1
|
Krishna S, Singh DK, Meena S, Datta D, Siddiqi MI, Banerjee D. Pharmacophore-based screening and identification of novel human ligase I inhibitors with potential anticancer activity. J Chem Inf Model 2014; 54:781-92. [PMID: 24593844 DOI: 10.1021/ci5000032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human DNA ligases are enzymes that are indispensable for DNA replication and repair processes. Among the three human ligases, ligase I is attributed to the ligation of thousands of Okazaki fragments that are formed during lagging strand synthesis during DNA replication. Blocking ligation therefore can lead to the accumulation of thousands of single strands and subsequently double strand breaks in the DNA, which is lethal for the cells. The reports of the high expression level of ligase I protein in several cancer cells (versus the low ligase expression level and the low rate of division of most normal cells in the adult body) support the belief that ligase I inhibitors can target cancer cells specifically with minimum side effects to normal cells. Recent publications showing exciting data for a ligase IV inhibitor exhibiting antitumor activity in mouse models also strengthens the argument for ligases as valid antitumor targets. Keeping this in view, we performed a pharmacophore-based screening for potential ligase inhibitors in the Maybridge small molecule library and procured some of the top-ranking compounds for enzyme-based and cell-based in vitro screening. We report here the identification of novel ligase I inhibitors with potential anticancer activity against a colon cancer cell line.
Collapse
Affiliation(s)
- Shagun Krishna
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | | | | | | | | | | |
Collapse
|
2
|
Singh DK, Krishna S, Chandra S, Shameem M, Deshmukh AL, Banerjee D. Human DNA Ligases: A Comprehensive New Look for Cancer Therapy. Med Res Rev 2013; 34:567-95. [DOI: 10.1002/med.21298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deependra Kumar Singh
- CSIR-Central Drug Research Institute; B.S. 10/1, Janakipuram Extension, Sitapur Road Lucknow 226021 Uttar Pradesh India
| | - Shagun Krishna
- CSIR-Central Drug Research Institute; B.S. 10/1, Janakipuram Extension, Sitapur Road Lucknow 226021 Uttar Pradesh India
| | - Sharat Chandra
- CSIR-Central Drug Research Institute; B.S. 10/1, Janakipuram Extension, Sitapur Road Lucknow 226021 Uttar Pradesh India
| | - Mohammad Shameem
- CSIR-Central Drug Research Institute; B.S. 10/1, Janakipuram Extension, Sitapur Road Lucknow 226021 Uttar Pradesh India
| | - Amit Laxmikant Deshmukh
- CSIR-Central Drug Research Institute; B.S. 10/1, Janakipuram Extension, Sitapur Road Lucknow 226021 Uttar Pradesh India
| | - Dibyendu Banerjee
- CSIR-Central Drug Research Institute; B.S. 10/1, Janakipuram Extension, Sitapur Road Lucknow 226021 Uttar Pradesh India
| |
Collapse
|
3
|
Abdalla MA, Haj-Ahmad Y. Promising Candidate Urinary MicroRNA Biomarkers for the Early Detection of Hepatocellular Carcinoma among High-Risk Hepatitis C Virus Egyptian Patients. J Cancer 2011; 3:19-31. [PMID: 22211142 PMCID: PMC3245605 DOI: 10.7150/jca.3.19] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 11/02/2011] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNA) are small endogenously expressed non-coding RNAs that negatively regulate expression of protein-coding genes at the translational level. Accumulating evidence, such as aberrant expression of miRNAs, suggests that they play a role in the development of cancer. They have been identified in various tumor types, demonstrating that different sets of miRNAs are usually deregulated in different cancers. To identify the miRNA signatures specific for Hepatitis C virus (HCV)-associated Hepatocellular carcinoma (HCC), miRNA expression profiling of 32 HCC post-HCV infected, 74 HCV-positive and 12 control individuals was carried out using whole genome expression profiling. Differential expression of two individual miRNAs between control and high risk HCV patients was detected and found to possibly target genes related to HCC development and progression. The sensitivity and specificity of miR-618 for detecting HCC among HCV-positive individuals was found to be 64% and 68%, respectively. Whereas, the sensitivity and specificity of miR-650 were 72% and 58%, respectively. Additionally, the sensitivity and specificity for miR-618/650 in tandem were 58% and 75%, respectively. These predictive values are greatly improved compared to the traditional α-feto protein (AFP) level-based detection method. The proposed HCC miRNA signatures may therefore be of great value for the early diagnosis of HCC, before the onset of disease in HCV-positive patients. The significance of this approach is amplified by the use of urine as a sample source as it offers a non-invasive approach for developing screening methods that can reduce mortality rates.
Collapse
Affiliation(s)
- Moemen Ak Abdalla
- Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | | |
Collapse
|
4
|
López Castel A, Tomkinson AE, Pearson CE. CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair. J Biol Chem 2009; 284:26631-45. [PMID: 19628465 PMCID: PMC2785351 DOI: 10.1074/jbc.m109.034405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/21/2009] [Indexed: 11/06/2022] Open
Abstract
Mechanisms contributing to disease-associated trinucleotide repeat instability are poorly understood. DNA ligation is an essential step common to replication and repair, both potential sources of repeat instability. Using derivatives of DNA ligase I (hLigI)-deficient human cells (46BR.1G1), we assessed the effect of hLigI activity, overexpression, and its interaction with proliferating cell nuclear antigen (PCNA) upon the ability to replicate and repair trinucleotide repeats. Compared with LigI(+/+), replication progression through repeats was poor, and repair tracts were broadened beyond the slipped-repeat for all mutant extracts. Increased repeat instability was linked only to hLigI overexpression and expression of a mutant hLigI incapable of interacting with PCNA. The endogenous mutant version of hLigI with reduced ligation activity did not alter instability. We distinguished the DNA processes through which hLigI contributes to trinucleotide instability. The highest levels of repeat instability were observed under the hLigI overexpression and were linked to reduced slipped-DNAs repair efficiencies. Therefore, the replication-mediated instability can partly be attributed to errors during replication but also to the poor repair of slipped-DNAs formed during this process. However, repair efficiencies were unaffected by expression of a PCNA interaction mutant of hLigI, limiting this instability to the replication process. The addition of purified proteins suggests that disruption of LigI and PCNA interactions influences trinucleotide repeat instability. The variable levels of age- and tissue-specific trinucleotide repeat instability observed in myotonic dystrophy patients and transgenic mice may be influenced by varying steady state levels of DNA ligase I in these tissues and during different developmental windows.
Collapse
Affiliation(s)
- Arturo López Castel
- From the Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Alan E. Tomkinson
- the Radiation Oncology Research Laboratory, Department of Radiation Oncology, and Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Christopher E. Pearson
- From the Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- the Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| |
Collapse
|
5
|
Pol3 is involved in nonhomologous end-joining in Saccharomyces cerevisiae. DNA Repair (Amst) 2008; 7:1531-41. [PMID: 18606574 DOI: 10.1016/j.dnarep.2008.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 05/14/2008] [Accepted: 05/19/2008] [Indexed: 12/31/2022]
Abstract
Nonhomologous end joining connects DNA ends in the absence of extended sequence homology and requires removal of mismatched DNA ends and gap-filling synthesis prior to a religation step. Pol4 within the Pol X family is the only polymerase known to be involved in end processing during nonhomologous end joining in yeast. The Saccharomyces cerevisiae POL3/CDC2 gene encodes polymerase delta that is involved in DNA replication and other DNA repair processes. Here, we show that POL3 is involved in nonhomologous end joining using a plasmid-based end-joining assay in yeast, in which the pol3-t mutation caused a 1.9- to 3.2-fold decrease in the end-joining efficiency of partially compatible 5' or 3' ends, or incompatible ends, similar to the pol4 mutant. The pol3-t pol4 double mutation showed a synergistic decrease in the efficiency of NHEJ with partially compatible 5' ends or incompatible ends. Sequence analysis of the rejoined junctions recovered from the wild-type cells and mutants indicated that POL3 is required for gap filling at 3' overhangs, but not 5' overhangs during POL4-independent nonhomologous end joining. We also show that either Pol3 or Pol4 is required for simple religation of compatible or blunt ends. These results suggest that Pol3 has a generalized function in end joining in addition to its role in gap filling at 3' overhangs to enhance the overall efficiency of nonhomologous end joining. Moreover, the decreased end-joining efficiency seen in the pol3-t mutant was not due to S-phase arrest associated with the mutant. Taken together, our genetic evidence supports a novel role of Pol3 in nonhomologous end joining that facilitates gap filling at 3' overhangs in the absence of Pol4 to maintain genomic integrity.
Collapse
|
6
|
Akiyama M, Yamada O, Agawa M, Yuza Y, Yanagisawa T, Eto Y, Yamada H. Effects of prednisolone on specifically expressed genes in pediatric acute B-lymphoblastic leukemia. J Pediatr Hematol Oncol 2008; 30:313-6. [PMID: 18391702 DOI: 10.1097/mph.0b013e318161a28f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although glucocorticoid is essential in the treatment of pediatric acute lymphoblastic leukemia (ALL), their precise mechanisms of action remain unclear. We used DNA microarray to evaluate prednisolone-regulated genes in pre-B-ALL cells from 2 pediatric patients. We found up-regulation of 26 genes in ALL cells from both patients, compared with peripheral normal B lymphocytes before maintenance chemotherapy. Treatment with prednisolone for 48 hours induced down-regulation of 5 genes (terminal deoxynucleotidyl transferase, heparin-binding epidermal growth factorlike growth factor, pre-B-lymphocyte genes 1 and 3, and immunoglobulin lambda-like polypeptide) among 26 specifically expressed genes in pre-B-ALL cells from both patients.
Collapse
Affiliation(s)
- Masaharu Akiyama
- Department of Pediatrics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Goldsby RE, Hays LE, Chen X, Olmsted EA, Slayton WB, Spangrude GJ, Preston BD. High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading. Proc Natl Acad Sci U S A 2002; 99:15560-5. [PMID: 12429860 PMCID: PMC137756 DOI: 10.1073/pnas.232340999] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Indexed: 12/25/2022] Open
Abstract
Mutations are a hallmark of cancer. Normal cells minimize spontaneous mutations through the combined actions of polymerase base selectivity, 3' --> 5' exonucleolytic proofreading, mismatch correction, and DNA damage repair. To determine the consequences of defective proofreading in mammals, we created mice with a point mutation (D400A) in the proofreading domain of DNA polymerase delta (poldelta, encoded by the Pold1 gene). We show that this mutation inactivates the 3' --> 5' exonuclease of poldelta and causes a mutator and cancer phenotype in a recessive manner. By 18 months of age, 94% of homozygous Pold1(D400A/D400A) mice developed cancer and died (median survival = 10 months). In contrast, only 3-4% of Pold1(+/D400A) and Pold1(+/+) mice developed cancer in this time frame. Of the 66 tumors arising in 49 Pold1(D400A/D400A) mice, 40 were epithelial in origin (carcinomas), 24 were mesenchymal (lymphomas and sarcomas), and two were composite (teratomas); one-third of these animals developed tumors in more than one tissue. Skin squamous cell carcinoma was the most common tumor type, occurring in 60% of all Pold1(D400A/D400A) mice and in 90% of those surviving beyond 8 months of age. These data show that poldelta proofreading suppresses spontaneous tumor development and strongly suggest that unrepaired DNA polymerase errors contribute to carcinogenesis. Mice deficient in poldelta proofreading provide a tractable model to study mechanisms of epithelial tumorigenesis initiated by a mutator phenotype.
Collapse
Affiliation(s)
- Robert E Goldsby
- Eccles Institute of Human Genetics and Department of Pediatrics (Division of Pediatric HematologyOncology), University of Utah School of Medicine, Salt Lake City 84112, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Ibe S, Fujita K, Toyomoto T, Shimazaki N, Kaneko R, Tanabe A, Takebe I, Kuroda S, Kobayashi T, Toji S, Tamai K, Yamamoto H, Koiwai O. Terminal deoxynucleotidyltransferase is negatively regulated by direct interaction with proliferating cell nuclear antigen. Genes Cells 2001; 6:815-24. [PMID: 11554927 DOI: 10.1046/j.1365-2443.2001.00460.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The repertoires of Ig and TcR are generated by a combinatorial rearrangement of variable (V), diversity (D), and joining (J) segments (V(D)J recombination) in B- and T-cells. Terminal deoxynucleotidyltransferase (TdT) adds extra nucleotides (N nucleotides) at the junctions of the gene segments to enhance the Ig and TcR genes diversity. Using an anti-TdT antibody column, TdT has been purified as a member of a megadalton protein complex from rat thymus. The N region would be synthesized with the large protein complex. RESULTS The cDNAs for proliferating cell nuclear antigen (PCNA) were isolated by yeast two-hybrid screening as the gene products which directly interacted with TdT. The interaction between PCNA and TdT was confirmed by co-immunoprecipitation, both in vitro and in vivo. TdT binds directly to a PCNA trimer, as shown by gel filtration. TdT interacts with PCNA in its DNA polymerization domain (DPD), but not in its BRCA-1 C-terminal (BRCT) domain. TdT activity was reduced to 17% of the maximum value by TdT/PCNA complex formation. CONCLUSION TdT interacts directly with PCNA through its DPD. A functional consequence of this interaction is the negative regulation of TdT activity. These findings suggest that TdT catalyses the addition of N nucleotides under the negative control of PCNA during V(D)J recombination.
Collapse
Affiliation(s)
- S Ibe
- Faculty of Science and Technology, Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aoufouchi S, Flatter E, Dahan A, Faili A, Bertocci B, Storck S, Delbos F, Cocea L, Gupta N, Weill JC, Reynaud CA. Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res 2000; 28:3684-93. [PMID: 10982892 PMCID: PMC110747 DOI: 10.1093/nar/28.18.3684] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2000] [Revised: 06/27/2000] [Accepted: 07/21/2000] [Indexed: 11/13/2022] Open
Abstract
We describe here two novel mouse and human DNA polymerases: one (pol lambda) has homology with DNA polymerase beta while the other one (pol mu) is closer to terminal deoxynucleotidyltransferase. However both have DNA polymerase activity in vitro and share similar structural organization, including a BRCT domain, helix-loop-helix DNA-binding motifs and polymerase X domain. mRNA expression of pol lambda is highest in testis and fetal liver, while expression of pol mu is more lymphoid, with highest expression both in thymus and tonsillar B cells. An unusually large number of splice variants is observed for the pol mu gene, most of which affect the polymerase domain. Expression of mRNA of both polymerases is down-regulated upon treatment by DNA damaging agents (UV light, gamma-rays or H(2)O(2)). This suggests that their biological function may differ from DNA translesion synthesis, for which several DNA polymerase activities have been recently described. Possible functions are discussed.
Collapse
Affiliation(s)
- S Aoufouchi
- INSERM U373, Faculté de Médecine Necker-Enfants Malades, Université Paris V, 156 rue de Vaugirard, 75730 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Preservation of the structural integrity of DNA in any organism is crucial to its health and survival. Such preservation is achieved by an extraordinary cellular arsenal of damage surveillance and repair functions, many of which are now being defined at the gene and protein levels. Mutants hypersensitive to the killing effects of DNA-damaging agents have been instrumental in helping to identify DNA repair-related genes and to elucidate repair mechanisms. In Drosophila melanogaster, such strains are generally referred to as mutagen-sensitive (mus) mutants and currently define more than 30 genetic loci. Whereas most mus mutants have been recovered on the basis of hypersensitivity to the monofunctional alkylating agent methyl methanesulfonate, they nevertheless constitute a phenotypically diverse group, with many mutants having effects beyond mutagen sensitivity. These phenotypes include meiotic dysfunctions, somatic chromosome instabilities, chromatin abnormalities, and cell proliferation defects. Within the last few years numerous mus and other DNA repair-related genes of Drosophila have been molecularly cloned, providing new insights into the functions of these genes. This article outlines strategies for isolating mus mutations and reviews recent advances in the Drosophila DNA repair field, emphasizing mutant analysis and gene cloning.
Collapse
Affiliation(s)
- D S Henderson
- Department of Anatomy and Physiology, University of Dundee, Dundee, DD1 4HN, Scotland, United Kingdom
| |
Collapse
|
11
|
Marx A, Amacker M, Stucki M, Hübscher U, Bickle TA, Giese B. 4'-Acylated thymidine 5'-triphosphates: a tool to increase selectivity towards HIV-1 reverse transcriptase. Nucleic Acids Res 1998; 26:4063-7. [PMID: 9705520 PMCID: PMC147810 DOI: 10.1093/nar/26.17.4063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
4'-Acylated thymidines represent a new class of DNA chain terminators, since they have been shown to act as post-incorporation chain-terminating nucleotides despite the presence of a free 3'-hydroxyl group. Here, we describe the action of the 4'-acetyl- (MeTTP) and 4'-propanoylthymidine 5'-triphosphate (EtTTP) on HIV-1 reverse transcriptase in RNA- and DNA-dependent DNA synthesis and on DNA synthesis catalyzed by the cellular DNA polymerases alpha, beta, delta and epsilon. MeTTP exhibits a high selectivity towards HIV-1 reverse transcriptase. By the use of the bulkier propanoyl group as the 4'-substituent of the nucleoside 5'-triphosphate, selectivity towards HIV-1 reverse transcriptase could be increased without affecting substrate efficiency. Thus, 4'-modifications may serve as a tool to increase selectivity towards HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- A Marx
- Department of Chemistry, University of Basel, St Johanns-Ring 19, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Mossi R, Ferrari E, Hübscher U. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair. J Biol Chem 1998; 273:14322-30. [PMID: 9603940 DOI: 10.1074/jbc.273.23.14322] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA transactions, we investigated the effect of DNA ligase I on various DNA synthesis events catalyzed by these two essential DNA polymerases. DNA ligase I inhibited replication factor C-independent DNA synthesis by polymerase delta. Our results suggest that the inhibition may be due to DNA ligase I interaction with proliferating cell nuclear antigen (PCNA) and not to a direct interaction with the DNA polymerase delta itself. Strand displacement activity by DNA polymerase delta was also affected by DNA ligase I. The DNA polymerase delta holoenzyme (composed of DNA polymerase delta, PCNA, and replication factor C) was inhibited in the same way as the DNA polymerase delta core, strengthening the hypothesis of a PCNA interaction. Contrary to DNA polymerase delta, DNA synthesis by DNA polymerase epsilon was stimulated by DNA ligase I in a PCNA-dependent manner. We conclude that DNA ligase I displays different influences on the two multipotent DNA polymerases delta and epsilon through PCNA. This might be of importance in the selective involvement in DNA transactions such as DNA replication and various mechanisms of DNA repair.
Collapse
Affiliation(s)
- R Mossi
- Institute of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|