1
|
Öztürk Ö, Lessl AL, Höhn M, Wuttke S, Nielsen PE, Wagner E, Lächelt U. Peptide nucleic acid-zirconium coordination nanoparticles. Sci Rep 2023; 13:14222. [PMID: 37648689 PMCID: PMC10469198 DOI: 10.1038/s41598-023-40916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Ideal drug carriers feature a high loading capacity to minimize the exposure of patients with excessive, inactive carrier materials. The highest imaginable loading capacity could be achieved by nanocarriers, which are assembled from the therapeutic cargo molecules themselves. Here, we describe peptide nucleic acid (PNA)-based zirconium (Zr) coordination nanoparticles which exhibit very high PNA loading of [Formula: see text] w/w. This metal-organic hybrid nanomaterial class extends the enormous compound space of coordination polymers towards bioactive oligonucleotide linkers. The architecture of single- or double-stranded PNAs was systematically varied to identify design criteria for the coordination driven self-assembly with Zr(IV) nodes at room temperature. Aromatic carboxylic acid functions, serving as Lewis bases, and a two-step synthesis process with preformation of [Formula: see text] turned out to be decisive for successful nanoparticle assembly. Confocal laser scanning microscopy confirmed that the PNA-Zr nanoparticles are readily internalized by cells. PNA-Zr nanoparticles, coated with a cationic lipopeptide, successfully delivered an antisense PNA sequence for splicing correction of the [Formula: see text]-globin intron mutation IVS2-705 into a functional reporter cell line and mediated splice-switching via interaction with the endogenous mRNA splicing machinery. The presented PNA-Zr nanoparticles represent a bioactive platform with high design flexibility and extraordinary PNA loading capacity, where the nucleic acid constitutes an integral part of the material, instead of being loaded into passive delivery systems.
Collapse
Affiliation(s)
- Özgür Öztürk
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
- Department of Genetic and Bio Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Anna-Lina Lessl
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Stefan Wuttke
- Basque Center for Materials (BCMaterials), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany.
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Nair S, El-Yazbi AF. Novel genosensor for probing DNA mismatches and UV-induced DNA damage: Sequence-specific recognition. Int J Biol Macromol 2023; 233:123510. [PMID: 36739048 DOI: 10.1016/j.ijbiomac.2023.123510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Human genome is continuously susceptible to changes that may lead to undesirable mutations causing various diseases and cancer. Vast majority of techniques has investigated the discrimination between base-pair mismatched nucleic acid, but many of these techniques are time-consuming, complex, expensive, and limited to the detection of specific type of dsDNA mismatches. In this study, we introduce a simple mix-and-read assay for the sensitive and cost-effective analysis of DNA base mismatches and UV-induced DNA damage using Hoechst genosensor dye (H258). This dye is a minor groove binder that undergoes a drastic conformational change upon binding with mismatch DNA. The difference in binding affinity between perfectly matched and mismatched DNA was studied for sequences at different base mismatch locations and finally, extended for the detection of dsDNA damage by UVC radiation in calf thymus DNA. In addition, a comparative DNA damage kinetic study was performed using H258 (minor groove binder) and EvaGreen (intercalating) dye to get insight on assay selectivity and sensitivity with dye binding mechanism. The result shows good reproducibility making H258 genosensor a cheaper alternative for DNA mismatch and damage studies with possibility of extension for in-vitro detection of hot spots of DNA mutations.
Collapse
Affiliation(s)
- Sindhu Nair
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Amira F El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
3
|
Two novel "release-on-demand" fluorescent biosensors for probing UV-induced DNA damage induced in single stranded and double stranded DNA: Comparative study. Int J Biol Macromol 2022; 215:657-664. [PMID: 35777509 DOI: 10.1016/j.ijbiomac.2022.06.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Light in the UVC spectral region damages both single-strand (ssDNA) and double-strand DNA (dsDNA), and contributes to the formation of mutagenic photoproducts. In-vivo studies show greater damage for ssDNA compared to dsDNA. However, excited-state spectroscopy shows that dsDNA has longer excited-state lifetime than ssDNA, which increases the probability of damage for dsDNA. However, lack of a direct comparison of in-vitro ssDNA and dsDNA damage rates precludes the development of a model that elucidates the molecular factors responsible for damage. In this work, two novel sensitive "release-on-demand" biosensors are developed for the selective probing of DNA-damage and comparing the rate of DNA damage in ssDNA and dsDNA. The two biosensors involve the use of EvaGreen and Hoechst dyes for the sensitive probing of DNA-damage. The results show that ssDNA is damaged at a faster rate than dsDNA in the presence of UVC light (200-295 nm). Furthermore, we examined the effect of G/C composition on the damage rate for mostly A/T ssDNA and dsDNA oligonucleotides. Our results show that DNA damage rates are highly dependent on the fraction of guanines in the sequence, but that in-vitro dsDNA always exhibits an overall slower rate of damage compared to ssDNA, essentially independent of sequence.
Collapse
|
4
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
5
|
Topham CM, Smith JC. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 2021; 35:355-369. [PMID: 33624202 DOI: 10.1007/s10822-021-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Sequence-specific targeting of double-stranded DNA and non-coding RNA via triple-helix-forming peptide nucleic acids (PNAs) has attracted considerable attention in therapeutic, diagnostic and nanotechnological fields. An E-base (3-oxo-2,3-dihydropyridazine), attached to the polyamide backbone of a PNA Hoogsteen strand by a side-chain linker molecule, is typically used in the hydrogen bond recognition of the 4-oxo group of thymine and uracil nucleic acid bases in the major groove. We report on the application of quantum chemical computational methods, in conjunction with spatial constraints derived from the experimental structure of a homopyrimidine PNA·DNA-PNA hetero-triplex, to investigate the influence of linker flexibility on binding interactions of the E-base with thymine and uracil bases in geometry-optimised model systems. Hydrogen bond formation between the N2 E-base atom and target pyrimidine base 4-oxo groups in model systems containing a β-alanine linker (J Am Chem Soc 119:11116, 1997) was found to incur significant internal strain energy and the potential disruption of intra-stand aromatic base stacking interactions in an oligomeric context. In geometry-optimised model systems containing a 3-trans olefin linker (Bioorg Med Chem Lett 14:1551, 2004) the E-base swung out away from the target pyrimidine bases into the solvent. These findings are in qualitative agreement with calorimetric measurements in hybridisation experiments at T-A and U-A inversion sites. In contrast, calculations on a novel 2-cis olefin linker design indicate that it could permit simultaneous E-base hydrogen bonding with the thymine 4-oxo group, circumvention and solvent screening of the thymine 5-methyl group, and maintenance of triplex intra-stand base stacking interactions.
Collapse
Affiliation(s)
- Christopher M Topham
- Molecular Forces Consulting, 24 Avenue Jacques Besse, 81500, Lavaur, France.
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany.
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.
| | - Jeremy C Smith
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
| |
Collapse
|
6
|
Kuhn H, Demidov VV, Frank-Kamenetskii MD. An earring for the double helix: assembly of topological links comprising duplex DNA and a circular oligodeoxynucleotide. J Biomol Struct Dyn 2016; 17 Suppl 1:221-5. [PMID: 22607428 DOI: 10.1080/07391102.2000.10506625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract Novel DNA nanostructures, locked pseudorotaxane and locked catenane were assembled through topological linkage of a double-stranded target to a circular oligodeoxyribonucleotide (cODN)(+). The formation of these supramolecular complexes occurs with remarkable sequence specificity and is accomplished via local opening of duplex DNA by a pair of homopyrimidine bis-PNAs. The obtained cODN label, resembling an earring, forms a true topological link with the linear or closed circular (cc) target DNA and occupies a fixed position along the double helix. The PNA directed assembly described here introduces PNA oligomers into the repertoire of DNA nanotechnological tools.
Collapse
Affiliation(s)
- H Kuhn
- a Center for Advanced Biotechnology, Department of Biomedical Engineering , Boston University , 36 Cummington St. , Boston , MA , 02215
| | | | | |
Collapse
|
7
|
Artificial Nucleic Acid Probes and Their Applications in Clinical Microbiology. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Smolina I, Miller NS, Frank-Kamenetskii MD. PNA-based microbial pathogen identification and resistance marker detection: An accurate, isothermal rapid assay based on genome-specific features. ARTIFICIAL DNA, PNA & XNA 2014; 1:76-82. [PMID: 21686242 DOI: 10.4161/adna.1.2.13256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 01/12/2023]
Abstract
With the rapidly growing availability of the entire genome sequences of microbial pathogens, there is unmet need for increasingly sensitive systems to monitor the gene-specific markers for diagnosis of bacteremia that enables an earlier detection of causative agent and determination of drug resistance. To address these challenges, a novel FISH-type genomic sequence-based molecular technique is proposed that can identify bacteria and simultaneously detect antibiotic resistance markers for rapid and accurate testing of pathogens. The approach is based on a synergistic combination of advanced Peptide Nucleic Acid (PNA)-based technology and signal-enhancing Rolling Circle Amplification (RCA) reaction to achieve a highly specific and sensitive assay. A specific PNA-DNA construct serves as an exceedingly selective and very effective biomarker, while RCA enhances detection sensitivity and provide with a highly multiplexed assay system. Distinct-color fluorescent decorator probes are used to identify about 20-nucleotide-long signature sequences in bacterial genomic DNA and/or key genetic markers of drug resistance in order to identify and characterize various pathogens. The technique's potential and its utility for clinical diagnostics are illustrated by identification of S. aureus with simultaneous discrimination of methicillin-sensitive (MSSA) versus methicillin-resistant (MRSA) strains. Overall these promising results hint to the adoption of PNA-based rapid sensitive detection for diagnosis of other clinically relevant organisms. Thereby, new assay enables significantly earlier administration of appropriate antimicrobial therapy and may, thus have a positive impact on the outcome of the patient.
Collapse
Affiliation(s)
- Irina Smolina
- Center for Advanced Biotechnology and Department of Biomedical Engineering; Boston University; Boston, MA USA
| | | | | |
Collapse
|
9
|
Kuhn H, Sahu B, Rapireddy S, Ly DH, Frank-Kamenetskii MD. Sequence specificity at targeting double-stranded DNA with a γ-PNA oligomer modified with guanidinium G-clamp nucleobases. ARTIFICIAL DNA, PNA & XNA 2014; 1:45-53. [PMID: 21687526 DOI: 10.4161/adna.1.1.12444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 11/19/2022]
Abstract
γ-PNA, a new class of peptide nucleic acids, promises to overcome previous sequence limitations of double-stranded DNA (dsDNA) targeting with PNA. To check the potential of γ-PNA, we have synthesized a biotinylated, pentadecameric γ-PNA of mixed sequence carrying three guanidinium G-clamp nucleobases. We have found that strand invasion reactions of the γ-PNA oligomer to its fully complementary target within dsDNA occurs with significantly higher binding rates than to targets containing single mismatches. Association of the PNA oligomer to mismatched targets does not go to completion but instead reaches a stationary level at or below 60%, even at conditions of very low ionic strength. Initial binding rates to both matched and mismatched targets experience a steep decrease with increasing salt concentration. We demonstrate that a linear DNA target fragment with the correct target sequence can be purified from DNA mixtures containing mismatched target or unrelated genomic DNA by affinity capture with streptavidin-coated magnetic beads. Similarly, supercoiled plasmid DNA is obtained with high purity from an initial sample mixture that included a linear DNA fragment with the fully complementary sequence. Based on the results obtained in this study we believe that γ-PNA has a great potential for specific targeting of chosen duplex DNA sites in a sequence-unrestricted fashion.
Collapse
Affiliation(s)
- Heiko Kuhn
- Center for Advanced Biotechnology; Department of Biomedical Engineering; Boston University; Boston, MA USA
| | | | | | | | | |
Collapse
|
10
|
Konry T, Lerner A, Yarmush ML, Smolina IV. Target DNA detection and quantitation on a single cell with single base resolution. TECHNOLOGY 2013; 1:88. [PMID: 24977169 PMCID: PMC4073798 DOI: 10.1142/s2339547813500088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this report, we present a new method for sensitive detection of short DNA sites in single cells with single base resolution. The method combines peptide nucleic acid (PNA) openers as the tagging probes, together with isothermal rolling circle amplification (RCA) and fluorescence-based detection, all performed in a cells-in-flow format. Bis-PNAs provide single base resolution, while RCA ensures linear signal amplification. We applied this method to detect the oncoviral DNA inserts in cancer cell lines using a flow-cytometry system. We also demonstrated quantitative detection of the selected signature sites within single cells in microfluidic nano-liter droplets. Our results show single-nucleotide polymorphism (SNP) discrimination and detection of copy-number variations (CNV) under isothermal non-denaturing conditions. This new method is ideal for many applications in which ultra-sensitive DNA characterization with single base resolution is desired on the level of single cells.
Collapse
|
11
|
Yamazaki T, Aiba Y, Yasuda K, Sakai Y, Yamanaka Y, Kuzuya A, Ohya Y, Komiyama M. Clear-cut observation of PNA invasion using nanomechanical DNA origami devices. Chem Commun (Camb) 2013; 48:11361-3. [PMID: 23073563 DOI: 10.1039/c2cc36358e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Invasive binding event of PNA into DNA duplex was clearly observed both by atomic force microscope (AFM) imaging and electrophoretic mobility shift assay (EMSA) with the aid of nanomechanical DNA origami devices as 'single-molecule' visual probes, showing their potential as universal platform for the analysis of PNA invasion.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ackermann D, Famulok M. Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology. Nucleic Acids Res 2013; 41:4729-39. [PMID: 23444144 PMCID: PMC3632119 DOI: 10.1093/nar/gkt121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structural reorganization of nanoscale DNA architectures is a fundamental aspect in dynamic DNA nanotechnology. Commonly, DNA nanoarchitectures are reorganized by means of toehold-expanded DNA sequences in a strand exchange process. Here we describe an unprecedented, toehold-free switching process that relies on pseudo-complementary peptide nucleic acid (pcPNA) by using a mechanism that involves double-strand invasion. The usefulness of this approach is demonstrated by application of these peptide nucleic acids (PNAs) as switches in a DNA rotaxane architecture. The monomers required for generating the pcPNA were obtained by an improved synthesis strategy and were incorporated into a PNA actuator sequence as well as into a short DNA strand that subsequently was integrated into the rotaxane architecture. Alternate addition of a DNA and PNA actuator sequence allowed the multiple reversible switching between a mobile rotaxane macrocycle and a stationary pseudorotaxane state. The switching occurs in an isothermal process at room temperature and is nearly quantitative in each switching step. pcPNAs can potentially be combined with light- and toehold-based switches, thus broadening the toolbox of orthogonal switching approaches for DNA architectures that open up new avenues in dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Damian Ackermann
- Chemical Biology and Medicinal Chemistry Unit, LIMES Institute, c/o Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | |
Collapse
|
13
|
Nanopores: Single-Molecule Sensors of Nucleic Acid-Based Complexes. ADVANCES IN CHEMICAL PHYSICS 2012. [DOI: 10.1002/9781118180396.ch6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
14
|
Breitenstein M, Nielsen PE, Hölzel R, Bier FF. DNA-nanostructure-assembly by sequential spotting. J Nanobiotechnology 2011; 9:54. [PMID: 22099392 PMCID: PMC3248840 DOI: 10.1186/1477-3155-9-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. RESULTS For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. CONCLUSIONS The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.
Collapse
Affiliation(s)
- Michael Breitenstein
- Fraunhofer Institute for Biomedical Engineering Department of Nanobiotechnology and Nanomedicine Am Mühlenberg 13, 14476 Potsdam, Germany
- University of Potsdam Institute for Biochemistry and Biology Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Health Science Faculty University of Copenhagen Blegdamsvej 3c, DK-2100 N, Copenhagen, Denmark
| | - Ralph Hölzel
- Fraunhofer Institute for Biomedical Engineering Department of Nanobiotechnology and Nanomedicine Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Frank F Bier
- Fraunhofer Institute for Biomedical Engineering Department of Nanobiotechnology and Nanomedicine Am Mühlenberg 13, 14476 Potsdam, Germany
- University of Potsdam Institute for Biochemistry and Biology Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
15
|
Zohar H, Muller SJ. Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. NANOSCALE 2011; 3:3027-39. [PMID: 21734993 PMCID: PMC3322637 DOI: 10.1039/c1nr10280j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review is a practical guide for experimentalists interested in specifically labeling internal sequences on double-stranded (ds) DNA molecules for single-molecule experiments. We describe six labeling approaches demonstrated in a single-molecule context and discuss the merits and drawbacks of each approach with particular attention to the amount of specialized training and reagents required. By evaluating each approach according to criteria relevant to single-molecule experiments, including labeling yield and compatibility with cofactors such as Mg(2+), we provide a simple reference for selecting a labeling method for given experimental constraints. Intended for non-specialists seeking accessible solutions to DNA labeling challenges, the approaches outlined emphasize simplicity, robustness, suitability for use by non-biologists, and utility in diverse single-molecule experiments.
Collapse
Affiliation(s)
- Hagar Zohar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
16
|
Temperature-assisted cyclic hybridization (TACH): an improved method for supercoiled DNA hybridization. Mol Biotechnol 2010; 45:171-9. [PMID: 20238183 DOI: 10.1007/s12033-010-9261-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Accurate hybridization is dependent on the ratio between sequence-specific and unspecific binding. Dissociation of unspecifically bound, while maintaining specifically hybridized, nucleic acids are key steps to obtain a well-defined complex. We have developed a new method, temperature-assisted, cyclic hybridization (TACH), which increases cognate binding at the expense of unspecific hybridization. The method was used for optimizing binding of peptide nucleic acid (PNA) to supercoiled plasmids and has several advantages over previous methods: (1) it reduces the required amount of bis-PNA by three- to fourfold; (2) it results in less unspecific binding; (3) it extends cooperative hybridization, from 3 bp to 5 bp between two adjacent binding sites; and (4) it decreases the aggregation of bis-PNA. This method might be extended to other forms of hybridizations including the use of additional nucleic acids analogs, such as locked nucleic acid (LNA) and, also, to other areas where PNAs are used such as fluorescence in situ hybridization (FISH), microarrays, or in vivo plasmid delivery.
Collapse
|
17
|
Fast high-resolution mapping of long fragments of genomic DNA based on single-molecule detection. Anal Biochem 2010; 402:83-90. [DOI: 10.1016/j.ab.2010.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 11/17/2022]
|
18
|
Singer A, Wanunu M, Morrison W, Kuhn H, Frank-Kamenetskii M, Meller A. Nanopore based sequence specific detection of duplex DNA for genomic profiling. NANO LETTERS 2010; 10:738-42. [PMID: 20088590 PMCID: PMC2834191 DOI: 10.1021/nl100058y] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate a purely electrical method for the single-molecule detection of specific DNA sequences, achieved by hybridizing double-stranded DNA (dsDNA) with peptide nucleic acid (PNA) probes and electrophoretically threading the DNA through sub-5 nm silicon nitride pores. Bis-PNAs were used as the tagging probes in order to achieve high affinity and sequence specificity. Sequence detection is performed by reading the ion current traces of individual translocating DNA molecules, which display a characteristic secondary blockade level, absent in untagged molecules. The potential for barcoding DNA is demonstrated through nanopore analysis of once-tagged and twice-tagged DNA at different locations on the same genomic fragment. Our high-throughput, long-read length method can be used to identify key sequences embedded in individual DNA molecules, without the need for amplification or fluorescent/radio labeling. This opens up a wide range of possibilities in human genomics as well as in pathogen detection for fighting infectious diseases.
Collapse
Affiliation(s)
- Alon Singer
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Meni Wanunu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Will Morrison
- Department of Physics, Boston University, Boston, MA 02215
| | - Heiko Kuhn
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | | | - Amit Meller
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
| |
Collapse
|
19
|
Smolina I, Miller NS, Frank-Kamenetskii M. PNA-based microbial pathogen identification and resistance marker detection: an accurate, isothermal rapid assay based on genome-specific features. ARTIFICIAL DNA, PNA & XNA 2010; 1:1-7. [PMID: 20953307 PMCID: PMC2953854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
With the rapidly growing availability of the entire genome sequences of microbial pathogens, there is unmet need for increasingly sensitive systems to monitor the gene-specific markers for diagnosis of bacteremia that enables an earlier detection of causative agent and determination of drug resistance. To address these challenges, a novel FISH-type genomic sequence-based molecular technique is proposed that can identify bacteria and simultaneously detect antibiotic resistance markers for rapid and accurate testing of pathogens. The approach is based on a synergistic combination of advanced Peptide Nucleic Acid (PNA)-based technology and signal-enhancing Rolling Circle Amplification (RCA) reaction to achieve a highly specific and sensitive assay. A specific PNA-DNA construct serves as an exceedingly selective and very effective biomarker, while RCA enhances detection sensitivity and provide with a highly multiplexed assay system. Distinct-color fluorescent decorator probes are used to identify about 20-nucleotide-long signature sequences in bacterial genomic DNA and/or key genetic markers of drug resistance in order to identify and characterize various pathogens. The technique's potential and its utility for clinical diagnostics are illustrated by identification of S. aureus with simultaneous discrimination of methicillin-sensitive (MSSA) versus methicillin-resistant (MRSA) strains. Overall these promising results hint to the adoption of PNA-based rapid sensitive detection for diagnosis of other clinically relevant organisms. Thereby, new assay enables significantly earlier administration of appropriate antimicrobial therapy and may, thus have a positive impact on the outcome of the patient.
Collapse
Affiliation(s)
- Irina Smolina
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington St., Boston, MA 02215, USA
| | - Nancy S. Miller
- The Division of Laboratory Medicine, Department of Pathology, Boston University School of Medicine, 88 East Newton St., Boston, MA 02118, USA
| | - Maxim Frank-Kamenetskii
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington St., Boston, MA 02215, USA
| |
Collapse
|
20
|
Hansen ME, Bentin T, Nielsen PE. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers. Nucleic Acids Res 2009; 37:4498-507. [PMID: 19474349 PMCID: PMC2715256 DOI: 10.1093/nar/gkp437] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA–dsDNA triplexes—mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA oligomers bind complementary dsDNA targets via triplex formation with (sub)nanomolar affinities (at pH 7.2, 150 mM Na+). Binding affinity can be modulated more than 1000-fold by changes in pH, PNA oligomer length, PNA net charge and/or by substitution of pseudoisocytosine for cytosine, and conjugation of the DNA intercalator 9-aminoacridine. Furthermore, 9-aminoacridine conjugation also strongly enhanced triplex invasion. Specificity for the fully matched target versus one containing single centrally located mismatches was more than 150-fold. Together the data support the use of homopyrimidine PNAs as efficient and sequence selective tools in triplex targeting strategies under physiological relevant conditions.
Collapse
Affiliation(s)
- Mads E Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200-N, Denmark
| | | | | |
Collapse
|
21
|
Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons. Appl Environ Microbiol 2008; 74:7297-305. [PMID: 18820054 DOI: 10.1128/aem.01002-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.
Collapse
|
22
|
Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids. Proc Natl Acad Sci U S A 2008; 105:13514-9. [PMID: 18757759 DOI: 10.1073/pnas.0711793105] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the human beta-globin gene. We demonstrate here that these PNAs, when cotransfected with recombinatory donor DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta-globin fusion gene. The ability of these PNAs to induce recombination was dependent on dose, sequence, cell-cycle stage, and the presence of a homologous donor DNA molecule. Enhanced recombination, with frequencies up to 0.4%, was observed with use of the lysomotropic agent chloroquine. Finally, we demonstrate that these PNAs were effective in stimulating the modification of the endogenous beta-globin locus in human cells, including primary hematopoietic progenitor cells. This work suggests that PNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells.
Collapse
|
23
|
State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm 2008; 364:237-48. [PMID: 18619528 DOI: 10.1016/j.ijpharm.2008.06.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/07/2008] [Accepted: 06/10/2008] [Indexed: 02/07/2023]
Abstract
Knocking down gene expression using either antisense oligonucleotides (AS-ODNs) or small interfering RNA (siRNAs) has raised a lot of interest in designing new pathways for therapeutics. Despite their potentialities, these negatively charged and hydrophilic molecules request chemical modifications or a carrier that allows cell recognition, cell internalization and moreover subcellular penetration. Although chemical modifications were brought to the basic AS-ODNs and siRNAs, their sensitivity to degradation and poor intracellular penetration is still hampering their clinical applications. We present here the potentialities of polymeric carriers or the use of alternative administration route such as oral, ocular and skin delivery to improve their delivery and to circumvent the hurdles for their clinical applications.
Collapse
|
24
|
Smolina IV, Kuhn H, Lee C, Frank-Kamenetskii MD. Fluorescence-based detection of short DNA sequences under non-denaturing conditions. Bioorg Med Chem 2007; 16:84-93. [PMID: 17512202 DOI: 10.1016/j.bmc.2007.04.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 02/26/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
The ability of peptide nucleic acid (PNA) to open up duplex DNA in a highly sequence-specific manner makes it possible to detect short DNA sequences on the background of or within genomic DNA under non-denaturing conditions. To do so, chosen marker sites in double-stranded DNA are locally opened by a pair of PNA openers, thus transforming one strand within the target region (20-30 bp) into the single-stranded form. Onto this accessible DNA sequence a circular oligonucleotide probe is assembled, which serves as a template for rolling circle amplification (RCA). Both homogeneous and heterogeneous assay formats are investigated, as are different formats for fluorescence-based amplicon detection. Our recent data with immobilized analytes suggest that marker sequences in plasmid and bacterial chromosomal DNA can be successfully detected.
Collapse
Affiliation(s)
- Irina V Smolina
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington Street, MA 02215, USA
| | | | | | | |
Collapse
|
25
|
Englund EA, Xu Q, Witschi MA, Appella DH. PNA-DNA duplexes, triplexes, and quadruplexes are stabilized with trans-cyclopentane units. J Am Chem Soc 2007; 128:16456-7. [PMID: 17177367 DOI: 10.1021/ja064317w] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide nucleic acids (PNAs) are non-natural nucleic acid mimics that bind to complementary DNA and RNA with high affinity and selectivity. PNA can bind to nucleic acids in a number of different ways. Currently, the formation of PNA-oligonucleotide duplex, triplex, and quadruplex structures have been reported. PNAs have been used in numerous biomedicial applications, but there are few strategies to predictably improve the binding properties of PNAs by backbone modification. We have been studying the benefits of incorporating (S,S)-trans-cyclopentane diamine units (tcyp) into the PNA backbone. In this Communication, we report the improvement in stability associated with tcyp incorporation into PNA-DNA duplexes, triplexes, and quadruplexes. The broad utility of this modification across multiple types of PNA structures is unique and should prove useful in the development of applications that rely on PNA.
Collapse
Affiliation(s)
- Ethan A Englund
- Laboratory of Bioorganic Chemistry, Department of Health and Human Services, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
26
|
Topham CM, Smith JC. Orientation preferences of backbone secondary amide functional groups in peptide nucleic acid complexes: quantum chemical calculations reveal an intrinsic preference of cationic D-amino acid-based chiral PNA analogues for the P-form. Biophys J 2006; 92:769-86. [PMID: 17071666 PMCID: PMC1779963 DOI: 10.1529/biophysj.105.079723] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA.DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs.
Collapse
Affiliation(s)
- Christopher M Topham
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089, Toulouse, France.
| | | |
Collapse
|
27
|
Bentin T, Hansen GI, Nielsen PE. Structural diversity of target-specific homopyrimidine peptide nucleic acid-dsDNA complexes. Nucleic Acids Res 2006; 34:5790-9. [PMID: 17053099 PMCID: PMC1635314 DOI: 10.1093/nar/gkl736] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Sequence-selective recognition of double-stranded (ds) DNA by homopyrimidine peptide nucleic acid (PNA) oligomers can occur by major groove triplex binding or by helix invasion via triplex P-loop formation. We have compared the binding of a decamer, a dodecamer and a pentadecamer thymine–cytosine homopyrimidine PNA oligomer to a sequence complementary homopurine target in duplex DNA using gel-shift and chemical probing analyses. We find that all three PNAs form stable triplex invasion complexes, and also conventional triplexes with the dsDNA target. Triplexes form with much faster kinetics than invasion complexes and prevail at lower PNA concentrations and at shorter incubation times. Furthermore, increasing the ionic strength strongly favour triplex formation over invasion as the latter is severely inhibited by cations. Whereas a single triplex invasion complex is formed with the decameric PNA, two structurally different target-specific invasion complexes were characterized for the dodecameric PNA and more than five for the pentadecameric PNA. Finally, it is shown that isolated triplex complexes can be converted to specific invasion complexes without dissociation of the Hoogsteen base-paired triplex PNA. These result demonstrate a clear example of a ‘triplex first’ mechanism for PNA helix invasion.
Collapse
Affiliation(s)
| | | | - Peter E. Nielsen
- To whom correspondence should be addressed. Tel: +45 35327762/61; Fax: +45 35396042;
| |
Collapse
|
28
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
29
|
Shirude PS, Kumar VA, Ganesh KN. BisPNA Targeting to DNA: Effect of Neutral Loop on DNA Duplex Strand Invasion byaepPNA-N7G/aepPNA-C Substituted Peptide Nucleic Acids. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500544] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Smolina IV, Demidov VV, Soldatenkov VA, Chasovskikh SG, Frank-Kamenetskii MD. End invasion of peptide nucleic acids (PNAs) with mixed-base composition into linear DNA duplexes. Nucleic Acids Res 2005; 33:e146. [PMID: 16204449 PMCID: PMC1243805 DOI: 10.1093/nar/gni151] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peptide nucleic acid (PNA) is a synthetic DNA mimic with valuable properties and a rapidly growing scope of applications. With the exception of recently introduced pseudocomplementary PNAs, binding of common PNA oligomers to target sites located inside linear double-stranded DNAs (dsDNAs) is essentially restricted to homopurine-homopyrimidine sequence motifs, which significantly hampers some of the PNA applications. Here, we suggest an approach to bypass this limitation of common PNAs. We demonstrate that PNA with mixed composition of ordinary nucleobases is capable of sequence-specific targeting of complementary dsDNA sites if they are located at the very termini of DNA duplex. We then show that such targeting makes it possible to perform capturing of designated dsDNA fragments via the DNA-bound biotinylated PNA as well as to signal the presence of a specific dsDNA sequence, in the case a PNA beacon is employed. We also examine the PNA-DNA conjugate and prove that it can initiate the primer-extension reaction starting from the duplex DNA termini when a DNA polymerase with the strand-displacement ability is used. We thus conclude that recognition of duplex DNA by mixed-base PNAs via the end invasion has a promising potential for site-specific and sequence-unrestricted DNA manipulation and detection.
Collapse
Affiliation(s)
- Irina V Smolina
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
31
|
Hudson RHE, Wojciechowski F. The detrimental effect of orotic acid substitution in the peptide nucleic acid strand on the stability of PNA2:NA triple helices. CAN J CHEM 2005. [DOI: 10.1139/v05-180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the incorporation of C6 derivatives of uracil into polypyrimidine peptide nucleic acid oligomers. Starting with uracil-6-carboxylic acid (orotic acid), a peptide nucleic acid monomer compatible with Fmoc-based synthesis was prepared. This monomer then served as a convertible nucleobase whereupon treatment of the resin-bound methyl orotate containing hexamers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing peptide nucleic acid. Peptide nucleic acid hexamers containing the C6-modified nucleobase hybridized to both poly(riboadenylic acid) and poly(deoxyriboadenylic acid) via triplex formation. Complexes formed with poly(riboadenylic acid) were more stable than those formed with poly(dexoyriboadenylic acid), as measured by temperature-dependent UV spectroscopy. However, both of these complexes were destabilized relative to the complexes formed by an unmodified peptide nucleic acid oligomers. Internal or doubly substituted hexamers are destabilized more strongly than a terminally substituted one, and the type of substitution (carboxamide, ester, carboxylic acid) affects the overall triplex stability. These results clearly show that incorporation of a C6-substituted uracil into polypyrimidine PNA is detrimental to triplex formation. We have also extended this chemistry to incorporate uracil-5-methylcarboxylate into a peptide nucleic acid hexamer. After on-resin conversion of the C5 ester to the 3-(N,N-dimethylamino)propylamide, significant stabilization of the triplex formed with poly(riboadenylic acid) was observed, which illustrates the compatibility of C5 substitution with peptide nucleic acid directed triple helix formation. Key words: peptide nucleic acid, triple helix, orotic acid, orotamide, PNA.
Collapse
|
32
|
Lundin KE, Hasan M, Moreno PM, Törnquist E, Oprea I, Svahn MG, Simonson EO, Smith CIE. Increased stability and specificity through combined hybridization of peptide nucleic acid (PNA) and locked nucleic acid (LNA) to supercoiled plasmids for PNA-anchored "Bioplex" formation. ACTA ACUST UNITED AC 2005; 22:185-92. [PMID: 16144773 DOI: 10.1016/j.bioeng.2005.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Low cellular uptake and poor nuclear transfer hamper the use of non-viral vectors in gene therapy. Addition of functional entities to plasmids using the Bioplex technology has the potential to improve the efficiency of transfer considerably. We have investigated the possibility of stabilizing sequence-specific binding of peptide nucleic acid (PNA) anchored functional peptides to plasmid DNA by hybridizing PNA and locked nucleic acid (LNA) oligomers as "openers" to partially overlapping sites on the opposite DNA strand. The PNA "opener" stabilized the binding of "linear" PNA anchors to mixed-base supercoiled DNA in saline. For higher stability under physiological conditions, bisPNA anchors were used. To reduce nonspecific interactions when hybridizing highly cationic constructs and to accommodate the need for increased amounts of bisPNA when the molecules are uncharged, or negatively charged, we used both PNA and LNA oligomers as "openers" to increase binding kinetics. To our knowledge, this is the first time that LNA has been used together with PNA to facilitate strand invasion. This procedure allows hybridization at reduced PNA-to-plasmid ratios, allowing greater than 80% hybridization even at ratios as low as 2:1. Using significantly lower amounts of PNA-peptides combined with shorter incubation times reduces unspecific binding and facilitates purification.
Collapse
Affiliation(s)
- Karin E Lundin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Novum PL 5, Karolinska University Hospital, Huddinge, SE-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nielsen PE, Frederiksen K, Behrens C. Extended target sequence specificity of PNA-minor-groove binder conjugates. Chembiochem 2005; 6:66-8. [PMID: 15593115 DOI: 10.1002/cbic.200400251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter E Nielsen
- Department of Medical Biochemistry and Genetics, University of Copenhagen, The Panum Institute, Blegdamsvej 3c, Copenhagen N 2200, Denmark.
| | | | | |
Collapse
|
34
|
Ziemba AJ, Zhilina ZV, Krotova-Khan Y, Stankova L, Ebbinghaus SW. Targeting and regulation of the HER-2/neu oncogene promoter with bis-peptide nucleic acids. Oligonucleotides 2005; 15:36-50. [PMID: 15788899 DOI: 10.1089/oli.2005.15.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antigene oligonucleotides have the potential to regulate gene expression through site-specific DNA binding. However, in vivo applications have been hindered by inefficient cellular uptake, degradation, and strand displacement. Peptide nucleic acids (PNAs) address several of these problems, as they are resistant to degradation and bind DNA with high affinity. We designed two cationic pyrimidine bis-PNAs (cpy-PNAs) to target the polypurine tract of the HER-2/neu promoter and compared them to an unmodified phosphodiester triplex-forming oligonucleotide (TFO1) and a TFO-nitrogen mustard conjugate (TFO2). PNA1 contains a + 2 charge and bound two adjacent 9-bp target sequences with high affinity and specificity, but only at low pH. PNA2 contains a +5 charge and bound one 11-bp target with high affinity up to pH 7.4, but with lower specificity. The PNA:DNA:PNA triplex formed by these cpy-bis-PNAs presented a stable barrier to DNA polymerase extension. The cpy-bis-PNAs and the TFO-alkylator conjugate prevented HER-2/neu transcription in a reporter gene assay (TFO2 = PNA1 > PNA2 >> TFO1). Both PNAs and TFOs were effective at binding the target sequence in naked genomic DNA, but only the TFO-alkylator (TFO2) and the more cationic PNA (PNA2) were detected at the endogenous HER-2/neu promoter in permeabilized cells. This work demonstrates the potential for preventing HER-2/neu gene expression with cpy-bis-PNAs in tumor cells.
Collapse
|
35
|
|
36
|
Monis PT, Giglio S, Keegan AR, Andrew Thompson RC. Emerging technologies for the detection and genetic characterization of protozoan parasites. Trends Parasitol 2005; 21:340-6. [PMID: 15925542 DOI: 10.1016/j.pt.2005.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 04/04/2005] [Accepted: 05/10/2005] [Indexed: 11/21/2022]
Abstract
The development and adaptation of new technologies for the genetic characterization and identification of parasites continue to accelerate, providing an increasing number of research and analytical tools. We review emerging technologies that have applications in this area, including real-time PCR and microarrays, and discuss the fundamental principles of some of these technologies and how they are applied to characterize parasites. We give special consideration to the application of genetic data to biological questions, where selection of the most appropriate technique depends on the biological question posed by the investigator.
Collapse
Affiliation(s)
- Paul T Monis
- Australian Water Quality Centre, South Australian Water Corporation, Private Mail Bag 3, Salisbury, South Australia 5108, Australia.
| | | | | | | |
Collapse
|
37
|
Lundin KE, Ge R, Svahn MG, Törnquist E, Leijon M, Brandén LJ, Smith CIE. Cooperative strand invasion of supercoiled plasmid DNA by mixed linear PNA and PNA-peptide chimeras. ACTA ACUST UNITED AC 2005; 21:51-9. [PMID: 15113558 DOI: 10.1016/j.bioeng.2003.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 09/12/2003] [Accepted: 10/10/2003] [Indexed: 11/28/2022]
Abstract
Peptide nucleic acid (PNA) is a DNA analog with broad biotechnical applications, and possibly also treatment applications. Its suggested uses include that of a specific anchor sequence for biologically active peptides to plasmids in a sequence-specific manner. Such complexes, referred to as Bioplex, have already been used to enhance non-viral gene transfer in vitro. To investigate how hybridization of PNAs to supercoiled plasmids would be affected by the binding of multiple PNA-peptides to the same strand of DNA, we have developed a method of quantifying the specific binding of PNA using a PNA labeled with a derivative of the fluorophore thiazole orange (TO). Cooperative effects were found at a distance of up to three bases. With a peptide present at the end of one of the PNAs, steric hindrance occurred, reducing the increase in binding rate when the distance between the two sites was less than two bases. In addition, we found increased binding kinetics when two PNAs binding to overlapping sites on opposite DNA strands were used, without the use of chemically modified bases in the PNAs.
Collapse
Affiliation(s)
- Karin E Lundin
- Clinical Research Center, Karolinska Institutet, Novum Pl. 5, Huddinge University Hospital, SE-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
38
|
Nielsen PE. The many faces of PNA. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Abibi A, Protozanova E, Demidov VV, Frank-Kamenetskii MD. Specific versus nonspecific binding of cationic PNAs to duplex DNA. Biophys J 2004; 86:3070-8. [PMID: 15111421 PMCID: PMC1304173 DOI: 10.1016/s0006-3495(04)74356-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although peptide nucleic acids (PNAs) are neutral by themselves, they are usually appended with positively charged lysine residues to increase their solubility and binding affinity for nucleic acid targets. Thus obtained cationic PNAs very effectively interact with the designated duplex DNA targets in a sequence-specific manner forming strand-invasion complexes. We report on the study of the nonspecific effects in the kinetics of formation of sequence-specific PNA-DNA complexes. We find that in a typical range of salt concentrations used when working with strand-invading PNAs (10-20 mM NaCl) the PNA binding rates essentially do not depend on the presence of nontarget DNA in the reaction mixture. However, at lower salt concentrations (<10 mM NaCl), the rates of PNA binding to DNA targets are significantly slowed down by the excess of unrelated DNA. This effect of nontarget DNA arises from depleting the concentration of free PNA capable of interacting with DNA target due to adhesion of positively charged PNA molecules on the negatively charged DNA duplex. As expected, the nonspecific electrostatic effects are more pronounced for more charged PNAs. We propose a simple model quantitatively describing all major features of the observed phenomenon. This understanding is important for design of and manipulation with the DNA-binding polycationic ligands in general and PNA-based drugs in particular.
Collapse
Affiliation(s)
- Ayome Abibi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
40
|
Qu X, Wu D, Mets L, Scherer NF. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci U S A 2004; 101:11298-303. [PMID: 15277661 PMCID: PMC509198 DOI: 10.1073/pnas.0402155101] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fitting the image of a single molecule to the point spread function of an optical system greatly improves the precision with which single molecules can be located. Centroid localization with nanometer precision has been achieved when a sufficient number of photons are collected. However, if multiple single molecules reside within a diffraction-limited spot, this localization approach does not work. This paper demonstrates nanometer-localized multiple single-molecule (NALMS) fluorescence microscopy by using both centroid localization and photobleaching of the single fluorophores. Short duplex DNA strands are used as nanoscale "rulers" to validate the NALMS microscopy approach. Nanometer accuracy is demonstrated for two to five single molecules within a diffraction-limited area. NALMS microscopy will greatly facilitate single-molecule study of biological systems because it covers the gap between fluorescence resonance energy transfer-based (<10 nm) and diffraction-limited microscopy (>100 nm) measurements of the distance between two fluorophores. Application of NALMS microscopy to DNA mapping with <10-nm (i.e., 30-base) resolution is demonstrated.
Collapse
Affiliation(s)
- Xiaohui Qu
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
41
|
Demidov VV, Frank-Kamenetskii MD. Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends Biochem Sci 2004; 29:62-71. [PMID: 15102432 DOI: 10.1016/j.tibs.2003.12.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the past decade, synthetic nucleobase oligomers have found wide use in biochemical sciences, biotechnology and molecular medicine, both as research and/or diagnostic tools and as therapeutics. Numerous applications of common and modified oligonucleotides and oligonucleotide mimics rely on their ability to sequence-specifically recognize nucleic acid targets (DNA or RNA) by forming duplexes or triplexes. In general, these applications would benefit significantly from enhanced binding affinities of nucleobase oligomers in the formation of various secondary structures. However, for high-affinity probes, the selectivity of sequence recognition must also be improved to avoid undesirable associations with mismatched DNA and RNA sites. Here, we review recent progress in understanding the molecular mechanisms of nucleic acid interactions and the development of new high-affinity plus high-specificity oligonucleotides and their mimics, with particular emphasis on peptide nucleic acids.
Collapse
Affiliation(s)
- Vadim V Demidov
- Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
42
|
Kuhn H, Cherny DI, Demidov VV, Frank-Kamenetskii MD. Inducing and modulating anisotropic DNA bends by pseudocomplementary peptide nucleic acids. Proc Natl Acad Sci U S A 2004; 101:7548-53. [PMID: 15136738 PMCID: PMC419643 DOI: 10.1073/pnas.0308756101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA bending is significant for various DNA functions in the cell. Here, we demonstrate that pseudocomplementary peptide nucleic acids (pcPNAs) represent a class of versatile, sequence-specific DNA-bending agents. The occurrence of anisotropic DNA bends induced by pcPNAs is shown by gel electrophoretic phasing analysis. The magnitude of DNA bending is determined by circular permutation assay and by electron microscopy, with good agreement of calculated mean values between both methods. Binding of a pair of 10-meric pcPNAs to its target DNA sequence results in moderate DNA bending with a mean value of 40-45 degrees, while binding of one self-pc 8-mer PNA to target DNA yields a somewhat larger average value of the induced DNA bend. Both bends are found to be in phase when the pcPNA target sites are separated by distances of half-integer numbers of helical turns of regular duplex DNA, resulting in an enhanced DNA bend with an average value in the range of 80-90 degrees. The occurrence of such a sharp bend within the DNA double helix is confirmed and exploited through efficient formation of 170-bp-long DNA minicircles by means of dimerization of two bent DNA fragments. The pcPNAs offer two main advantages over previously designed classes of nonnatural DNA-bending agents: they have very mild sequence limitations while targeting duplex DNA and they can easily be designed for a chosen target sequence, because their binding obeys the principle of complementarity. We conclude that pcPNAs are promising tools for inducing bends in DNA at virtually any chosen site.
Collapse
Affiliation(s)
- Heiko Kuhn
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
43
|
Zhao X, Kaihatsu K, Corey DR. Inhibition of transcription by bisPNA-peptide conjugates. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:535-46. [PMID: 14565228 DOI: 10.1081/ncn-120021953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Homopyrimidine bisPNAs have been reported to arrest transcription elongation by invading double-stranded DNA and forming a stable (PNA)2/DNA complex. We previously reported that attachment of a designed cationic peptide to the bisPNA enhances the efficiency of strand invasion. Here we investigate whether conjugation to cationic peptides can also improve inhibition of transcription. We observe that a conjugate between a bisPNA and a peptide containing eight lysines is a superior agent for inhibition of transcription, but that inhibition of transcription is reduced as pH and the concentration of magnesium are increased. Our studies provide useful characterization of bisPNAs as agents for inhibiting transcription.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
44
|
Protozanova E, Demidov VV, Nielsen PE, Frank-Kamenetskii MD. Pseudocomplementary PNAs as selective modifiers of protein activity on duplex DNA: the case of type IIs restriction enzymes. Nucleic Acids Res 2003; 31:3929-35. [PMID: 12853608 PMCID: PMC165965 DOI: 10.1093/nar/gkg450] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study evaluates the potential of pseudocomplementary peptide nucleic acids (pcPNAs) for sequence-specific modification of enzyme activity towards double-stranded DNA (dsDNA). To this end, we analyze the ability of pcPNA-dsDNA complexes to site-selectively interfere with the action of four type IIs restriction enzymes. We have found that pcPNA-dsDNA complexes exhibit a different degree of DNA protection against cleaving/nicking activity of various isoschizomeric endonucleases under investigation (PleI, MlyI and N.BstNBI) depending on their type and mutual arrangement of PNA-binding and enzyme recognition/cleavage sites. We have also found that the pcPNA targeting to closely located PleI or BbsI recognition sites on dsDNA generates in some cases the nicking activity of these DNA cutters. At the same time, MlyI endonuclease, a PleI isoschizomer, does not exhibit any DNA nicking/cleavage activity, being completely blocked by the nearby pcPNA binding. Our results have general implications for effective pcPNA interference with the performance of DNA-processing proteins, thus being important for prospective applications of pcPNAs.
Collapse
|
45
|
|
46
|
D'Costa M, Kumar VA, Ganesh KN. N7-guanine as a C+ mimic in hairpin aeg/aepPNA-DNA triplex: probing binding selectivity by UV-Tm and kinetics by fluorescence-based strand-invasion assay. J Org Chem 2003; 68:4439-45. [PMID: 12762749 DOI: 10.1021/jo034048h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N7-substituted guanine (N7G) has been introduced into aminoethylglycyl bisPNA (7) as a C(+) mimic to achieve pH-independent triplex formation with complementary DNA sequences. The introduction of chiral, cationic aminoethylprolyl units with C(+) and C(+) mimic N7G in the backbone of bisPNAs (8, 9) influenced the recognition of complementary DNA in an orientation-selective manner. A simple fluorescence assay is developed to examine the process of strand invasion of target DNA duplex by these modified bisPNAs and comparative results of the study employing triplex forming polypyrimidine (C/T) (6, 8) and purine-pyrimidine (N7G/T) mixmer-bisPNAs (7, 9) are presented.
Collapse
Affiliation(s)
- Moneesha D'Costa
- Division of Organic Chemistry (Synthesis), National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | | | | |
Collapse
|
47
|
Bentin T, Nielsen PE. Superior duplex DNA strand invasion by acridine conjugated peptide nucleic acids. J Am Chem Soc 2003; 125:6378-9. [PMID: 12785772 DOI: 10.1021/ja029936t] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA helix invasion by P-loop forming peptide nucleic acids (PNAs) is extremely sensitive to increased ionic strength as this stabilizes the DNA duplex. To address this, the DNA intercalator 9-aminoacridine was conjugated to helix invading PNAs, and the duplex DNA binding efficiency of such constructs was measured at different ionic strength conditions by electrophoretic mobility shift analysis. Remarkably, at physiogically relevant ionic strength (140 mM K+/10 mM Na+, 2 mM Mg2+), acridine conjugated PNAs showed 20-150-fold superior binding to a cognate sequence target as compared to the conventional PNAs. This enhancement occurred without compromising the sequence specificity of binding. Thus, simply conjugating the DNA intercalator 9-aminoacridine to PNA represents a major step toward the development of helix invading constructs for in vivo applications such as gene targeting.
Collapse
Affiliation(s)
- Thomas Bentin
- Center for Biomolecular Recognition, IMBG, Department B, The Panum Institute, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
48
|
|
49
|
Christensen C, Eldrup AB, Haaima G, Nielsen PE. 1,8-Naphthyridin-2,7-(1,8H)-dione is an effective mimic of protonated cytosine in peptide nucleic acid triplex recognition systems. Bioorg Med Chem Lett 2002; 12:3121-4. [PMID: 12372515 DOI: 10.1016/s0960-894x(02)00658-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel bicyclic mimic of protonated cytosine [1,8-naphthyridin-2,7-(1,8H)-dione, (K)] for Hoogsteen type triplex recognition of guanine has been designed for incorporation into peptide nucleic acids. Bis-PNA clamps with the K base incorporated in the Hoogsteen strand showed a significant stabilization of the triplexes at pH 7 as compared to similar triplexes with PNA oligomers containing either cytosine (6.7 degrees C per unit) or pseudoisocytosine (1.5 degrees C per unit). Cooperative stabilization was observed when the K units were placed in adjacent positions ( approximately 3 degrees C per unit).
Collapse
Affiliation(s)
- Caspar Christensen
- Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark
| | | | | | | |
Collapse
|
50
|
Rebuffat AG, Nawrocki AR, Nielsen PE, Bernasconi AG, Bernal-Mendez E, Frey BM, Frey FJ. Gene delivery by a steroid-peptide nucleic acid conjugate. FASEB J 2002; 16:1426-8. [PMID: 12205036 DOI: 10.1096/fj.01-0706fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously introduced a method called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the nuclear uptake of transfected DNA. Here, we describe a SMGD strategy with peptide nucleic acids (PNAs) that allowed linkage of a steroid molecule to a defined position in a plasmid without disturbing its gene expression. We synthesized and tested several bifunctional steroid derivatives [patent in process of nationalization] and finally selected the compound named DEX-bisPNA, a molecule consisting of a dexamethasone moiety linked to a PNA clamp (bisPNA) through a 30-atom chemical spacer. Dex-bisPNA binds to the glucocorticoid receptor (GR) as well as to reporter plasmids containing the corresponding PNA binding sites, translocates the GR from the cytoplasm into the nucleus, and increases the delivery of plasmid to the nucleus, resulting in enhanced GR-dependent expression of the reporter gene. The SMGD effect was more pronounced in growth-arrested cells than in proliferating cells. The specificity for the GR was shown by the reversion of the SMGD effect in the presence of dexamethasone as well as an enhanced expression in GR-positive cells but not in GR-negative cells. Thus, SMGD with PNA is a promising strategy for nonviral gene delivery into target tissues expressing specific steroid receptors.
Collapse
Affiliation(s)
- Alexandre G Rebuffat
- Division of Nephrology and Hypertension and Clinical Research, University of Berne, CH-3010 Berne-Inselspital, Switzerland
| | | | | | | | | | | | | |
Collapse
|