1
|
Morón Á, Martín-González A, Díaz S, Gutiérrez JC, Amaro F. Autophagy and lipid droplets are a defense mechanism against toxic copper oxide nanotubes in the eukaryotic microbial model Tetrahymena thermophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157580. [PMID: 35882336 DOI: 10.1016/j.scitotenv.2022.157580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The widespread use of inorganic nanomaterials of anthropogenic origin has significantly increased in the last decade, being now considered as emerging pollutants. This makes it necessary to carry out studies to further understand their toxicity and interactions with cells. In the present work we analyzed the toxicity of CuO nanotubes (CuONT) in the ciliate Tetrahymena thermophila, a eukaryotic unicellular model with animal biology. CuONT exposure rapidly induced ROS generation in the cell leading to oxidative stress and upregulation of genes encoding antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), metal-chelating metallothioneins and cytochrome P450 monooxygenases. Comet assays and overexpression of genes involved in DNA repair confirmed oxidative DNA damage in CuONT-treated cells. Remarkably, both electron and fluorescent microscopy revealed numerous lipid droplets and autophagosomes containing CuONT aggregates and damaged mitochondria, indicating activation of macroautophagy, which was further confirmed by a dramatic upregulation of ATG (AuTophaGy related) genes. Treatment with autophagy inhibitors significantly increased CuONT toxicity, evidencing the protective role of autophagy towards CuONT-induced damage. Moreover, increased formation of lipid droplets appears as an additional mechanism of CuONT detoxification. Based on these results, we present a hypothetical scenario summarizing how T. thermophila responds to CuONT toxicity. This study corroborates the use of this ciliate as an excellent eukaryotic microbial model for analyzing the cellular response to stress caused by toxic metal nanoparticles.
Collapse
Affiliation(s)
- Álvaro Morón
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Saito R, Koizumi R, Sakai T, Shimizu T, Ono T, Sogame Y. Gamma Radiation Tolerance and Protein Carbonylation Caused by Irradiation of Resting Cysts in the Free-living Ciliated Protist Colpoda cucullus. ACTA PROTOZOOL 2020. [DOI: 10.4467/16890027ap.20.006.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ciliate Colpoda cucullus forms resting cysts to survive unfavorable environmental stresses. In this study, we have shown that Colpoda resting cysts survived exposure to a gamma radiation dose of 4000 Gy, although vegetative cells were killed by 500 Gy. After 4000 Gy irradiation, more than 90% of resting cysts and approximately 70% of dry cysts could excyst to form vegetative cells. In both cases, the excystment gradually increased after the induction of excystment. In addition, we also showed that protein carbonylation level was increased by gamma irradiation, but decreased by incubation in the cyst state. These results indicated that cell damage was repaired in resting cysts. Colpoda probably developed tolerance to gamma radiation by forming resting cysts as a strategy for growth in terrestrial environments, as part of contending with the stress due to reactive oxygen species caused by desiccation.
Collapse
|
3
|
Chan TK, Loh XY, Peh HY, Tan WNF, Tan WSD, Li N, Tay IJJ, Wong WSF, Engelward BP. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs. J Allergy Clin Immunol 2016; 138:84-96.e1. [PMID: 27157131 DOI: 10.1016/j.jaci.2016.02.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/14/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. OBJECTIVE We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. METHODS We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. RESULTS HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. CONCLUSION This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology.
Collapse
Affiliation(s)
- Tze Khee Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore; Singapore-MIT Alliance for Research and Technology (SMART), Infectious Diseases Interdisciplinary Research Group, Singapore
| | - Xin Yi Loh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore
| | - W N Felicia Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore
| | - Na Li
- Singapore-MIT Alliance for Research and Technology (SMART), Infectious Diseases Interdisciplinary Research Group, Singapore
| | - Ian J J Tay
- Agency for Science, Technology and Research Graduate Academy, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Mass
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore.
| | - Bevin P Engelward
- Singapore-MIT Alliance for Research and Technology (SMART), Infectious Diseases Interdisciplinary Research Group, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Mass
| |
Collapse
|
4
|
Opposing roles for two molecular forms of replication protein A in Rad51-Rad54-mediated DNA recombination in Plasmodium falciparum. mBio 2013; 4:e00252-13. [PMID: 23631919 PMCID: PMC3648904 DOI: 10.1128/mbio.00252-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bacterial RecA protein and its eukaryotic homologue Rad51 play a central role in the homologous DNA strand exchange reaction during recombination and DNA repair. Previously, our lab has shown that PfRad51, the Plasmodium falciparum homologue of Rad51, exhibited ATPase activity and promoted DNA strand exchange in vitro. In this study, we evaluated the catalytic functions of PfRad51 in the presence of putative interacting partners, especially P. falciparum homologues of Rad54 and replication protein A. PfRad54 accelerated PfRad51-mediated pairing between single-stranded DNA (ssDNA) and its homologous linear double-stranded DNA (dsDNA) in the presence of 0.5 mM CaCl2. We also present evidence that recombinant PfRPA1L protein serves the function of the bacterial homologue single-stranded binding protein (SSB) in initiating homologous pairing and strand exchange activity. More importantly, the function of PfRPA1L was negatively regulated in a dose-dependent manner by PfRPA1S, another RPA homologue in P. falciparum. Finally, we present in vivo evidence through comet assays for methyl methane sulfonate-induced DNA damage in malaria parasites and accompanying upregulation of PfRad51, PfRad54, PfRPA1L, and PfRPA1S at the level of transcript and protein needed to repair DNA damage. This study provides new insights into the role of putative Rad51-interacting proteins involved in homologous recombination and emphasizes the physiological role of DNA damage repair during the growth of parasites. Homologous recombination plays a major role in chromosomal rearrangement, and Rad51 protein, aided by several other proteins, plays a central role in DNA strand exchange reaction during recombination and DNA repair. This study reports on the characterization of the role of P. falciparum Rad51 in homologous strand exchange and DNA repair and evaluates the functional contribution of PfRad54 and PfRPA1 proteins. Data presented here provide mechanistic insights into DNA recombination and DNA damage repair mechanisms in this parasite. The importance of these research findings in future work will be to investigate if Rad51-dependent mechanisms are involved in chromosomal rearrangements during antigenic variation in P. falciparum. A prominent determinant of antigenic variation, the extraordinary ability of the parasite to rapidly change its surface molecules, is associated with var genes, and antigenic variation presents a major challenge to vaccine development.
Collapse
|
5
|
Howard-Till RA, Lukaszewicz A, Novatchkova M, Loidl J. A single cohesin complex performs mitotic and meiotic functions in the protist tetrahymena. PLoS Genet 2013; 9:e1003418. [PMID: 23555314 PMCID: PMC3610610 DOI: 10.1371/journal.pgen.1003418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
The cohesion of sister chromatids in the interval between chromosome replication and anaphase is important for preventing the precocious separation, and hence nondisjunction, of chromatids. Cohesion is accomplished by a ring-shaped protein complex, cohesin; and its release at anaphase occurs when separase cleaves the complex's α-kleisin subunit. Cohesin has additional roles in facilitating DNA damage repair from the sister chromatid and in regulating gene expression. We tested the universality of the present model of cohesion by studying cohesin in the evolutionarily distant protist Tetrahymena thermophila. Localization of tagged cohesin components Smc1p and Rec8p (the α-kleisin) showed that cohesin is abundant in mitotic and meiotic nuclei. RNAi knockdown experiments demonstrated that cohesin is crucial for normal chromosome segregation and meiotic DSB repair. Unexpectedly, cohesin does not detach from chromosome arms in anaphase, yet chromosome segregation depends on the activity of separase (Esp1p). When Esp1p is depleted by RNAi, chromosomes become polytenic as they undergo multiple rounds of replication, but fail to separate. The cohesion of such bundles of numerous chromatids suggests that chromatids may be connected by factors in addition to topological linkage by cohesin rings. Although cohesin is not detected in transcriptionally active somatic nuclei, its loss causes a slight defect in their amitotic division. Notably, Tetrahymena uses a single version of α-kleisin for both mitosis and meiosis. Therefore, we propose that the differentiation of mitotic and meiotic cohesins found in most other model systems is not due to the need of a specialized meiotic cohesin, but due to additional roles of mitotic cohesin.
Collapse
Affiliation(s)
- Rachel A. Howard-Till
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Fernandes J, Guedes PG, Lage CLS, Rodrigues JCF, Lage CDAS. Tumor malignancy is engaged to prokaryotic homolog toolbox. Med Hypotheses 2012; 78:435-41. [PMID: 22285198 DOI: 10.1016/j.mehy.2011.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/24/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022]
Abstract
Cancer cells display high proliferation rates and survival provided by high glycolysis, chemoresistance and radioresistance, metabolic features that appear to be activated with malignancy, and seemed to have arisen as early in evolution as in unicellular/prokaryotic organisms. Based on these assumptions, we hypothesize that aggressive phenotypes found in malignant cells may be related to acquired unicellular behavior, launched within a tumor when viral and prokaryotic homologs are overexpressed performing likely robust functions. The ensemble of these expressed viral and prokaryotic close homologs in the proteome of a tumor tissue gives them advantage over normal cells. To assess the hypothesis validity, sequences of human proteins involved in apoptosis, energetic metabolism, cell mobility and adhesion, chemo- and radio-resistance were aligned to homologs present in other life forms, excluding all eukaryotes, using PSI-BLAST, with further corroboration from data available in the literature. The analysis revealed that selected sequences of proteins involved in apoptosis and tumor suppression (as p53 and pRB) scored non-significant (E-value>0.001) with prokaryotic homologs; on the other hand, human proteins involved in cellular chemo- and radio-resistance scored highly significant with prokaryotic and viral homologs (as catalase, E-value=zero). We inferred that such upregulated and/or functionally activated proteins in aggressive malignant cells represent a toolbox of modern human homologs evolved from a similar key set that have granted survival of ancient prokaryotes against extremely harsh environments. According to what has been discussed along this analysis, high mutation rates usually hit hotspots in important conserved protein domains, allowing uncontrolled expansion of more resistant, death-evading malignant clones. That is the case of point mutations in key viral proteins affording viruses escape to chemotherapy, and human homologs of such retroviral proteins (as Ras, Akt and EGFR) can elicit the same phenotype. Furthermore, a corollary to this hypothesis presumes that target-directed anti-cancer therapy should target human protein domains of low similarity to prokaryotic homologs for a well-succeeded anti-cancer therapy.
Collapse
Affiliation(s)
- Janaina Fernandes
- Instituto de Biofísica Carlos Chagas Filho, Pólo Xerém, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Abstract
The ciliate Tetrahymena thermophila can be said to undergo a variety of developmental programs. During vegetative growth, cells coordinate a variety of cell-cycle operations including macronuclear DNA synthesis and a-mitotic fission, micronuclear DNA synthesis and mitosis, cytokinesis and an elaborate program of cortical morphogenesis that replicates the cortical organelles. When starved, cells undergo oral replacement, transformation into fast-swimming dispersal forms or, when encountering cells of a complementary mating type, conjugation. Conjugation involves a 12 hour program of meiosis, mitosis, nuclear exchange and karyogamy, and two postzygotic divisions of the fertilization nucleus. This chapter reviews experimental data exploring the developmental dependencies associated with both vegetative and conjugal development.
Collapse
|
8
|
Howard-Till RA, Lukaszewicz A, Loidl J. The recombinases Rad51 and Dmc1 play distinct roles in DNA break repair and recombination partner choice in the meiosis of Tetrahymena. PLoS Genet 2011; 7:e1001359. [PMID: 21483758 PMCID: PMC3069121 DOI: 10.1371/journal.pgen.1001359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 03/01/2011] [Indexed: 11/18/2022] Open
Abstract
Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3' single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA-strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB-dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination.
Collapse
Affiliation(s)
- Rachel A. Howard-Till
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
|
10
|
Mochizuki K, Novatchkova M, Loidl J. DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena. J Cell Sci 2008; 121:2148-58. [PMID: 18522989 PMCID: PMC3184542 DOI: 10.1242/jcs.031799] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
During meiosis, the micronuclei of the ciliated protist Tetrahymena thermophila elongate dramatically. Within these elongated nuclei, chromosomes are arranged in a bouquet-like fashion and homologous pairing and recombination takes place. We studied meiotic chromosome behavior in Tetrahymena in the absence of two genes, SPO11 and a homolog of HOP2 (HOP2A), which have conserved roles in the formation of meiotic DNA double-strand breaks (DSBs) and their repair, respectively. Single-knockout mutants for each gene display only a moderate reduction in chromosome pairing, but show a complete failure to form chiasmata and exhibit chromosome missegregation. The lack of SPO11 prevents the elongation of meiotic nuclei, but it is restored by the artificial induction of DSBs. In the hop2ADelta mutant, the transient appearance of gamma-H2A.X and Rad51p signals indicates the formation and efficient repair of DSBs; but this repair does not occur by interhomolog crossing over. In the absence of HOP2A, the nuclei are elongated, meaning that DSBs but not their conversion to crossovers are required for the development of this meiosis-specific morphology. In addition, by in silico homology searches, we compiled a list of likely Tetrahymena meiotic proteins as the basis for further studies of the unusual synaptonemal complex-less meiosis in this phylogenetically remote model organism.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr Bohr Gasse 1, A-1030 Vienna, Austria
| |
Collapse
|
11
|
López-Casamichana M, Orozco E, Marchat LA, López-Camarillo C. Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica. BMC Mol Biol 2008; 9:35. [PMID: 18402694 PMCID: PMC2324109 DOI: 10.1186/1471-2199-9-35] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/10/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In eukaryotic and prokaryotic cells, homologous recombination is an accurate mechanism to generate genetic diversity, and it is also used to repair DNA double strand-breaks. RAD52 epistasis group genes involved in recombinational DNA repair, including mre11, rad50, nsb1/xrs2, rad51, rad51c/rad57, rad51b/rad55, rad51d, xrcc2, xrcc3, rad52, rad54, rad54b/rdh54 and rad59 genes, have been studied in human and yeast cells. Notably, the RAD51 recombinase catalyses strand transfer between a broken DNA and its undamaged homologous strand, to allow damaged region repair. In protozoan parasites, homologous recombination generating antigenic variation and genomic rearrangements is responsible for virulence variation and drug resistance. However, in Entamoeba histolytica the protozoan parasite responsible for human amoebiasis, DNA repair and homologous recombination mechanisms are still unknown. RESULTS In this paper, we initiated the study of the mechanism for DNA repair by homologous recombination in the primitive eukaryote E. histolytica using UV-C (150 J/m2) irradiated trophozoites. DNA double strand-breaks were evidenced in irradiated cells by TUNEL and comet assays and evaluation of the EhH2AX histone phosphorylation status. In E. histolytica genome, we identified genes homologous to yeast and human RAD52 epistasis group genes involved in DNA double strand-breaks repair by homologous recombination. Interestingly, the E. histolytica RAD52 epistasis group related genes were differentially expressed before and after UV-C treatment. Next, we focused on the characterization of the putative recombinase EhRAD51, which conserves the typical architecture of RECA/RAD51 proteins. Specific antibodies immunodetected EhRAD51 protein in both nuclear and cytoplasmic compartments. Moreover, after DNA damage, EhRAD51 was located as typical nuclear foci-like structures in E. histolytica trophozoites. Purified recombinant EhRAD51 exhibited DNA binding and pairing activities and exchanging reactions between homologous strands in vitro. CONCLUSION E. histolytica genome contains most of the RAD52 epistasis group related genes, which were differentially expressed when DNA double strand-breaks were induced by UV-C irradiation. In response to DNA damage, EhRAD51 protein is overexpressed and relocalized in nuclear foci-like structures. Functional assays confirmed that EhRAD51 is a bonafide recombinase. These data provided the first insights about the potential roles of the E. histolytica RAD52 epistasis group genes and EhRAD51 protein function in DNA damage response of this ancient eukaryotic parasite.
Collapse
Affiliation(s)
- Mavil López-Casamichana
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México DF, México
| | - Esther Orozco
- Departamento de Patología Experimental, CINVESTAV-IPN, México DF, México
| | - Laurence A Marchat
- Programa Institucional de Biomedicina Molecular, ENMH-IPN, México DF, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México DF, México
| |
Collapse
|
12
|
Au WWY, Henderson BR. Identification of sequences that target BRCA1 to nuclear foci following alkylative DNA damage. Cell Signal 2007; 19:1879-92. [PMID: 17531442 DOI: 10.1016/j.cellsig.2007.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 11/24/2022]
Abstract
BRCA1 is a tumor suppressor involved in the maintenance of genome integrity. BRCA1 co-localizes with DNA repair proteins at nuclear foci in response to DNA double-strand breaks caused by ionizing radiation (IR). The response of BRCA1 to agents that elicit DNA single-strand breaks (SSB) is poorly defined. In this study, we compared chemicals that induce SSB repair and observed the most striking nuclear redistribution of BRCA1 following treatment with the alkylating agent methyl methanethiosulfonate (MMTS). In MCF-7 breast cancer cells, MMTS induced movement of endogenous BRCA1 into distinctive nuclear foci that co-stained with the SSB repair protein XRCC1, but not the DSB repair protein gamma-H2AX. XRCC1 did not accumulate in foci after ionizing radiation. Moreover, we showed by deletion mapping that different sequences target BRCA1 to nuclear foci induced by MMTS or by ionizing radiation. We identified two core MMTS-responsive sequences in BRCA1: the N-terminal BARD1-binding domain (aa1-304) and the C-terminal sequence aa1078-1312. These sequences individually are ineffective, but together they facilitated BRCA1 localization at MMTS-induced foci. Site-directed mutagenesis of two SQ/TQ motif serines (S1143A and S1280A) in the BRCA1 fusion protein reduced, but did not abolish, targeting to MMTS-inducible foci. This is the first report to describe co-localization of BRCA1 with XRCC1 at SSB repair foci. Our results indicate that BRCA1 requires BARD1 for targeting to different types of DNA lesion, and that distinct C-terminal sequences mediate selective recruitment to sites of double- or single-strand DNA damage.
Collapse
Affiliation(s)
- Wendy W Y Au
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead NSW 2145, Australia
| | | |
Collapse
|
13
|
Yakisich JS, Sandoval PY, Morrison TL, Kapler GM. TIF1 activates the intra-S-phase checkpoint response in the diploid micronucleus and amitotic polyploid macronucleus of Tetrahymena. Mol Biol Cell 2006; 17:5185-97. [PMID: 17005912 PMCID: PMC1679683 DOI: 10.1091/mbc.e06-05-0469] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ribosomal DNA origin binding protein Tif1p regulates the timing of rDNA replication and is required globally for proper S-phase progression and division of the Tetrahymena thermophila macronucleus. Here, we show that Tif1p safeguards chromosomes from DNA damage in the mitotic micronucleus and amitotic macronucleus. TIF1p localization is dynamically regulated as it moves into the micro- and macronucleus during the respective S phases. TIF1 disruption mutants are hypersensitive to hydroxyurea and methylmethanesulfonate, inducers of DNA damage and intra-S-phase checkpoint arrest in all examined eukaryotes. TIF1 mutants incur double-strand breaks in the absence of exogenous genotoxic stress, destabilizing all five micronuclear chromosomes. Wild-type Tetrahymena elicits an intra-S-phase checkpoint response that is induced by hydroxyurea and suppressed by caffeine, an inhibitor of the apical checkpoint kinase ATR/MEC1. In contrast, hydroxyurea-challenged TIF1 mutants fail to arrest in S phase or exhibit caffeine-sensitive Rad51 overexpression, indicating the involvement of TIF1 in checkpoint activation. Although aberrant micro- and macronuclear division occurs in TIF1 mutants and caffeine-treated wild-type cells, TIF1p bears no similarity to ATR or its substrates. We propose that TIF1 and ATR function in the same epistatic pathway to regulate checkpoint responses in the diploid mitotic micronucleus and polyploid amitotic macronucleus.
Collapse
Affiliation(s)
- J. Sebastian Yakisich
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Pamela Y. Sandoval
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Tara L. Morrison
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| |
Collapse
|
14
|
King EW, Audette K, Athman GA, Nguyen OXH, Sluka KA, Fairbanks CA. Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors. Pain 2005; 115:364-373. [PMID: 15911163 DOI: 10.1016/j.pain.2005.03.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 01/31/2005] [Accepted: 03/14/2005] [Indexed: 11/29/2022]
Abstract
The alpha2A and alpha2C adrenergic receptor (AR) subtypes mediate antinociception when activated by the endogenous ligand norepinephrine. These receptors also produce antinociceptive synergy when activated concurrently with opioid receptor activation. The involvement of the opioid receptors in the mechanisms governing transcutaneous electrical nerve stimulation (TENS) has been well described. While spinal alpha-2 ARs do not appear to be involved in TENS antihyperalgesia in rats, the noradrenergic analgesic system also involves supraspinal and peripheral sites. Thus, a broader evaluation of the potential contribution of alpha-2 AR to TENS is warranted. The current study compared the antihyperalgesic efficacy of high (100 Hz) and low (4 Hz) frequency TENS in mutant mice lacking a functional alpha2A AR against their respective wildtype counterparts. The degree of secondary heat hyperalgesia induced by intra-articular injection of carrageenan/kaolin (3%) mixture did not differ among the experimental groups. However, the antihyperalgesia induced by both low and high frequency TENS was significantly diminished in alpha2A mutant mice compared to controls. The alpha2 adrenergic receptor selective antagonist, SK&F 86466, reversed TENS-mediated antihyperalgesia when delivered intra-articularly, but not when delivered intrathecally or intracerebroventricularly. These data suggest that peripheral alpha2 ARs contribute, in part, to TENS antihyperalgesia. This pharmacodynamic response is consistent with previous anatomical observations that alpha2A ARs are expressed on primary afferent neurons and macrophages near injured tissue.
Collapse
Affiliation(s)
- Ellen W King
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA Center for Pain Research, University of Minnesota, Minneapolis, MN 55455, USA Graduate Program in Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, Iowa City, IA 52242-1190, USA Graduate Program in Neuroscience Graduate Program, University of Iowa, Iowa City, IA 52242-1190, USA Graduate Program in Pain Research Program, University of Iowa, Iowa City, IA 52242-1190, USA Graduate Program in College of Medicine, University of Iowa, Iowa City, IA 52242-1190, USA
| | | | | | | | | | | |
Collapse
|
15
|
Smith JJ, Cole ES, Romero DP. Transcriptional control of RAD51 expression in the ciliate Tetrahymena thermophila. Nucleic Acids Res 2004; 32:4313-21. [PMID: 15304567 PMCID: PMC514391 DOI: 10.1093/nar/gkh771] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 11/15/2022] Open
Abstract
The expression of Rad51p, a DNA repair protein that mediates homologous recombination, is induced by DNA damage and during both meiosis and exconjugant development in the ciliate Tetrahymena thermophila. To completely investigate the transcriptional regulation of Tetrahymena RAD51 expression, reporter genes consisting of the RAD51 5' non-translated sequence (5' NTS) positioned upstream of either the firefly luciferase or green fluorescent protein coding sequences have been targeted for recombination at the macronuclear btu1-1 (K350M) locus of T. thermophila strain CU522. Expression from RAD51-luciferase reporter constructs has been directly quantified from transformant whole cell lysates. Luciferase is induced to maximum levels in transformants harboring the full-length RAD51-luciferase reporter gene following exposure to DNA damaging UV irradiation. A series of truncations, deletions, insertions, substitutions and inversions of the RAD51 5' NTS have led to the identification of three distinct transcriptional promoter elements. The first of these sequence elements is required for basal levels of transcription. The second modulates expression in the absence of DNA damage, whereas the third ensures increased RAD51 transcription in response to DNA damage and during meiosis. Tetrahymena RAD51 is tightly regulated through these transcriptional elements to produce the appropriate expression during conjugation, and in response to DNA damage.
Collapse
Affiliation(s)
- Joshua J Smith
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
16
|
Bhattacharyya MK, Kumar N. Identification and molecular characterisation of DNA damaging agent induced expression of Plasmodium falciparum recombination protein PfRad51. Int J Parasitol 2003; 33:1385-92. [PMID: 14527521 DOI: 10.1016/s0020-7519(03)00212-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rad51 protein, the eukaryotic homologue of Escherichia coli RecA protein plays a pivotal role in recombinational repair mechanism. We have identified a new homologue of Rad51 from the apicomplexan parasite Plasmodium falciparum, designated PfRad51. The PfRad51 gene codes for a 351 amino acid polypeptide with a predicted molecular mass of 38720, and shares 66-75% sequence identity within the catalytic region with Rad51 from human, yeast and other protozoan parasites such as Trypanosoma and Leishmania. The expression of PfRad51 transcript as well as protein in the intra-erythrocytic in vitro culture of P. flalciparum was found to be up-regulated in response to the DNA damaging agent methyl methanesulfonate, suggesting its functional involvement in recombinational repair process. PfRad51 is the first apicomplexan gene identified that codes for a recombination protein, and it offers an excellent model for studying DNA damage inducible gene expression in such parasites.
Collapse
Affiliation(s)
- Mrinal Kanti Bhattacharyya
- Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
17
|
Markmann-Mulisch U, Hadi MZ, Koepchen K, Alonso JC, Russo VEA, Schell J, Reiss B. The organization of Physcomitrella patensRAD51 genes is unique among eukaryotic organisms. Proc Natl Acad Sci U S A 2002; 99:2959-64. [PMID: 11880641 PMCID: PMC122455 DOI: 10.1073/pnas.032668199] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic recombination pathways and genes are well studied, but relatively little is known in plants, especially in lower plants. To study the recombination apparatus of a lower land plant, a recombination gene well characterized particularly in yeast, mouse, and man, the RAD51 gene, was isolated from the moss Physcomitrella patens and characterized. Two highly homologous RAD51 genes were found to be present. Duplicated RAD51 genes have been found thus far exclusively in eukaryotes with duplicated genomes. Therefore the presence of two highly homologous genes suggests a recent genome duplication event in the ancestry of Physcomitrella. Comparison of the protein sequences to Rad51 proteins from other organisms showed that both RAD51 genes originated within the group of plant Rad51 proteins. However, the two proteins form a separate clade in a phylogenetic tree of plant Rad51 proteins. In contrast to RAD51 genes from other multicellular eukaryotes, the Physcomitrella genes are not interrupted by introns. Because introns are a common feature of Physcomitrella genes, the lack of introns in the RAD51 genes is unusual and may indicate the presence of an unusual recombination apparatus in this organism. The presence of duplicated intronless RAD51 genes is unique among eukaryotes. Studies of further members of this lineage are needed to determine whether this feature may be typical of lower plants.
Collapse
Affiliation(s)
- Ulrich Markmann-Mulisch
- Max-Planck-Institut fuer Zuechtungsforschung, Carl-Von-Linne-Weg 10, D-50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Marsh TC, Cole ES, Romero DP. The transition from conjugal development to the first vegetative cell division is dependent on RAD51 expression in the ciliate Tetrahymena thermophila. Genetics 2001; 157:1591-8. [PMID: 11290715 PMCID: PMC1461587 DOI: 10.1093/genetics/157.4.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rad51p, the eukaryotic homolog of the prokaryotic recA protein, catalyzes strand exchange between single- and double-stranded DNA and is involved in both genetic recombination and double-strand break repair in the ciliate Tetrahymena thermophila. We have previously shown that disruption of the Tetrahymena RAD51 somatic macronuclear locus leads to defective germline micronuclear division and that conjugation of two somatic rad51 null strains results in an early meiotic arrest. We have constructed Tetrahymena strains that are capable of RAD51 expression from their parental macronuclei and are homozygous, rad51 nulls in their germline micronuclei. These rad51 null heterokaryons complete all of the early and middle stages of conjugation, including meiosis, haploid nuclear exchange, zygotic fusion, and the programmed chromosome fragmentations, sequence eliminations, and rDNA amplification that occur during macronuclear development. However, the rad51 null progeny fail to initiate the first vegetative cell division following conjugal development. Coincident with the developmental arrest is a disproportionate amplification of rDNA, despite the maintenance of normal total DNA content in the developing macronuclei. Fusion of arrested rad51 null exconjugants to wild-type cells is sufficient to overcome the arrest. Cells rescued by cytoplasmic fusion continue to divide, eventually recapitulating the micronuclear mitotic defects described previously for rad51 somatic nulls.
Collapse
Affiliation(s)
- T C Marsh
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
19
|
Marsh TC, Cole ES, Stuart KR, Campbell C, Romero DP. RAD51 is required for propagation of the germinal nucleus in Tetrahymena thermophila. Genetics 2000; 154:1587-96. [PMID: 10747055 PMCID: PMC1461009 DOI: 10.1093/genetics/154.4.1587] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RAD51, the eukaryote homolog of the Escherichia coli recA recombinase, participates in homologous recombination during mitosis, meiosis, and in the repair of double-stranded DNA breaks. The Tetrahymena thermophila RAD51 gene was recently cloned, and the in vitro activities and induction of Rad51p following DNA damage were shown to be similar to that of RAD51 from other species. This study describes the pattern of Tetrahymena RAD51 expression during both the cell cycle and conjugation. Tetrahymena RAD51 mRNA abundance is elevated during macronuclear S phase during vegetative cell growth and with both meiotic prophase and new macronuclear development during conjugation. Gene disruption of the macronuclear RAD51 locus leads to severe abnormalities during both vegetative growth and conjugation. rad51 nulls divide slowly and incur rapid deterioration of their micronuclear chromosomes. Conjugation of two rad51 nulls leads to an arrest early during prezygotic development (meiosis I). We discuss the potential usefulness of the ciliates' characteristic nuclear duality for further analyses of the potentially unique roles of Tetrahymena RAD51.
Collapse
Affiliation(s)
- T C Marsh
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|