj/cdf424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An UGA stop codon context which is inefficient because of the 3'-flanking context and the last two amino acids in the gene protein product has a negative effect on gene expression, as shown using a model protein A' gene. This is particularly true at low mRNA levels, corresponding to a high intracellular ribosome/mRNA ratio. The negative effect is smaller if this ratio is decreased, or if the distance between the initiation and termination signals is increased. The results suggest that an inefficient termination codon can cause ribosomal pausing and queuing along the upstream mRNA region, thus blocking translation initiation of short genes. This cis control effect is dependent on the stop codon context, including the C-terminal amino acids in the gene product, the translation initiation signal strength, the ribosome/mRNA ratio and the size of the mRNA coding region. A large proportion of poorly expressed natural Escherichia coli genes are small, and the weak termination codon UGA is under-represented in small, highly expressed E.coli genes as compared with the efficient stop codon UAA.
Collapse
Affiliation(s)
| | - Asgeir Björnsson
- Department of Microbiology, Stockholm University, S-10691 Stockholm, Sweden
Present address: deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland Corresponding author e-mail:
| | - Leif A. Isaksson
- Department of Microbiology, Stockholm University, S-10691 Stockholm, Sweden
Present address: deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland Corresponding author e-mail:
| |
Collapse
|
18
|
Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 2002; 99:9697-702. [PMID: 12119387 PMCID: PMC124983 DOI: 10.1073/pnas.112318199] [Citation(s) in RCA: 637] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2002] [Indexed: 11/18/2022] Open
Abstract
Much of the information available about factors that affect mRNA decay in Escherichia coli, and by inference in other bacteria, has been gleaned from study of less than 25 of the approximately 4,300 predicted E. coli messages. To investigate these factors more broadly, we examined the half-lives and steady-state abundance of known and predicted E. coli mRNAs at single-gene resolution by using two-color fluorescent DNA microarrays. An rRNA-based strategy for normalization of microarray data was developed to permit quantitation of mRNA decay after transcriptional arrest by rifampicin. We found that globally, mRNA half-lives were similar in nutrient-rich media and defined media in which the generation time was approximately tripled. A wide range of stabilities was observed for individual mRNAs of E. coli, although approximately 80% of all mRNAs had half-lives between 3 and 8 min. Genes having biologically related metabolic functions were commonly observed to have similar stabilities. Whereas the half-lives of a limited number of mRNAs correlated positively with their abundance, we found that overall, increased mRNA stability is not predictive of increased abundance. Neither the density of putative sites of cleavage by RNase E, which is believed to initiate mRNA decay in E. coli, nor the free energy of folding of 5' or 3' untranslated region sequences was predictive of mRNA half-life. Our results identify previously unsuspected features of mRNA decay at a global level and also indicate that generalizations about decay derived from the study of individual gene transcripts may have limited applicability.
Collapse
Affiliation(s)
- Jonathan A Bernstein
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
19
|
Drider D, DiChiara JM, Wei J, Sharp JS, Bechhofer DH. Endonuclease cleavage of messenger RNA in Bacillus subtilis. Mol Microbiol 2002; 43:1319-29. [PMID: 11918816 DOI: 10.1046/j.1365-2958.2002.02830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A deletion derivative of the ermC gene was constructed that expresses a 254-nucleotide mRNA. The small size of this mRNA facilitated the detection of processing products that did not differ greatly in size from the full-length transcript. In the presence of erythromycin, which induces ribosome stalling near the 5' end of ermC mRNA, the 254-nucleotide mRNA was cleaved endonucleolytically at the site of ribosome stalling. Only the downstream product of this cleavage was detectable; the upstream product was apparently too unstable to be detected. The downstream cleavage product accumulated at times after rifampicin addition, suggesting that the stalled ribosome at the 5' end conferred stability to this RNA fragment. Neither Bs-RNase III nor RNase M5, the two known narrow-specificity endoribonucleases of Bacillus subtilis, was responsible for this cleavage. These results indicate the presence in B. subtilis of another specific endoribonuclease, which may be ribosome associated.
Collapse
Affiliation(s)
- Djamel Drider
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, Box 1603, 1 Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
20
|
Trepod CM, Mott JE. Modification of the carboxy-terminal amino acid sequence alters the Escherichia coli expression of a gene encoding multiple repeats of a bovine growth hormone releasing factor analog. J Biotechnol 2000; 84:273-84. [PMID: 11164268 DOI: 10.1016/s0168-1656(00)00374-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since investigations into the determinants of intracellular protein degradation have shown that the carboxy terminal sequence can be a critical factor for protein expression in Escherichia coli, we attempted to increase the expression of a protein containing multiple repeats of a bovine growth hormone releasing factor analog (bGRF30) by modifying the carboxy terminus with the addition of short amino acid extensions derived from stable E. coli proteins. Extensions capable of increasing bGRF30 per liter titers up to four-fold, as well as extensions that completely abolished bGRF30 expression were identified. Select C-terminal extensions were investigated further to determine the mechanism by which they affected bGRF30 expression. Analysis of mRNA levels and protein production titers suggests that extensions which increase bGRF30 titers primarily affect protein stability and ribosomal release. Negative extensions exert their influence through a more complex mechanism, appearing to interfere with the ability of ribosomes to be efficiently released from their cognate mRNA.
Collapse
Affiliation(s)
- C M Trepod
- Biology I, 7263-209-713, Pharmacia, Kalamazoo, MI 49007, USA.
| | | |
Collapse
|
21
|
Menez J, Heurgué-Hamard V, Buckingham RH. Sequestration of specific tRNA species cognate to the last sense codon of an overproduced gratuitous protein. Nucleic Acids Res 2000; 28:4725-32. [PMID: 11095683 PMCID: PMC115180 DOI: 10.1093/nar/28.23.4725] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-level expression of non-functional model proteins, derived from elongation factor EF-Tu by the deletion of an essential domain, greatly inhibits the growth of Escherichia coli partly deficient in peptidyl-tRNA hydrolase. High-level expression in wild-type cells has little effect on growth. The inhibitory effect is therefore presumably due to the sequestration of essential tRNA species, partly in the form of free peptidyl-tRNA. The growth inhibitory effect can be modulated by changing the last sense codon in the genes encoding the model proteins. Thus, replacement of Ser by Lys or His at this position increases growth inhibition. The effects of 11 changes studied are related to the rates of accumulation previously observed of the corresponding families of peptidyl-tRNA. Two non-exclusive hypotheses are proposed to account for these observations: first, the last sense codon of mRNA is a preferred site of peptidyl-tRNA drop-off in cells, due to the slow rate of translation termination compared with sense codon translation; secondly, the relatively long pause of the ribosome at the stop codon (of the order of 1 s), results in significant temporary sequestration on the ribosome of the tRNA cognate to the last sense codon.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Binding Sites/genetics
- Carboxylic Ester Hydrolases/deficiency
- Carboxylic Ester Hydrolases/genetics
- Cell Division/genetics
- Codon/genetics
- DNA, Recombinant
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Mutation
- Peptide Chain Elongation, Translational/genetics
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/genetics
- Plasmids/genetics
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- Temperature
Collapse
Affiliation(s)
- J Menez
- UPR9073 du CNRS, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | |
Collapse
|
22
|
Rocha EP, Guerdoux-Jamet P, Moszer I, Viari A, Danchin A. Implication of gene distribution in the bacterial chromosome for the bacterial cell factory. J Biotechnol 2000; 78:209-19. [PMID: 10751682 DOI: 10.1016/s0168-1656(00)00197-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As bacterial genome sequences accumulate, more and more pieces of data suggest that there is a significant correlation between the distribution of genes along the chromosome and the physical architecture of the cell, suggesting that the map of the cell is in the chromosome. Considering sequences and experimental data indicative of cell compartmentalisation, mRNA folding and turnover, as well as known structural features of protein and membrane complexes, we show that preliminary in silico analysis of whole genome sequences strongly substantiates this hypothesis. If there is a correlation between the genome sequence and the cell architecture, it must derive from some selection pressure in the organisms growing in the wild. As a consequence, the underlying constraints should be optimised in genetically modified organisms if one is to expect high product yields. Consequences in terms of gene expression for biotechnology are straightforward: knocking genes out and in genomes should not be randomly performed, but should follow the rules of chromosome organisation.
Collapse
Affiliation(s)
- E P Rocha
- Régulation de l'Expression Génétique, Institut Pasteur, 28 rue du Docteur Roux, 75724, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Miyamoto-Sato E, Nemoto N, Kobayashi K, Yanagawa H. Specific bonding of puromycin to full-length protein at the C-terminus. Nucleic Acids Res 2000; 28:1176-82. [PMID: 10666460 PMCID: PMC102619 DOI: 10.1093/nar/28.5.1176] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1999] [Revised: 01/14/2000] [Accepted: 01/14/2000] [Indexed: 11/13/2022] Open
Abstract
Puromycin, an analog of the 3' end of aminoacyl-tRNA, causes premature termination of translation by being linked non-specifically to growing polypeptide chains. Here we report the interesting phenomenon that puromycin acting as a non-inhibitor at very low concentration (e.g. 0.04 microM) can bond only to full-length protein at the C-terminus. This was proved by using a carboxypeptidase digestion assay of the products obtained by Escherichia coli cell-free translation of human tau 4 repeat (tau4R) mRNA in the presence of low concentrations of puromycin or its derivatives. The tau4R mRNA was modified to code for three C-terminal methionines, which were radioactively labeled, followed by a stop codon. The translation products could not be digested by carboxy-peptidase if puromycin or a derivative was present at the C-terminus of full-length tau4R. Puromycin and its derivatives at 0. 04-1.0 microM bonded to 7-21% of full-length tau4R, depending on the ability to act as acceptor substrates. Furthermore, the bonding efficiency of a puromycin derivative to tau4R was decreased by addition of release factors. These results suggest that puromycin and its derivatives at concentrations lower than those able to compete effectively with aminoacyl-tRNA can bond specifically to full-length protein at a stop codon. This specific bonding of puromycin to full-length protein should be useful for in vitro selection of proteins and for in vitro and in vivo C-terminal end protein labeling.
Collapse
Affiliation(s)
- E Miyamoto-Sato
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
24
|
Litière K, van Eldik GJ, Jacobs JJ, Van Montagu M, Cornelissen M. Posttranscriptional gene silencing of gn1 in tobacco triggers accumulation of truncated gn1-derived RNA species. RNA (NEW YORK, N.Y.) 1999; 5:1364-73. [PMID: 10573127 PMCID: PMC1369858 DOI: 10.1017/s1355838299990799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Posttranscriptional silencing of basic beta-1,3-glucanase genes in the tobacco line T17 is manifested by reduced transcript levels of the gn1 transgene and homologous, endogenous basic beta-1,3-glucanase genes. An RNA ligation-mediated rapid amplification of cDNA ends (RLM-RACE) technique was used to compare the 3' termini of gn1 RNAs present in expressing (hemizygous and young homozygous) and silenced (mature homozygous) T17 plants. Full-length, polyadenylated gn1 transcripts primarily accumulated in expressing plants, whereas in silenced T17 plants, mainly 3'-truncated, nonpolyadenylated gn1 RNAs were detected. The relative abundance of these 3'-truncated gn1 RNA species gradually increased during the establishment of silencing in homozygous T17 plants. Similar 3'-truncated, nonpolyadenylated gn1 RNA products were observed in an independent case of beta-1,3-glucanase posttranscriptional gene silencing. This suggests that these 3'-truncated gn1 RNAs are a general feature of tobacco plants showing posttranscriptional silencing of the gn1 transgene.
Collapse
Affiliation(s)
- K Litière
- Departement Genetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|
25
|
Mottagui-Tabar S. Quantitative analysis of in vivo ribosomal events at UGA and UAG stop codons. Nucleic Acids Res 1998; 26:2789-96. [PMID: 9592169 PMCID: PMC147583 DOI: 10.1093/nar/26.11.2789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An in vivo translation assay system has been designed to measure, in one and the same assay, the three alternatives for a ribosome poised at a stop codon (termination, read-through and frameshift). A quantitative analysis of the competition has been done in the presence and absence of release factor (RF) mutants, nonsense suppressors and an upstream Shine-Dalgarno-like sequence. The ribosomal +1 frameshift product is measurable when the stop codon is decoded by wild-type or mutant RF (prf A1 or prf B2) and also in the presence of competing suppressor tRNAs. Frameshift frequency appears to be influenced by RF activity. The amount of frameshift product decreases in the presence of competing suppressor tRNAs, however, this decrease is not in proportion to the corresponding increase in the suppression product. Instead, there is an increase in the total amount of protein expressed from the gene, perhaps due to the purging of queued ribosomes. Mutated RFs reduce the total output of the reporter gene by reducing the amount of all three protein products. The nascent peptide has earlier been shown to influence the translation termination process by interacting with the RFs. At 42 degrees C in a temperature-sensitive RF mutant strain, protein measurements indicate that the nascent peptide seems to influence the binding efficiencies of the RFs.
Collapse
Affiliation(s)
- S Mottagui-Tabar
- Department of Microbiology, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
26
|
Zhang S, Stancek M, Isaksson LA. The efficiency of a cis-cleaving ribozyme in an mRNA coding region is influenced by the translating ribosome in vivo. Nucleic Acids Res 1997; 25:4301-6. [PMID: 9336461 PMCID: PMC147047 DOI: 10.1093/nar/25.21.4301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A cis -cleaving hammerhead ribozyme (Rz) expression system (3A'-Rz) in Escherichia coli has been constructed that can be used to study the involvement of factors that affect ribozyme cleavage in vivo . The ribozyme sequence is placed in the coding region of 3A' mRNA, which is expressed from a semi-synthetic translation assay gene. The size and the 5'-end sequences of the 3' cleavage fragments were determined and the efficiencies of different Rz variants were measured by quantitative primer extension. It is shown that one of the semi-active constructs (3A'-RzIII) can be used as an indicator for ribosomes that read through or terminate at a stop codon upstream of the Rz hammerhead sequence in the mRNA. Readthrough of the stop codon in an uncleaved mRNA gives a full length 3A' protein. Termination at the stop codon upstream of the ribozyme sequence gives a shortened termination product. However, the mRNA fragment that should arise as a result of the auto-cleavage does not give rise to any detectable corresponding truncated protein. Besides studies on translating ribosomes, the 3A'-Rz system can be used to isolate mutant strains that are changed in ribozyme activity either from internal base alterations, or changed interacting host factors.
Collapse
Affiliation(s)
- S Zhang
- Department of Microbiology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|