1
|
Unique Aspects of rRNA Biogenesis in Trypanosomatids. Trends Parasitol 2019; 35:778-794. [DOI: 10.1016/j.pt.2019.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
2
|
Functional analysis of noncoding RNAs in trypanosomes: RNA walk, a novel approach to study RNA-RNA interactions between small RNA and its target. Methods Mol Biol 2011; 718:245-57. [PMID: 21370053 DOI: 10.1007/978-1-61779-018-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent discovery of thousands of small noncoding RNAs (ncRNAs), in many different organisms, has led to the need for methods to study their function. One way to help understand their function is to determine what other RNAs interact with the ncRNAs. We have developed a novel method to investigate the RNA-RNA interactions between a small RNA and its target that we termed "RNA walk." The method is based on UV-induced AMT cross-linking in vivo followed by affinity selection of the hybrid molecules and mapping the intermolecular adducts by RT-PCR. Domains carrying the cross-linked adducts are less efficiently amplified than domains that are not cross-linked. Real-time PCR is used to quantify the results. Further mapping of the interactions is performed by primer extension to determine the exact cross-linked adduct.
Collapse
|
3
|
Lustig Y, Wachtel C, Safro M, Liu L, Michaeli S. 'RNA walk' a novel approach to study RNA-RNA interactions between a small RNA and its target. Nucleic Acids Res 2009; 38:e5. [PMID: 19854950 PMCID: PMC2800229 DOI: 10.1093/nar/gkp872] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study we describe a novel method to investigate the RNA–RNA interactions between a small RNA and its target that we termed ‘RNA walk’. The method is based on UV-induced AMT cross-linking in vivo followed by affinity selection of the hybrid molecules and mapping the intermolecular adducts by RT–PCR or real-time PCR. Domains carrying the cross-linked adducts fail to efficiently amplify by PCR compared with non-cross-linked domains. This method was calibrated and used to study the interaction between a special tRNA-like molecule (sRNA-85) that is part of the trypanosome signal recognition particle (SRP) complex and the ribosome. Four contact sites between sRNA-85 and rRNA were identified by ‘RNA walk’ and were further fine-mapped by primer extension. Two of the contact sites are expected; one contact site mimics the interaction of the mammalian Alu domain of SRP with the ribosome and the other contact sites include a canonical tRNA interaction. The two other cross-linked sites could not be predicted. We propose that ‘RNA walk, is a generic method to map target RNA small RNAs interactions in vivo.
Collapse
Affiliation(s)
- Yaniv Lustig
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
4
|
Nocua P, Gómez C, Cuervo C, Puerta C. Cl gene cluster encoding several small nucleolar RNAs: a comparison amongst trypanosomatids. Mem Inst Oswaldo Cruz 2009; 104:473-80. [PMID: 19547875 DOI: 10.1590/s0074-02762009000300013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 03/03/2009] [Indexed: 11/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are small non-coding RNAs that modify RNA molecules such as rRNA and snRNA by guiding 2'-O-ribose methylation (C/D box snoRNA family) and pseudouridylation reactions (H/ACA snoRNA family). H/ACA snoRNAs are also involved in trans-splicing in trypanosomatids. The aims of this work were to characterise the Cl gene cluster that encodes several snoRNAs in Trypanosoma rangeli and compare it with clusters from Trypanosoma cruzi, Trypanosoma brucei, Leishmania major, Leishmania infantum, Leishmania braziliensis and Leptomonas collosoma. The T. rangeli Cl gene cluster is an 801 base pair (bp) repeat sequence that encodes three C/D (Cl1, Cl2 and Cl4) and three H/ACA (Cl3, Cl5 and Cl6) snoRNAs. In contrast to T. brucei, the Cl3 and Cl5 homologues have not been annotated in the Leishmania or T. cruzi genome projects (http//:www.genedb.org). Of note, snoRNA transcribed regions have a high degree of sequence identity among all species and share gene synteny. Collectively, these findings suggest that the Cl cluster could constitute an interesting target for therapeutic (gene silencing) or diagnostic intervention strategies (PCR-derived tools).
Collapse
Affiliation(s)
- Paola Nocua
- Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | |
Collapse
|
5
|
Elucidating the role of C/D snoRNA in rRNA processing and modification in Trypanosoma brucei. EUKARYOTIC CELL 2007; 7:86-101. [PMID: 17981991 DOI: 10.1128/ec.00215-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most eukaryotic C/D small nucleolar RNAs (snoRNAs) guide 2'-O methylation (Nm) on rRNA and are also involved in rRNA processing. The four core proteins that bind C/D snoRNA in Trypanosoma brucei are fibrillarin (NOP1), NOP56, NOP58, and SNU13. Silencing of NOP1 by RNA interference identified rRNA-processing and modification defects that caused lethality. Systematic mapping of 2'-O-methyls on rRNA revealed the existence of hypermethylation at certain positions of the rRNA in the bloodstream form of the parasites, suggesting that this modification may assist the parasites in coping with the major temperature changes during cycling between their insect and mammalian hosts. The rRNA-processing defects of NOP1-depleted cells suggest the involvement of C/D snoRNA in trypanosome-specific rRNA-processing events to generate the small rRNA fragments. MRP RNA, which is involved in rRNA processing, was identified in this study in one of the snoRNA gene clusters, suggesting that trypanosomes utilize a combination of unique C/D snoRNAs and conserved snoRNAs for rRNA processing.
Collapse
|
6
|
Liang XH, Uliel S, Hury A, Barth S, Doniger T, Unger R, Michaeli S. A genome-wide analysis of C/D and H/ACA-like small nucleolar RNAs in Trypanosoma brucei reveals a trypanosome-specific pattern of rRNA modification. RNA (NEW YORK, N.Y.) 2005; 11:619-45. [PMID: 15840815 PMCID: PMC1370750 DOI: 10.1261/rna.7174805] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 01/17/2005] [Indexed: 05/19/2023]
Abstract
Small nucleolar RNAs (snoRNAs) constitute newly discovered noncoding small RNAs, most of which function in guiding modifications such as 2'-O-ribose methylation and pseudouridylation on rRNAs and snRNAs. To investigate the genome organization of Trypanosoma brucei snoRNAs and the pattern of rRNA modifications, we used a whole-genome approach to identify the repertoire of these guide RNAs. Twenty-one clusters encoding for 57 C/D snoRNAs and 34 H/ACA-like RNAs, which have the potential to direct 84 methylations and 32 pseudouridines, respectively, were identified. The number of 2'-O-methyls (Nms) identified on rRNA represent 80% of the expected modifications. The modifications guided by these RNAs suggest that trypanosomes contain many modifications and guide RNAs relative to their genome size. Interestingly, approximately 40% of the Nms are species-specific modifications that do not exist in yeast, humans, or plants, and 40% of the species-specific predicted modifications are located in unique positions outside the highly conserved domains. Although most of the guide RNAs were found in reiterated clusters, a few single-copy genes were identified. The large repertoire of modifications and guide RNAs in trypanosomes suggests that these modifications possibly play a central role in these parasites.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Uliel S, Liang XH, Unger R, Michaeli S. Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions. Int J Parasitol 2004; 34:445-54. [PMID: 15013734 DOI: 10.1016/j.ijpara.2003.10.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 10/14/2003] [Accepted: 10/15/2003] [Indexed: 11/27/2022]
Abstract
Small nucleolar RNAs constitute a family of newly discovered non-coding small RNAs, most of which function in guiding RNA modifications. Two prevalent types of modifications are 2'-O-methylation and pseudouridylation. The modification is directed by the formation of a canonical small nucleolar RNA-target duplex. Initially, RNA-guided modification was shown to take place on rRNA, but recent studies suggest that small nuclear RNA, mRNA, tRNA, and the trypanosome spliced leader RNA also undergo guided modifications. Trypanosomes contain more modifications and potentially more small nucleolar RNAs than yeast, and the increased number of modifications may help to preserve ribosome function under adverse environmental conditions during the cycling between the insect and mammalian host. The genome organisation in clusters carrying the two types of small nucleolar RNAs, C/D and H/ACA-like RNAs, resembles that in plants. However, the trypanosomatid H/ACA RNAs are similar to those found in Archaea and are composed of a single hairpin that may represent the primordial H/ACA RNA. In this review we summarise this new field of trypanosome small nucleolar RNAs, emphasising the open questions regarding the number of small nucleolar RNAs, the repertoire, genome organisation, and the unique function of guided modifications in these protozoan parasites.
Collapse
Affiliation(s)
- Shai Uliel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
8
|
Liang XH, Ochaion A, Xu YX, Liu Q, Michaeli S. Small nucleolar RNA clusters in trypanosomatid Leptomonas collosoma. Genome organization, expression studies, and the potential role of sequences present upstream from the first repeated cluster. J Biol Chem 2003; 279:5100-9. [PMID: 14645367 DOI: 10.1074/jbc.m308264200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosomatid small nucleolar RNA (snoRNA) genes are clustered in the genome. snoRNAs are transcribed polycistronically and processed into mature RNAs. In this study, we characterized four snoRNA clusters in Leptomonas collosoma. All of the clusters analyzed carry both C/D and H/ACA RNAs. The H/ACA RNAs are composed of a single hairpin, a structure typical to trypanosome and archaea guide RNAs. Using deletion and mutational analysis of a tagged C/D snoRNA situated within the snoRNA cluster, we identified 10-nucleotide flanking sequences that are essential for processing snoRNA from its precursor. Chromosome walk was performed on a snoRNA cluster, and a sequence of 700 bp was identified between the first repeat and the upstream open reading frame. Cloning of this sequence in an episome vector enhanced the expression of a tagged snoRNA gene in an orientation-dependent manner. However, continuous transcript spanning of this region was detected in steady-state RNA, suggesting that snoRNA transcription also originates from an upstream-long polycistronic transcriptional unit. The 700-bp fragment may therefore represent an example of many more elements to be discovered that enhance transcription along the chromosome, especially when transcription from the upstream gene is reduced or when enhanced transcription is needed.
Collapse
Affiliation(s)
- Xue-hai Liang
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
9
|
Liang XH, Liu Q, Michaeli S. Small nucleolar RNA interference induced by antisense or double-stranded RNA in trypanosomatids. Proc Natl Acad Sci U S A 2003; 100:7521-6. [PMID: 12808138 PMCID: PMC164619 DOI: 10.1073/pnas.1332001100] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2003] [Indexed: 11/18/2022] Open
Abstract
In trypanosomes the C/D- and H/ACA-like small nucleolar RNAs (snoRNAs) are clustered and repeated in the genome. The snoRNAs studied to date are transcribed as polycistronic transcripts by RNA polymerase II and then processed, resulting in mature snoRNAs. In this study we demonstrated that snoRNA genes can be silenced in three trypanosomatid species: Leptomonas collosoma, Leishmania major, and Trypanosoma brucei. Silencing was achieved in L. collosoma and L. major by the expressing of an antisense transcript complementary to the snoRNA gene and was accompanied by the accumulation of small interfering RNA. Silencing eliminated the mature snoRNA but not its precursor and abolished the specific 2'-O-methylation guided by the snoRNA. In T. brucei, silencing was achieved by using the inducible synthesis of double-stranded RNA from T7 opposing promoters. Silencing varied between the different snoRNA genes, which may reflect the accessibility of small interfering RNA to the target RNAs. This study suggests that RNA interference can degrade snoRNAs. This study has further implications in elucidating the function of nucleolar RNAs and specific modifications guided by these RNAs in trypanosomatids and perhaps in other eukaryotes as well.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
10
|
Liu L, Ben-Shlomo H, Xu YX, Stern MZ, Goncharov I, Zhang Y, Michaeli S. The trypanosomatid signal recognition particle consists of two RNA molecules, a 7SL RNA homologue and a novel tRNA-like molecule. J Biol Chem 2003; 278:18271-80. [PMID: 12606550 DOI: 10.1074/jbc.m209215200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosomatids are ancient eukaryotic parasites affecting humans and livestock. Here we report that the trypanosomatid signal recognition particle (SRP), unlike all other known SRPs in nature, contains, in addition to the 7SL RNA homologue, a short RNA molecule, termed sRNA-85. Using conventional chromatography, we discovered a small RNA molecule of 85 nucleotides co-migrating with the Leptomonas collosoma 7SL RNA. This RNA molecule was isolated, sequenced, and used to clone the corresponding gene. sRNA-85 was identified as a tRNA-like molecule that deviates from the canonical tRNA structure. The co-existence of these RNAs in a single complex was confirmed by affinity selection using an antisense oligonucleotide to sRNA-85. The two RNA molecules exist in a particle of approximately 14 S that binds transiently to ribosomes. Mutations were introduced in sRNA-85 that disrupted its putative potential to interact with 7SL RNA by base pairing; such mutants were unable to bind to 7SL RNA and to ribosomes and were aberrantly distributed within the cell. We postulate that sRNA-85 may functionally replace the truncated Alu domain of 7SL RNA. The discovery of sRNA-85 raises the intriguing possibility that sRNA-85 functional homologues may exist in other lower eukaryotes and eubacteria that lack the Alu domain.
Collapse
Affiliation(s)
- Li Liu
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
Morales L, Romero I, Diez H, Del Portillo P, Montilla M, Nicholls S, Puerta C. Characterization of a candidate Trypanosoma rangeli small nucleolar RNA gene and its application in a PCR-based parasite detection. Exp Parasitol 2002; 102:72-80. [PMID: 12706742 DOI: 10.1016/s0014-4894(03)00027-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we report the isolation and characterization of a candidate Trypanosoma rangeli small nucleolar RNA (snoRNA) gene, and the development of a PCR assay for detection of the parasite based on its nucleotide sequence. This gene, isolated from a T. rangeli genomic sub-library, was named snoRNA-cl1 and is encoded by a multi-copy gene of 801bp in length. Computer sequence analysis of snoRNA-cl1 showed the presence of two sequence motifs, box C and box D, as well as of two long stretches that perfectly complement the universal core region of the mature rRNA 28S, suggesting that cl1 encodes for a Box C/D snoRNA from the parasite. Hybridization analysis using cl1 as probe, showed a weak hybridization signal with Trypanosoma cruzi DNA, demonstrating the existence of differences in this locus between these two species. Two oligonucleotide primers from this gene, which specifically amplified a 620-bp fragment in KP1 (+) and KP1 (-) strains of T. rangeli, were used in a PCR assay. The amplification allowed the detection of 1pg of DNA in the presence of heterologous DNA and no amplification was observed with different T. cruzi strains (groups I and II). In addition, the PCR assay reported here is able to detect T. rangeli in the presence of T. cruzi DNA, and is useful for detection of the parasite in samples from infected vectors.
Collapse
Affiliation(s)
- Liliana Morales
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Universidad Javeriana, Carrera 7 No 43-82, Lab. 113, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
12
|
Liang XH, Xu YX, Michaeli S. The spliced leader-associated RNA is a trypanosome-specific sn(o) RNA that has the potential to guide pseudouridine formation on the SL RNA. RNA (NEW YORK, N.Y.) 2002; 8:237-46. [PMID: 11911368 PMCID: PMC1370245 DOI: 10.1017/s1355838202018290] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The spliced leader-associated (SLA1) RNA is a trypanosome-specific small RNA with unknown function. SLA1 carries a Sm-like site, and is associated with core Sm proteins. Here we found that SLA1 belongs to a family of hairpin-containing RNAs that are implicated in directing pseudouridylation. A potential for base-pair interaction between SLA1 and spliced leader (SL) RNA agrees with the canonical rules for guiding pseudouridylation on SL RNA. Direct RNA analysis showed that this uridine is indeed pseudouridylated in the SL RNA of Leptomonas collosoma, Leishmania major, and Trypanosoma brucei. This position is conserved in all trypanosomatid SL RNAs. Mutations introduced in the SL RNA to disrupt the interaction domain of SLA1/SL RNA abolished the formation of the pseudouridine. SLA1 is localized both to the nucleolus and nucleoplasm. This study solves a long-standing question regarding the function of this novel RNA and describes the first H/ACA RNA, which, unlike all other pseudouridine guides, is also a bona fide snRNA.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
13
|
Liang XH, Liu L, Michaeli S. Identification of the first trypanosome H/ACA RNA that guides pseudouridine formation on rRNA. J Biol Chem 2001; 276:40313-8. [PMID: 11483606 DOI: 10.1074/jbc.m104488200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In trypanosomes small nucleolar RNA (snoRNA) genes are clustered, and the clusters encode for either single or multiple RNAs. We previously reported on a genomic locus in Leptomonas collosoma that encodes for multiple C/D snoRNAs whose expression is regulated at the processing level (Xu, Y., Liu, L., Lopez-Estraño, C., and Michaeli, S. (2001) J. Biol. Chem. 276, 14289-14298). In this study we have characterized, in the same genomic locus, the first trypanosome H/ACA RNA, which we termed h1. Having a length of 69 nucleotides, h1 has the potential to guide pseudouridylation on 28 S rRNA. The h1 is processed from a long polycistronic transcript that carries both the C/D and h1 snoRNAs. The h1/rRNA duplex obeys the rules for guiding pseudouridylation. Mapping of the pseudouridine site indicated that the predicted U is indeed modified. However, in contrast to all H/ACA RNAs, h1 consists of a single hairpin structure and is the shortest H/ACA RNA described so far.
Collapse
MESH Headings
- Animals
- Base Sequence
- Genes, Protozoan
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- Pseudouridine/biosynthesis
- RNA Editing
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Transcription, Genetic
- Trypanosomatina/genetics
Collapse
Affiliation(s)
- X H Liang
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
14
|
Xu Y, Liu L, Lopez-Estraño C, Michaeli S. Expression studies on clustered trypanosomatid box C/D small nucleolar RNAs. J Biol Chem 2001; 276:14289-98. [PMID: 11278327 DOI: 10.1074/jbc.m007007200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed three chromosomal loci of the trypanosomatid Leptomonas collosoma encoding box C/D small nucleolar RNAs (snoRNAs). All the snoRNAs that were analyzed here carry two sequences complementary to rRNA target sites and obey the +5 rule for guide methylation. Studies on transgenic parasites carrying the snoRNA-2 gene in the episomal expression vector (pX-neo) indicated that no promoter activity was found immediately adjacent to this gene. Deleting the flanking sequences of snoRNA-2 affected the expression; in the absence of the 3'-flanking (but not 5'-flanking) sequence, the expression was almost completely abolished. The snoRNA genes are transcribed as polycistronic RNA. All snoRNAs can be folded into a common stem-loop structure, which may play a role in processing the polycistronic transcript. snoRNA B2, a member of a snoRNA cluster, was expressed when cloned into the episomal vector, suggesting that each gene within a cluster is individually processed. Studies with permeable cells indicated that snoRNA gene transcription was relatively sensitive to alpha-amanitin, thus supporting transcription by RNA polymerase II. We propose that snoRNA gene expression, similar to protein-coding genes in this family, is regulated at the processing level.
Collapse
MESH Headings
- Amanitins/pharmacology
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA Methylation
- DNA-Directed RNA Polymerases/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Gene Deletion
- Genetic Vectors
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligonucleotides/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA Polymerase II/metabolism
- RNA, Messenger/metabolism
- RNA, Small Nucleolar/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction
- Ribose/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Trypanosoma/genetics
- Trypanosoma/metabolism
Collapse
Affiliation(s)
- Y Xu
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
15
|
Dunbar DA, Chen AA, Wormsley S, Baserga SJ. The genes for small nucleolar RNAs in Trypanosoma brucei are organized in clusters and are transcribed as a polycistronic RNA. Nucleic Acids Res 2000; 28:2855-61. [PMID: 10908346 PMCID: PMC102681 DOI: 10.1093/nar/28.15.2855] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Accepted: 06/13/2000] [Indexed: 11/14/2022] Open
Abstract
Because the organization of snoRNA genes in vertebrates, plants and yeast is diverse, we investigated the organization of snoRNA genes in a distantly related organism, Trypanosoma brucei. We have characterized the second example of a snoRNA gene cluster that is tandemly repeated in the T.BRUCEI: genome. The genes encoding the box C/D snoRNAs TBR12, TBR6, TBR4 and TBR2 make up the cluster. In a genomic organization unique to trypanosomes, there are at least four clusters of these four snoRNA genes tandemly repeated in the T. BRUCEI: genome. We show for the first time that the genes encoding snoRNAs in both this cluster and the SLA cluster are transcribed in an unusual way as a polycistronic RNA.
Collapse
Affiliation(s)
- D A Dunbar
- Department of Therapeutic Radiology and Department of Genetics, Yale School of Medicine, 333 Cedar Street, PO Box 208040, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
16
|
Dunbar DA, Wormsley S, Lowe TM, Baserga SJ. Fibrillarin-associated box C/D small nucleolar RNAs in Trypanosoma brucei. Sequence conservation and implications for 2'-O-ribose methylation of rRNA. J Biol Chem 2000; 275:14767-76. [PMID: 10747997 DOI: 10.1074/jbc.m001180200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the identification of 17 box C/D fibrillarin-associated small nucleolar RNAs (snoRNAs) from the ancient eukaryote, Trypanosoma brucei. To systematically isolate and characterize these snoRNAs, the T. brucei cDNA for the box C/D snoRNA common protein, fibrillarin, was cloned and polyclonal antibodies to the recombinant fibrillarin protein were generated in rabbits. Immunoprecipitations from T. brucei extracts with the anti-fibrillarin antibodies indicated that this trypanosomatid has at least 30 fibrillarin-associated snoRNAs. We have sequenced seventeen of them and designated them TBR for T. brucei RNA 1-17. All of them bear conserved box C, D, C', and D' elements, a hallmark of fibrillarin-associated snoRNAs in eukaryotes. Fourteen of them are novel T. brucei snoRNAs. Fifteen bear potential guide regions to mature rRNAs suggesting that they are involved in 2'-O-ribose methylation. Indeed, eight ribose methylations have been mapped in the rRNA at sites predicted by the snoRNA sequences. Comparative genomics indicates that six of the seventeen are the first trypanosome homologs of known yeast and vertebrate methylation guide snoRNAs. Our results indicate that T. brucei has many fibrillarin-associated box C/D snoRNAs with roles in 2'-O-ribose methylation of rRNA and that the mechanism for targeting the nucleotide to be methylated at the fifth nucleotide upstream of box D or D' originated in early eukaryotes.
Collapse
Affiliation(s)
- D A Dunbar
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | |
Collapse
|
17
|
Li L, Otake LR, Xu YX, Michaeli S. The trans-spliceosomal U4 RNA from the monogenetic trypanosomatid Leptomonas collosoma. Cloning and identification of a transcribed trna-like element that controls its expression. J Biol Chem 2000; 275:2259-64. [PMID: 10644672 DOI: 10.1074/jbc.275.4.2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U4 small nuclear RNA is essential for trans-splicing. Here we report the cloning of U4 snRNA gene from Leptomonas collosoma and analysis of elements controlling its expression. The trypanosome U4 RNA is the smallest known, it carries an Sm-like site, and has the potential for extensive intermolecular base pairing with the U6 RNA. Sequence analysis of the U4 locus indicates the presence of a tRNA-like element 86 base pairs upstream of the gene that is divergently transcribed to yield a stable small tRNA-like RNA. Two additional tRNA genes, tRNA(Pro) and tRNA(Gly), were found upstream of this element. By stable expression of a tagged U4 RNA, we demonstrate that the tRNA-like gene, but not the upstream tRNA genes, is essential for U4 expression and that the B box but not the A Box of the tRNA-like gene is crucial for expression in vivo. Mapping the 2'-O-methyl groups on U4 and U6 small nuclear RNAs suggests the presence of modifications in canonical positions. However, the number of modified nucleotides is fewer than in mammalian homologues. The U4 genomic organization including both tRNA-like and tRNA genes may represent a relic whereby trypanosomatids "hired" tRNA genes to provide extragenic promoter elements. The close proximity of tRNA genes to the tRNA-like molecule in the U4 locus further suggests that the tRNA-like gene may have evolved from a tRNA member of this cluster.
Collapse
Affiliation(s)
- L Li
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
18
|
Ben-Shlomo H, Levitan A, Shay NE, Goncharov I, Michaeli S. RNA editing associated with the generation of two distinct conformations of the trypanosomatid Leptomonas collosoma 7SL RNA. J Biol Chem 1999; 274:25642-50. [PMID: 10464300 DOI: 10.1074/jbc.274.36.25642] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of the trypanosomatid Leptomonas collosoma 7SL RNA revealed the existence of two distinct stable 7SL RNA conformers (7SL I and II). Sequence analysis of the RNAs indicated a single base difference between the conformers at position 133 (C in 7SL II and U in 7SL I) located in domain III. This change appears to be the result of a post-transcriptional editing event, since the single-copy 7SL RNA gene codes exclusively for a C at this position. The edited form (7SL I) was found preferentially in the cytoplasm, and the pre-edited form in the nucleus. 7SL I is mainly bound to ribosomes, whereas 7SL II is more abundant in ribosome-free particles. Mutations introduced in regions outside the editing site were found to occur in a single conformation, suggesting that the editing event is not the only factor that determines the conformation of the molecule. This study is the first description of an editing event on a small RNA other than tRNA and is the first report of C --> U editing in trypanosomes. We propose a novel role for RNA editing in controlling the conformation of the 7SL RNA in vivo.
Collapse
Affiliation(s)
- H Ben-Shlomo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
19
|
Tran AN, Andersson B, Pettersson U, Aslund L. A chromosome-specific dispersed gene family in Trypanosoma cruzi. Mol Biochem Parasitol 1999; 100:229-34. [PMID: 10391385 DOI: 10.1016/s0166-6851(99)00049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A N Tran
- Department of Genetics and Pathology, Biomedical Center, Uppsala University, Sweden
| | | | | | | |
Collapse
|